Elastic Properties of Magnetorheological Elastomers in a Heterogeneous Uniaxial Magnetic Field
Abstract
:1. Introduction
2. Results
2.1. Shear Modulus Measurements for Uniform MF
2.2. MF Simulation for Non-Uniform MF
2.3. Compression Tests for Non-Uniform MF
3. Discussion
3.1. Shear Modulus Measurements for Uniform MF
3.2. MF Simulation for Non-Uniform MF
3.3. Compression Tests for Non-Uniform MF
4. Materials and Methods
4.1. Synthesis of Magnetorheological Elastomers
4.2. Shear Modulus Measurements for Uniform MF
4.3. Compression Tests for Non-Uniform MF
4.4. MF Simulation in Non-Uniform MF
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jolly, M.R.; Carlson, J.D.; Munoz, B.C. A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 1996, 5, 607–614. [Google Scholar] [CrossRef]
- Sutrisno, J.; Purwanto, A.; Mazlan, S.A. Recent progress on magnetorheological solids: Materials, fabrication, testing, and applications. Adv. Eng. Mater. 2015, 5, 563–597. [Google Scholar]
- Stepanov, G.V.; Abramchuk, S.S.; Grishin, D.A.; Nikitin, L.V.; Kramarenko, E.Y.; Khokhlov, A.R. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer 2007, 48, 488–495. [Google Scholar] [CrossRef]
- Schubert, G.; Harrison, P. Large-strain behavior of magneto-rheological elastomers tested under uniaxial compression and tension, and pure shear deformations. Polym. Test. 2015, 42, 122–134. [Google Scholar] [CrossRef]
- Mitsumata, T.; Ohori, S. Magnetic polyurethane elastomers with wide range modulation of elasticity. Polym. Chem. 2011, 2, 1063–1067. [Google Scholar] [CrossRef]
- Endo, H.; Kato, S.; Watanebe, M.; Kikuchi, T.; Kawai, M.; Mitsumata, T. Magnetically Tunable Vibration Transmissibility for Polyurethane Magnetic Elastomers. Polymers 2018, 10, 104. [Google Scholar] [CrossRef]
- Plachy, T.; Kratina, O.; Sedlacik, M. Porous magnetic materials based on EPDM rubber filled with carbonyl iron particles. Compos. Struct. 2018, 192, 126–130. [Google Scholar] [CrossRef]
- Varga, Z.; Filipcsei, G.; Zrınyi, M. Magnetic field sensitive functional elastomers with tunable elastic modulus. Polymer 2006, 47, 227–233. [Google Scholar] [CrossRef]
- Metsch, P.; Kalina, K.A.; Spieler, C.; Kästner, M. A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Comput. Mater. Sci. 2016, 124, 364–374. [Google Scholar] [CrossRef]
- Zubarev, A.Y.; Borin, D.Y. Effect of particle concentration on ferrogel magnetodeformation. J. Magn. Magn. Mater. 2015, 377, 373–377. [Google Scholar] [CrossRef]
- Perales-Martínez, I.A.; Palacios-Pineda, L.M.; Lozano-Sanchez, L.M.; Martínez-Romero, O.; Puente-Cordova, J.G.; Elías-Zú~niga, A. Enhancement of a magnetorheological PDMS elastomer with carbonyl iron particles. Polym. Test. 2017, 57, 78–86. [Google Scholar] [CrossRef]
- Danas, K.; Kankanala, S.V.; Triantafyllidis, N. Experiments and modeling of iron-particle-filled magnetorheological elastomers. J. Mech. Phys. Solids 2012, 60, 120–138. [Google Scholar] [CrossRef]
- Han, Y.; Hong, W.; Faidley, L.E. Field-stiffening effect of magneto-rheological elastomers. Int. J. Solids Struct. 2013, 50, 2281–2288. [Google Scholar] [CrossRef]
- Borcea, L.; Bruno, O. On the magneto-elastic properties of elastomer–ferromagnet composites. J. Mech. Phys. Solids 2001, 49, 2877–2919. [Google Scholar] [CrossRef]
- Rudykh, S.; Bertoldi, K. Stability of anisotropic magnetorheological elastomers in finite deformations: A micromechanical approach. J. Mech. Phys. Solids 2013, 61, 949–967. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; p. 111. [Google Scholar]
- Sorokin, V.V.; Belyaeva, I.A.; Shamonin, M.; Kramorenko, E.Y. Magnetorheological response of highly filled magnetoactive elastomers from perspective of mechanical energy density: Fractal aggregates above the nanometer scale? Phys. Rev. 2017, 95, 062501. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Filipcsei, G.; Zrınyi, M. Smart composites with controlled anisotropy. Polymer 2005, 46, 7779–7787. [Google Scholar] [CrossRef]
Flux Density in the Center (mT) | Coercivity (A/m) | Remanent Flux Density (mT) | Thickness (mm) |
---|---|---|---|
260 | 9.07 × 105 | 1250 | 8 |
320 | 9.07 × 105 | 1250 | 10 |
420 | 9.10 × 105 | 1300 | 15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikuchi, T.; Kobayashi, Y.; Kawai, M.; Mitsumata, T. Elastic Properties of Magnetorheological Elastomers in a Heterogeneous Uniaxial Magnetic Field. Int. J. Mol. Sci. 2018, 19, 3045. https://doi.org/10.3390/ijms19103045
Kikuchi T, Kobayashi Y, Kawai M, Mitsumata T. Elastic Properties of Magnetorheological Elastomers in a Heterogeneous Uniaxial Magnetic Field. International Journal of Molecular Sciences. 2018; 19(10):3045. https://doi.org/10.3390/ijms19103045
Chicago/Turabian StyleKikuchi, Takehito, Yusuke Kobayashi, Mika Kawai, and Tetsu Mitsumata. 2018. "Elastic Properties of Magnetorheological Elastomers in a Heterogeneous Uniaxial Magnetic Field" International Journal of Molecular Sciences 19, no. 10: 3045. https://doi.org/10.3390/ijms19103045
APA StyleKikuchi, T., Kobayashi, Y., Kawai, M., & Mitsumata, T. (2018). Elastic Properties of Magnetorheological Elastomers in a Heterogeneous Uniaxial Magnetic Field. International Journal of Molecular Sciences, 19(10), 3045. https://doi.org/10.3390/ijms19103045