Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction: From Molecular Evidences to Clinical Implications
Abstract
:1. Introduction
2. Heart Failure with Preserved Left Ventricular Ejection Fraction
3. Natriuretic Peptides: From Molecular Evidences to Clinical Implications
4. Implications of Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction Diagnosis
5. Therapeutic Implications of Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction
5.1. Natriuretic Peptides Analogs
5.2. Natriuretic Peptide Breakdown Inhibitors
5.3. Mineralocorticoid Receptors Antagonists
6. Prognostic Implications of Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction
6.1. Prognostic Value of BNP and NT-proBNP
6.2. Prognostic Value of MR-proANP
6.3. Prognostic Value of Natriuretic Peptides and Heart Failure with Preserved Ejection Fraction Therapy
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
aa | amino-acid |
ACE | angiotensin converting enzyme |
Ang II | angiotensin II |
AF | atrial fibrillation |
ANP | atrial natriuretic peptide |
ARB | angiotensin receptor blockers |
ATP | adenylate triphosphates |
BNP | B-type natriuretic peptide |
CNP | C-type natriuretic peptide |
CD-NP | Cenderitide |
ECE | endothelin-converting enzyme |
ET-1 | endothelin- 1 |
ESC | European Society of Cardiology |
GFR | glomerular filtration rate |
GMP | guanylate mono phosphatase |
HF | heart failure |
HFrEF | heart failure with reduced ejection fraction |
HFpEF | heart failure with preserved ejection fraction |
HFmrEF | heart failure with mid-range ejection fraction |
LA | left atrial |
LAVI | left atrial indexed volume |
LV | left ventricular |
LVEF | left ventricular ejection fraction |
mRNA | messenger ribonucleic acid |
MR-proANP | middle range pro atrial natriuretic peptide |
NEP | neutral endopeptidase |
NHE | natrium-proton exchanger |
NPs | natriuretic peptides |
NPR-A | natriuretic peptide receptor A |
NPR-B | natriuretic peptide receptor B |
NPR-C | natriuretic peptide receptor C |
MRAs | mineralocorticoid receptor antagonists |
pGC | particulate guanylyl cyclase |
RAAS | renin-angiotensin-aldosterone system |
sGC | soluble guanylyl cyclase |
sST2 | soluble source of tumorigenicity 2 |
TGF ß | transforming growth factor beta |
References
- De Keulenaer, G.W.; Brutsaert, D.L. Systolic and diastolic heart failure are overlapping phenotypes within the heart failure spectrum. Circulation 2011, 123. [Google Scholar] [CrossRef]
- Aronow, W.S. Epidemiology, pathophysiology, prognosis, and treatment of systolic and diastolic heart failure in elderly patients. Heart Dis. 2003, 5, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef] [PubMed]
- Brunner-La Rocca, H.P.; Sanders-van Wijk, S. Natriuretic Peptides in Chronic Heart Failure. Card. Fail. Rev. 2019, 5, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Ping, P.; Wang, F.; Luo, L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J. Biol. Eng. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, E.; Vogiatzi, G.; Tsalamandris, S.; Mourouzis, K.; Siasos, G.; Lazaros, G.; Skotsimara, G.; Marinos, G.; Vavuranakis, M.; Tousoulis, D. Non-natriuretic peptide biomarkers in heart failure with preserved and reduced ejection fraction. Biomark. Med. 2018, 12, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Meijers, W.C.; van der Velde, A.R.; de Boer, R.A. Biomarkers in heart failure with preserved ejection fraction. Neth. Heart J. 2016, 24, 252–258. [Google Scholar] [CrossRef]
- D’Elia, E.; Vaduganathan, M.; Gori, M.; Gavazzi, A.; Butler, J.; Senni, M. Role of biomarkers in cardiac structure phenotyping in heart failure with preserved ejection fraction: Critical appraisal and practical use. Eur. J. Heart Fail. 2015, 17, 1231–1239. [Google Scholar] [CrossRef]
- Nadar, S.K.; Shaikh, M.M. Biomarkers in Routine Heart Failure Clinical Care. Card. Fail. Rev. 2019, 5, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boer, R.A.; Nayor, M.; deFilippi, C.R.; Enserro, D.; Bhambhani, V.; Kizer, J.R.; Blaha, M.J.; Brouwers, F.P.; Cushman, M.; Lima, J.A.C.; et al. Association of Cardiovascular Biomarkers with Incident Heart Failure with Preserved and Reduced Ejection Fraction. JAMA Cardiol. 2018, 3, 215–224. [Google Scholar] [CrossRef]
- Gruson, D.; Favvresse, J. Peptides natriurétiques : Dégradation, formes circulantes, dosages et nouvelles approches thérapeutiques. Ann. Biol. Clin. 2017, 75, 259–267. [Google Scholar] [CrossRef]
- Maisel, A.S.; Duran, J.M.; Wettersten, N. Natriuretic Peptides in Heart Failure: Atrial and B-type Natriuretic Peptides. Heart Fail. Clin. 2018, 14, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, T.; Kuwahara, K.; Nakao, K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J. Cardiol. 2011, 57, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Rahmutula, D.; Zhang, H.; Wilson, E.; Olgin, J.E. Absence of natriuretic peptide clearance receptor attenuates TGF-b1-induced selective atrial fibrosis and atrial fibrillation. Cardiovasc. Res. 2019, 115, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Calderone, A.; Thaik, C.M.; Takahashi, N.; Chang, D.L.; Colucci, W.S. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J. Clin. Investig. 1998, 101, 812–818. [Google Scholar] [CrossRef]
- Volpe, M.; Carnovali, M.; Mastromarino, V. The natriuretic peptides system in the pathophysiology of heart failure: From molecular basis to treatment. Clin. Sci. 2016, 130, 57–77. [Google Scholar] [CrossRef]
- Matsuo, A.; Nagai-Okatani, C.; Nishigori, M.; Kangawa, K.; Minamino, N. Natriuretic peptides in human heart: Novel insight into their molecular forms, functions, and diagnostic use. Peptides 2019, 111, 3–17. [Google Scholar] [CrossRef]
- Seewöster, T.; Büttner, P.; Nedios, S.; Sommer, P.; Dagres, N.; Schumacher, K.; Bollmann, A.; Hilbert, S.; Jahnke, C.; Paetsch, I.; et al. Association Between Cardiovascular Magnetic Resonance-Derived Left Atrial Dimensions, Electroanatomical Substrate and NT-proANP Levels in Atrial Fibrillation. J. Am. Heart Assoc. 2018, 7, e009427. [Google Scholar] [CrossRef]
- Nattel, S. Natriuretic peptide receptors and atrial-selective fibrosis: Potential role in atrial fibrillation. Cardiovasc. Res. 2019, 115, 258–260. [Google Scholar] [CrossRef]
- Wu, C.K.; Su, M.M.; Wu, Y.F.; Hwang, J.J.; Lin, L.Y. Combination of Plasma Biomarkers and Clinical Data for the Detection of Myocardial Fibrosis or Aggravation of Heart Failure Symptoms in Heart Failure with Preserved Ejection Fraction Patients. J. Clin. Med. 2018, 7, 427. [Google Scholar] [CrossRef]
- Zakeri, R.; Cowie, M.R. Heart failure with preserved ejection fraction: Controversies, challenges and future directions. Heart 2018, 104, 377–384. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Carter, R.E.; Obokata, M.; Redfield, M.M.; Borlaug, B.A. A Simple, Evidence-Based Approach to Help Guide Diagnosis of Heart Failure with Preserved Ejection Fraction. Circulation 2018, 138, 861–870. [Google Scholar] [CrossRef]
- Michalska-Kasiczak, M.; Bielecka-Dabrowa, A.; von Haehling, S.; Anker, S.D.; Rysz, J.; Banach, M. Biomarkers, myocardial fibrosis and co-morbidities in heart failure with preserved ejection fraction: An overview. Arch. Med. Sci. 2018, 14, 890–909. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Huang, W.; Fan, J.; Lei, H. Midregional pro-atrial natriuretic peptide is a superior biomarker to N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure patients with preserved ejection fraction. Medicine 2018, 97, e12277. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- van Heerebeek, L.; Hamdani, N.; Falcão-Pires, I.; Leite-Moreira, A.F.; Begieneman, M.P.; Bronzwaer, J.G.; van der Velden, J.; Stienen, G.J.; Laarman, G.J.; Somsen, A.; et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 2012, 126, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Maisel, A.; Mueller, C.; Nowak, R.M.; Peacock, W.F.; Ponikowski, P.; Mockel, M.; Hogan, C.; Wu, A.H.; Richards, M.; Clopton, P.; et al. Midregion prohormone adrenomedullin and prognosis in patients presenting with acute dyspnea: Results from the BACH (Biomarkers in Acute Heart Failure) trial. J. Am. Coll. Cardiol. 2011, 58, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.L.; Chan, F.T.; Nabeebaccus, A.A.; Shah, A.M.; McDonagh, T.; Okonko, D.O.; Ayis, S. Drug treatment effects on outcomes in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Heart 2018, 104, 407–415. [Google Scholar] [CrossRef]
- Salo, P.P.; Havulinna, A.S.; Tukiainen, T.; Raitakari, O.; Lehtimäki, T.; Kähönen, M.; Kettunen, J.; Männikkö, M.; Eriksson, J.G.; Jula, A.; et al. Genome-Wide Association Study Implicates Atrial Natriuretic Peptide Rather Than B-Type Natriuretic Peptide in the Regulation of Blood Pressure in the General Population. Circ. Cardiovasc. Genet. 2017, 10, e001713. [Google Scholar] [CrossRef]
- Hausfater, P.; Claessens, Y.E.; Martinage, A.; Joly, L.M.; Lardeur, J.Y.; Der Sahakian, G.; Lemanski, C.; Ray, P.; Freund, Y.; Riou, B. Prognostic value of PCT, copeptin, MR-proADM, MR-proANP and CT-proET-1 for severe acute dyspnea in the emergency department: The BIODINER study. Biomarkers 2017, 22, 28–34. [Google Scholar] [CrossRef]
- Kang, S.H.; Park, J.J.; Choi, D.J.; Yoon, C.H.; Oh, I.Y.; Kang, S.M.; Yoo, B.S.; Jeon, E.S.; Kim, J.J.; Cho, M.C.; et al. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 2015, 101, 1881–1888. [Google Scholar] [CrossRef]
- Richards, A.M.; Januzzi, J.L., Jr.; Troughton, R.W. Natriuretic peptides in heart failure with preserved ejection fraction. Heart Fail. Clin. 2014, 10, 453–470. [Google Scholar] [CrossRef]
- Anjan, V.Y.; Loftus, T.M.; Burke, M.A.; Akhter, N.; Fonarow, G.C.; Gheorghiade, M.; Shah, S.J. Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am. J. Cardiol. 2012, 110, 870–876. [Google Scholar] [CrossRef]
- Anand, I.S.; Rector, T.S.; Cleland, J.G.; Kuskowski, M.; McKelvie, R.S.; Persson, H.; McMurray, J.J.; Zile, M.R.; Komajda, M.; Massie, B.M.; et al. Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and preserved ejection fraction: Findings from the I-PRESERVE trial. Circ. Heart Fail. 2011, 4, 569–577. [Google Scholar] [CrossRef]
- Jaubert, M.P.; Armero, S.; Bonello, L.; Nicoud, A.; Sbragia, P.; Paganelli, F.; Arques, S. Predictors of B-type natriuretic peptide and left atrial volume index in patients with preserved left ventricular systolic function: An echocardiographic-catheterization study. Arch. Cardiovasc. Dis. 2010, 103, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Maisel, A.S.; McCord, J.; Nowak, R.M.; Hollander, J.E.; Wu, A.H.; Duc, P.; Omland, T.; Storrow, A.B.; Krishnaswamy, P.; Abraham, W.T.; et al. Bedside B-Type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the Breathing Not Properly Multinational Study. J. Am. Coll. Cardiol. 2003, 41, 2010–2017. [Google Scholar] [CrossRef]
- Lam, C.S.; Rienstra, M.; Tay, W.T.; Liu, L.C.; Hummel, Y.M.; van der Meer, P.; de Boer, R.A.; Van Gelder, I.C.; van Veldhuisen, D.J.; Voors, A.A.; et al. Atrial Fibrillation in Heart Failure with Preserved Ejection Fraction: Association with Exercise Capacity, Left Ventricular Filling Pressures, Natriuretic Peptides, and Left Atrial Volume. JACC Heart Fail. 2017, 5, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Kraigher-Krainer, E.; Shah, A.M.; Gupta, D.K.; Santos, A.; Claggett, B.; Pieske, B.; Zile, M.R.; Voors, A.A.; Lefkowitz, M.P.; Packer, M.; et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2014, 63, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Pieske, B.; Butler, J.; Filippatos, G.; Lam, C.; Maggioni, A.P.; Ponikowski, P.; Shah, S.; Solomon, S.; Kraigher-Krainer, E.; Samano, E.T.; et al. Rationale and design of the SOluble guanylate Cyclase stimulatoR in heArT failurE Studies (SOCRATES). Eur. J. Heart Fail. 2014, 16, 1026–1038. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Rizkala, A.R.; Gong, J.; Wang, W.; Anand, I.S.; Ge, J.; Lam, C.S.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; et al. Angiotensin Receptor Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction: Rationale and Design of the PARAGON-HF Trial. JACC Heart Fail. 2017, 5, 471–482. [Google Scholar] [CrossRef]
- Iwanaga, Y.; Nishi, I.; Furuichi, S.; Noguchi, T.; Sase, K.; Kihara, Y.; Goto, Y.; Nonogi, H. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure comparison between systolic and diastolic heart failure. J. Am. Coll. Cardiol. 2006, 47, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Ledwidge, M.; Gallagher, J.; Conlon, C.; Tallon, E.; O’Connell, E.; Dawkins, I.; Watson, C.; O’Hanlon, R.; Bermingham, M.; Patle, A.; et al. Natriuretic peptide-based screening and collaborative care for heart failure: The STOP-HF randomized trial. JAMA 2013, 310, 66–74. [Google Scholar] [CrossRef]
- Obineche, E.N.; Pathan, J.Y.; Fisher, S.; Prickett, T.C.; Yandle, T.G.; Frampton, C.M.; Cameron, V.A.; Nicholls, M.G. Natriuretic peptide and adrenomedullin levels in chronic renal failure and effects of peritoneal dialysis. Kidney Int. 2006, 69, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Santos-Araújo, C.; Leite-Moreira, A.; Pestana, M. Clinical value of natriuretic peptides in chronic kidney disease. Nefrologia 2015, 35, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.S.S.; Burrell, L.M.; Cherif, M.; Squire, I.B.; Clark, A.L.; Lang, C.C. Sacubitril/valsartan: Beyond natriuretic peptides. Heart 2017, 103, 1569–1577. [Google Scholar] [CrossRef]
- Brunner-La Rocca, H.P.; Eurlings, L.; Richards, A.M.; Januzzi, J.L.; Pfisterer, M.E.; Dahlström, U.; Pinto, Y.M.; Karlström, P.; Erntell, H.; Berger, R.; et al. Which heart failure patients profit from natriuretic peptide guided therapy? A meta-analysis from individual patient data of randomized trials. Eur. J. Heart Fail. 2015, 17, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Bishu, K.; Redfield, M.M. Acute heart failure with preserved ejection fraction: Unique patient characteristics and targets for therapy. Curr. Heart Fail. Rep. 2013, 10, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Dandamudi, S.; Chen, H.H. The ASCEND-HF trial: An acute study of clinical effectiveness of nesiritide and decompensated heart failure. Expert Rev. Cardiovasc. Ther. 2012, 10, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.H.; Stevens, S.R.; Borlaug, B.A.; Anstrom, K.J.; Deswal, A.; Felker, G.M.; Givertz, M.M.; Bart, B.A.; Tang, W.H.; Redfield, M.M.; et al. Differential Response to Low-Dose Dopamine or Low-Dose Nesiritide in Acute Heart Failure with Reduced or Preserved Ejection Fraction: Results from the ROSE AHF Trial (Renal Optimization Strategies Evaluation in Acute Heart Failure). Circ. Heart Fail. 2016, 9, e002593. [Google Scholar] [CrossRef]
- Chen, H.H.; Glockne, J.F.; Schirger, J.A.; Cataliotti, A.; Redfield, M.M.; Burnett, J.C., Jr. Novel protein therapeutics for systolic heart failure: Chronic subcutaneous B-type natriuretic peptide. J. Am. Coll. Cardiol. 2012, 60, 2305–2312. [Google Scholar] [CrossRef]
- Travessa, A.M.; Meneze Falcão, L. Vasodilators in acute heart failure—Evidence based on new studies. Eur. J. Intern. Med. 2018, 51. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; O’Connor, C.; McMurray, J.J.V.; Wittes, J.; Abraham, W.T.; Anker, S.D.; Dickstein, K.; Filippatos, G.; Holcomb, R.; Krum, H.; et al. Effect of Ularitide on Cardiovascular Mortality in Acute Heart Failure. N. Engl. J. Med. 2017, 376, 1956–1964. [Google Scholar] [CrossRef]
- Lisy, O.; Huntley, B.K.; McCormick, D.J.; Kurlansky, P.A.; Burnett, J.C., Jr. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CDNP. J. Am. Coll. Cardiol. 2008, 52, 60–68. [Google Scholar] [CrossRef]
- McKie, P.M.; Sangaralingham, S.J.; Burnett, J.C., Jr. CD-NP: An innovative designer natriuretic peptide activator of particulate guanylyl cyclase receptors for cardiorenal disease. Curr. Heart Fail. Rep. 2010, 7, 93–99. [Google Scholar] [CrossRef]
- Lee, C.Y.; Huntley, B.K.; McCormick, D.J.; Ichiki, T.; Sangaralingham, S.J.; Lisy, O.; Burnett, J.C., Jr. Cenderitide: Structural requirements for the creation of a novel dual particulate guanylyl cyclase receptor agonist with renal-enhancing in vivo and ex vivo actions. Eur. Heart J. Cardiovasc. Pharmacother. 2016, 2, 98–105. [Google Scholar] [CrossRef]
- Martin, F.L.; Sangaralingham, S.J.; Huntley, B.K.; McKie, P.M.; Ichiki, T.; Chen, H.H.; Korinek, J.; Harders, G.E.; Burnett, J.C., Jr. CD-NP: A novel engineered dual guanylylcyclase activator with anti-fibrotic actions in the heart. PLoS ONE 2012, 7, e52422. [Google Scholar] [CrossRef]
- von Lueder, T.G.; Sangaralingham, S.J.; Wang, B.H.; Kompa, A.R.; Atar, D.; Burnett, J.C.; Krum, H. Renin-angiotensin blockade combined with natriuretic peptide system augmentation: Novel therapeutic concepts to combat heart failure. Circ. Heart Fail. 2013, 6, 594–605. [Google Scholar] [CrossRef]
- McKie, P.M.; Cataliotti, A.; Ichiki, T.; Sangaralingham, S.J.; Chen, H.H.; Burnett, J.C., Jr. M-atrial natriuretic peptide and nytroglycerin in a canine model of experimental acute hypertensive heart failure: A differential actions of 2 cGMP activating therapeutics. J. Am. Heart Assoc. 2014, 3, e000206. [Google Scholar] [CrossRef]
- Pan, S.; Chen, H.H.; Dickey, D.M.; Boerrigter, G.; Lee, C.; Kleppe, L.S.; Hall, J.L.; Lerman, A.; Redfield, M.M.; Potter, L.R.; et al. Biodesign of a renal- protective peptide based on alternative splicing of B-type natriuretic peptide. Proc. Natl. Acad. Sci. USA 2009, 106, 11282–11287. [Google Scholar] [CrossRef]
- Meems, L.M.G.; Burnett, J.C., Jr. Innovative Therapeutics: Designer Natriuretic Peptides. JACC Basic Transl. Sci. 2016, 1, 557–567. [Google Scholar] [CrossRef]
- Kelesidis, I.; Mazurek, J.; Khullar, P.; Saeed, W.; Vittorio, T.; Zolty, R. The Effect of Nesiritide on Renal Function and Other Clinical Parameters in Patients with Decompensated Heart Failure and Preserved Ejection Fraction. Congest. Heart Fail. 2012, 18, 158–164. [Google Scholar] [CrossRef]
- Bijkerk, R.; Aleksinskaya, M.A.; Duijs, J.M.G.J.; Veth, J.; Husen, B.; Reiche, D.; Prehn, C.; Adamski, J.; Rabelink, T.J.; De Mey, J.G.R.; et al. Neutral endopeptidase inhibitors blunt kidney fibrosis by reducing myofibroblast formation. Clin. Sci. 2019, 133, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Monteil, T.; Danvy, D.; Sihel, M.; Leroux, R.; Plaquevent, J.C. Strategies for access to enantiomerically pure ecadotril, dexecadotril and fasidotril: A review. Mini-Rev. Med. Chem. 2002, 2, 209–217. [Google Scholar] [CrossRef]
- Kalk, P.; Sharkovska, Y.; Kashina, E.; von Websky, K.; Relle, K.; Pfab, T.; Alter, M.; Guillaume, P.; Provost, D.; Hoffmann, K.; et al. Endothelinconverting enzyme/neutral endopeptidase inhibitor SLV338 prevents hypertensive cardiac remodeling in a blood pressure-independent manner. Hypertension 2011, 57, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Emoto, N.; Suzuki, Y.; Vignon-Zellweger, N.; Yagi, K.; Hirata, K. Physiological relevance of hydrolysis of atrial natriuretic peptide by endothelin-converting enzyme-1. Kobe J. Med. Sci. 2012, 58, E12–E18. [Google Scholar] [PubMed]
- Emoto, N.; Raharjo, S.B.; Isaka, D.; Masuda, S.; Adiarto, S.; Jeng, A.Y.; Yokoyama, M.; Dual, E.C.E. NEP inhibition on cardiac and neurohumoral function during the transition from hypertrophy to heart failure in rats. Hypertension 2005, 45, 1145–1152. [Google Scholar] [CrossRef]
- Seed, A.; Kuc, R.E.; Maguire, J.J.; Hillier, C.; Johnston, F.; Essers, H.; de Voogd, H.J.; McMurray, J.; Davenport, A.P. The dual endothelin converting enzyme/neutral endopeptidase inhibitor SLV-306 (daglutril), inhibits systemic conversion of big endothelin-1 in humans. Life Sci. 2012, 91, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Maki, T.; Nasa, Y.; Tanonaka, K.; Takahashi, M.; Takeo, S. Beneficial effects of sampatrilat, a novel vasopeptidase inhibitor, on cardiac remodeling and function of rats with chronic heart failure following left coronary artery ligation. J. Pharmacol. Exp. Ther. 2003, 305, 97–105. [Google Scholar] [CrossRef]
- Kostis, J.B.; Packer, M.; Black, H.R.; Schmieder, R.; Henry, D.; Levy, E. Omapatrilat and enalapril in patients with hypertension: The Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am. J. Hypertens. 2004, 17, 103–111. [Google Scholar] [CrossRef]
- Vesterqvist, O.; Reeves, R.A. Effects of omapatrilat on pharmacodynamic biomarkers of neutral endopeptidase and Angiotensin-converting enzyme activity in humans. Curr. Hypertens. Rep. 2001, 3 (Suppl. 2), S22–S27. [Google Scholar] [CrossRef]
- Mellin, V.; Jeng, A.Y.; Monteil, C.; Renet, S.; Henry, J.P.; Thuillez, C.; Mulder, P. Triple ACE-ECE-NEP inhibition in heart failure: A comparison with ACE and dual ECE-NEP inhibition. J. Cardiovasc. Pharmacol. 2005, 46, 390–397. [Google Scholar] [CrossRef]
- Simpson, J.; Benson, L.; Jhund, P.S.; Dahlström, U.; McMurray, J.J.V.; Lund, L.H. “Real World” Eligibility for Sacubitril/Valsartan in Unselected Heart Failure Patients: Data from the Swedish Heart Failure Registry. Cardiovasc. Drugs Ther. 2019. [Google Scholar] [CrossRef]
- Martens, P.; Beliën, H.; Dupont, M.; Mullens, W. Insights into implementation of sacubitril/valsartan into clinical practice. ESC Heart Fail. 2018, 5, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Myhre, P.L.; Vaduganathan, M.; Claggett, B.; Packer, M.; Desai, A.S.; Rouleau, J.L.; Zile, M.R.; Swedberg, K.; Lefkowitz, M.; Shi, V.; et al. B-Type Natriuretic Peptide During Treatment with Sacubitril/Valsartan. The PARADIGM-HF Trial. J. Am. Coll. Cardiol. 2019, 73, 25886. [Google Scholar] [CrossRef]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef]
- Desai, A.S.; McMurray, J.J.; Packer, M.; Swedberg, K.; Rouleau, J.L.; Chen, F.; Gong, J.; Rizkala, A.R.; Brahimi, A.; Claggett, B.; et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur. Heart J. 2015, 36, 1990–1997. [Google Scholar] [CrossRef] [Green Version]
- Yandrapalli, S.; Aronow, W.S.; Mondal, P.; Chabbott, D.R. The evolution of natriuretic peptide augmentation in management of heart failure and the role of sacubitril/valsartan. Arch. Med. Sci. 2017, 13, 1207–1216. [Google Scholar] [CrossRef]
- Cannon, J.A.; Shen, L.; Jhund, P.S.; Kristensen, S.L.; Køber, L.; Chen, F.; Gong, J.; Lefkowitz, M.P.; Rouleau, J.L.; Shi, V.C.; et al. Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction. Eur. J. Heart Fail. 2017, 19, 129–137. [Google Scholar] [CrossRef]
- Efficacy and Safety of LCZ696 Compared to Valsartan on Cognitive Function in Patients with Chronic Heart Failure and Preserved Ejection Fraction (PERSPECTIVE). ClinicalTrials.gov Identifier: NCT02884206. Available online: https://clinicaltrials.gov/ct2/show/NCT02884206 (accessed on 29 March 2019).
- Bramblett, T.; Teleb, M.; Albaghdadi, A.; Agrawal, H.; Mukherjee, D. Heart Failure with Preserved Ejection Fraction: Entresto a Possible Option. Cardiovasc. Hematol. Disord. Drug Targets 2017, 17, 80–85. [Google Scholar] [CrossRef]
- Galli, A.; Lombardi, F. Neprilysin inhibition for heart failure. N. Engl. J. Med. 2014, 371, 2336–2337. [Google Scholar] [CrossRef]
- Marques da Silva, P.; Aguiar, C. Sacubitril/valsartan: An important piece in the therapeutic puzzle of heart failure. Rev. Port. Cardiol. 2017, 36, 655–668. [Google Scholar] [CrossRef]
- Gori, M.; D’Elia, E.; Senni, M. Sacubitril/valsartan therapeutic strategy in HFpEF: Clinical insights and perspectives. Int. J. Cardiol. 2019, 281, 158–165. [Google Scholar] [CrossRef]
- Solomon, S.D.; Zile, M.; Pieske, B.; Voors, A.; Shah, A.; Kraigher-Krainer, E.; Shi, V.; Bransford, T.; Takeuchi, M.; Gong, J.; et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: A phase 2 double-blind randomised controlled trial. Lancet 2012, 380, 1387–1395. [Google Scholar] [CrossRef]
- Solomon, S.D.; Rizkala, A.R.; Lefkowitz, M.P.; Shi, V.C.; Gong, J.; Anavekar, N.; Anker, S.D.; Arango, J.L.; Arenas, J.L.; Atar, D.; et al. Baseline Characteristics of Patients with Heart Failure and Preserved Ejection Fraction in the PARAGON-HF Trial. Circ. Heart Fail. 2018, 11, e004962. [Google Scholar] [CrossRef]
- Grodin, J.L.; Philips, S.; Mullens, W.; Nijst, P.; Martens, P.; Fang, J.C.; Drazner, M.H.; Tang, W.H.W.; Pandey, A. Prognostic implications of plasma volume status estimates in heart failure with preserved ejection fraction: Insights from TOPCAT. Eur. J. Heart Fail. 2019. [Google Scholar] [CrossRef]
- Myhre, P.L.; Vaduganathan, M.; Claggett, B.L.; Anand, I.S.; Sweitzer, N.K.; Fang, J.C.; O’Meara, E.; Shah, S.J.; Desai, A.S.; Lewis, E.F.; et al. Association of Natriuretic Peptides with Cardiovascular Prognosis in Heart Failure with Preserved Ejection Fraction: Secondary Analysis of the TOPCAT Randomized Clinical Trial. JAMA Cardiol. 2018, 3, 1000–1005. [Google Scholar] [CrossRef]
- Anand, I.S.; Claggett, B.; Liu, J.; Shah, A.M.; Rector, T.S.; Shah, S.J.; Desai, A.S.; O’Meara, E.; Fleg, J.L.; Pfeffer, M.A.; et al. Interaction between spironolactone and natriuretic peptides in patients with heart failure and preserved ejection fraction: From the TOPCAT trial. JACC Heart Fail. 2017, 5, 241–252. [Google Scholar] [CrossRef]
- Zile, M.R.; Baicu, C.F.; Ikonomidis, J.S.; Stroud, R.E.; Nietert, P.J.; Bradshaw, A.D.; Slater, R.; Palmer, B.M.; Van Buren, P.; Meyer, M.; et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: Contributions of collagen and titin. Circulation 2015, 131, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, H.; Lu, Y.; Huang, X.; Liao, Y.; Bin, J. Effects of mineralocorticoid receptor antagonists in patients with preserved ejection fraction: A meta-analysis of randomized clinical trials. BMC Med. 2015, 13, 10. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Vardeny, O.; Claggett, B.; Yu, B.; Shah, A.M.; Ballantyne, C.M.; Selvin, E.; MacRae, C.A.; Boerwinkle, E.; Solomon, S.D. An NPPB promoter polymorphism associated with elevated n-terminal pro-B-type natriuretic peptide and lower blood pressure, hypertension, and mortality. J. Am. Heart Assoc. 2017, 6, e005257. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J. Am. Coll. Cardiol. 2018, 71, 2360–2372. [Google Scholar] [CrossRef]
- Hsich, E.M.; Grau-Sepulveda, M.V.; Hernandez, A.F.; Eapen, Z.J.; Xian, Y.; Schwamm, L.H.; Bhatt, D.L.; Fonarow, G.C. Relationship between sex.; ejection fraction.; and B-type natriuretic peptide levels in patients hospitalized with heart failure and associations with inhospital outcomes: Findings from the Get with the Guideline-Heart Failure Registry. Am. Heart J. 2013, 166. [Google Scholar] [CrossRef]
- Berry, C.; Doughty, R.N.; Granger, C.; Køber, L.; Massie, B.; McAlister, F.; McMurray, J.; Pocock, S.; Poppe, K.; Swedberg, K.; et al. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: An individual patient data meta-analysis. Eur. Heart J. 2012, 33, 1750–1757. [Google Scholar] [CrossRef]
- Lam, C.S.P.; Gamble, G.D.; Ling, L.H.; Sim, D.; Leong, K.T.G.; Yeo, P.S.D.; Ong, H.Y.; Jaufeerally, F.; Ng, T.P.; Cameron, V.A.; et al. Mortality associated with heart failure with preserved vs. reduced ejection fraction in a prospective international multi-ethnic cohort study. Eur. Heart J. 2018, 39, 1770–1780. [Google Scholar] [CrossRef] [Green Version]
- Levy, W.C.; Anand, I.S. Heart failure risk prediction models: What have we learned? JACC Heart Fail. 2014, 2, 437–439. [Google Scholar] [CrossRef] [PubMed]
- van Veldhuisen, D.J.; Linssen, G.C.; Jaarsma, T.; van Gilst, W.H.; Hoes, A.W.; Tijssen, J.G.; Paulus, W.J.; Voors, A.A.; Hillege, H.L. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J. Am. Coll. Cardiol. 2013, 61, 1498–1506. [Google Scholar] [CrossRef]
- Salah, K.; Stienen, S.; Pinto, Y.M.; Eurlings, L.W.; Metra, M.; Bayes-Genis, A.; Verdiani, V.; Tijssen, J.G.P.; Kok, W.E. Prognosis and NT-proBNP in heart failure patients with preserved versus reduced ejection fraction. Heart 2019. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Larson, M.G.; Levy, D.; Benjamin, E.J.; Corey, D.; Leip, E.P.; Vasan, R.S. Heritability and genetic linkage of plasma natriuretic peptide levels. Circulation 2003, 108, 13–16. [Google Scholar] [CrossRef]
- Richards, A.M. Do the Natriuretic Peptides Cause Atrial Fibrillation or is it Not So Black and White? J. Am. Heart Assoc. 2019, 8, e012242. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.; Kazanagra, R.; Garcia, A.; Lenert, L.; Krishnaswamy, P.; Gardetto, N.; Clopton, P.; Maisel, A. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: A pilot study. J. Am. Coll. Cardio.l 2001, 37, 386–391. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Levy, D.; Benjamin, E.J.; Leip, E.P.; Omland, T.; Wolf, P.A.; Vasan, R.S. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N. Engl. J. Med. 2004, 350, 655–663. [Google Scholar] [CrossRef]
- Cypen, J.; Ahmad, T.; Testani, J.M.; DeVore, A.D. Novel Biomarkers for the Risk Stratification of Heart Failure with Preserved Ejection Fraction. Curr. Heart Fail. Rep. 2017, 14, 434–443. [Google Scholar] [CrossRef]
- Gegenhuber, A.; Struck, J.; Dieplinger, B.; Poelz, W.; Pacher, R.; Morgenthaler, N.G.; Bergmann, A.; Haltmayer, M.; Mueller, T. Comparative evaluation of B-type natriuretic peptide.; mid-regional pro-A-type natriuretic peptide.; mid-regional pro-adrenomedullin.; and copeptin to predict 1-year mortality in patients with acute destabilized heart failure. J. Card. Fail. 2007, 13, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L.; Hartman, K.A.; Grill, D.E.; Struck, J.; Bergmann, A.; Jaffe, A.S. Serial measurements of midregion proANP and copeptin in ambulatory patients with heart failure: Incremental prognostic value of novel biomarkers in heart failure. Heart 2012, 98, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.V.; Truong, Q.A.; Gaggin, H.K.; Pfannkuche, J.; Hartmann, O.; Januzzi, J.L., Jr. Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. Eur. Heart J. 2012, 33, 2197–2205. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, S.L.; Jhund, P.S.; Mogensen, U.M.; Rørth, R.; Abraham, W.T.; Desai, A.; Dickstein, K.; Rouleau, J.L.; Zile, M.R.; Swedberg, K.; et al. N-Terminal Pro-B-Type Natriuretic Peptide Levels for Risk Prediction in Patients with Heart Failure and Preserved Ejection Fraction According to Atrial Fibrillation Status. Circ. Heart Fail. 2019, 12, e005766. [Google Scholar] [CrossRef] [PubMed]
- Alehagen, U.; Dahlström, U.; Rehfeld, J.F.; Goetze, J.P. Pro-A-type na- triuretic peptide.; proadrenomedullin.; and N-terminal pro-B-type natriuretic peptide used in a multimarker strategy in primary health care in risk assessment of patients with symptoms of heart failure. J. Card. Fail. 2013, 19, 31–39. [Google Scholar] [CrossRef]
- Zabarovskaja, S.; Hage, C.; Linde, C.; Daubert, J.C.; Donal, E.; Gabrielsen, A.; Mellbin, L.; Lund, L.H. Adaptive cardiovascular hormones in a spectrum of heart failure phenotypes. Int. J. Cardiol. 2015, 189, 6–11. [Google Scholar] [CrossRef]
- Smith, J.G.; Newton-Cheh, C.; Almgren, P.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Platonov, P.G.; Hedblad, B.; Engström, G.; Wang, T.J.; et al. Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J. Am. Coll. Cardiol. 2010, 56, 1712–1719. [Google Scholar] [CrossRef]
- Crozier, I.; Richards, A.M.; Foy, S.G.; Ikram, H. Electrophysiological effects of atrial natriuretic peptide on the cardiac conduction system in man. Pacing Clin. Electrophysiol. 1993, 16, 738–742. [Google Scholar] [CrossRef]
- Arakawa, M.; Miwa, H.; Noda, T.; Ito, Y.; Kambara, K.; Kagawa, K.; Nishigaki, K.; Kano, A.; Hirakawa, S. Alternations in atrial natriuretic peptide release after DC cardioversion of nonvalvular chronic atrial fibrillation. Eur. Heart J. 1995, 16, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Latini, R.; Masson, S.; Pirelli, S.; Barlera, S.; Pulitano, G.; Carbonieri, E.; Gulizia, M.; Vago, T.; Favero, C.; Zdunek, D.; et al. Circulating cardiovascular biomarkers in recurrent atrial fibrillation: Data from the GISSI-atrial fibrillation trial. J. Intern. Med. 2011, 269, 160–171. [Google Scholar] [CrossRef]
- Zografos, T.A.; Katritsis, D.G. Natriuretic Peptides as Predictors of Atrial Fibrillation Recurrences Following Electrical Cardioversion. Arrhythm. Electrophysiol. Rev. 2013, 2, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Siddiqi, T.J.; Usman, M.S.; Sreenivasan, J.; Fugar, S.; Riaz, H.; Murad, M.H.; Mookadam, F.; Figueredo, V.M. Does natriuretic peptide monitoring improve outcomes in heart failure patients? A systematic review and meta-analysis. Int. J. Cardiol. 2018, 263, 80–87. [Google Scholar] [CrossRef]
- Sanders-van Wijk, S.; van Asselt, A.D.; Rickli, H.; Estlinbaum, W.; Erne, P.; Rickenbacher, P.; Vuillomenet, A.; Peter, M.; Pfisterer, M.E.; Brunner-La Rocca, H.P. Cost- effectiveness of N-terminal pro-B-type natriuretic-guided therapy in elderly heart failure patients: Results from TIME- CHF (Trial of Intensified versus Standard Medical Therapy in Elderly Patients with Congestive Heart Failure). JACC Heart Fail. 2013, 1, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Schou, M.; Gustafsson, F.; Videbaek, L.; Tuxen, C.; Keller, N.; Handberg, J.; Sejr Knudsen, A.; Espersen, G.; Markenvard, J.; Egstrup, K.; et al. Extended heart failure clinic follow-up in low-risk patients: A randomized clinical trial (NorthStar). Eur. Heart J. 2013, 34, 432–442. [Google Scholar] [CrossRef]
- Maeder, M.T.; Rickenbacher, P.; Rickli, H.; Abbühl, H.; Gutmann, M.; Erne, P.; Vuilliomenet, A.; Peter, M.; Pfisterer, M.; Brunner-La Rocca, H.P. N-terminal pro brain natriuretic peptide-guided management in patients with heart failure and preserved ejection fraction: Findings from the Trial of Intensified versus standard medical therapy in elderly patients with congestive heart failure (TIME-CHF). Eur. J. Heart Fail. 2013, 15, 1148–1156. [Google Scholar] [CrossRef]
- Troughton, R.W.; Frampton, C.M.; Brunner-La Rocca, H.P.; Pfisterer, M.; Eurlings, L.W.; Erntell, H.; Persson, H.; O’Connor, C.M.; Moertl, D.; Karlström, P.; et al. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: An individual patient meta-analysis. Eur. Heart J. 2014, 35, 1559–1567. [Google Scholar] [CrossRef]
- Mohiuddin, S.; Reeves, B.; Pufulete, M.; Maishman, R.; Dayer, M.; Macleod, J.; McDonagh, T.; Purdy, S.; Rogers, C.; Hollingworth, W. Model-based cost- effectiveness analysis of B-type natriuretic peptide-guided care in patients with heart failure. BMJ Open 2016, 6, e014010. [Google Scholar] [CrossRef] [PubMed]
- Eurlings, L.W.; van Pol, P.E.; Kok, W.E.; van Wijk, S.; Lodewijks-van der Bolt, C.; Balk, A.H.; Lok, D.J.; Crijns, H.J.; van Kraaij, D.J.; de Jonge, N.; et al. Management of chronic heart failure guided by individual N-terminal pro-B- type natriuretic peptide targets: Results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) study. J. Am. Coll. Cardiol. 2010, 56, 2090–2100. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.E.; Januzzi, J.L., Jr. The Future of Biomarker-Guided Therapy for Heart Failure After the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) Study. Curr. Heart Fail. Rep. 2018, 15, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.R.; Califf, R.M.; Nohria, A.; Bhapkar, M.; Bowers, M.; Mancini, D.M.; Fiuzat, M.; Stevenson, L.W.; O’Connor, C.M. The STARBRITE trial: A randomized.; pilot study of B-type natriuretic peptide- guided therapy in patients with advanced heart failure. J. Card. Fail. 2011, 17, 613–621. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Morrow, D.A.; de Lemos, J.A.; Omland, T.; Sloan, S.; Jarolim, P.; Solomon, S.D.; Pfeffer, M.A.; Braunwald, E. Evaluation of multiple biomarkers of cardiovascular stress for risk prediction and guiding medical therapy in patients with stable coronary disease. Circulation 2012, 125, 233–240. [Google Scholar] [CrossRef]
- Arrigo, M.; Truong, Q.A.; Szymonifka, J.; Rivas-Lasarte, M.; Tolppanen, H.; Sadoune, M.; Gayat, E.; Cohen-Solal, A.; Ruschitzka, F.; Januzzi, J.L., Jr.; et al. Mid- regional pro-atrial natriuretic peptide to predict clinical course in heart failure patients undergoing cardiac resynchronization therapy. Europace. 2017, 19, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.K.; Su, M.Y.; Lee, J.K.; Chiang, F.T.; Hwang, J.J.; Lin, J.L.; Chen, J.J.; Liu, F.T.; Tsai, C.T. Galectin-3 level and the severity of cardiac diastolic dysfunction using cellular and animal models and clinical indices. Sci. Rep. 2015, 5, 17007. [Google Scholar] [CrossRef]
- Circulating NEP and NEP Inhibition Study in Heart Failure with Preserved Ejection Fraction (CNEPi). ClinicalTrials.gov Identifier:NCT03506412. Available online: https://clinicaltrials.gov/ct2/show/NCT03506412?cond=heart+failure+preserved+ejection+fraction&draw=2&rank=18 (accessed on 2 April 2019).
- A Randomized, Double-blind Controlled Study Comparing LCZ696 to Medical Therapy for Comorbidities in HFpEF Patients (PARALLAX). ClinicalTrials.gov Identifier: NCT03066804. Available online: https://clinicaltrials.gov/ct2/show/NCT03066804?cond=heart+failure+preserved+ejection+fraction&draw=3&rank=27 (accessed on 2 April 2019).
ANP Form | Structure | Effects | Additional Remarks | Reference |
---|---|---|---|---|
αANP | Compact ring structure | Prolonged bioavailability as compared to other ANP forms | Healthy subjects: αANP>>proANP>>βANP Heart failure patients: Increased βANP and pro-ANP concentrations with decreased circulating corin levels Increased βANP/total ANP correlates with LV dysfunction | [17] |
βANP | Flexible extended structure αANP antiparallel homodimer | 40% of ANP effects | ||
proANP | precursor | 10% of ANP effects (weak natriuretic) |
Natriuretic Peptide | Mechanism | Time | Normal Levels | Reference |
---|---|---|---|---|
BNP | Ventricular wall stretch (pressure/volume overload) | 20 min | 3.5 pg/mL | [4,5,6,7,8,9,10,11,12,13,14,15,16,17] |
NT-proBNP | Biologically inactive form of BNP | 60–90 min | 51 pg/mL | |
ANP | Atrial wall stretch (pressure/volume overload) | 2 min | 20 pg/mL | |
NT-proANP | Biologically inactive form of ANP | 60–120 min | 0.11–0.60 nmol/L | |
CNP | Endothelial lesions | 2.6 min | Nearly undetectable |
Designer Natriuretic Peptide | Structure | Effects | Reference |
---|---|---|---|
CD-NP (Cenderitide) | Fusion between CNP-22 and 15 aa DNP C-terminal | Vasodilator Antifibrotic, antiproliferative ↑GFR, ↓LA pressure (via NPR-A, NPR-B) less hypotension than nesiritide (minimal changes in BP) | [53,54,55] |
CU-NP (humanized version of cenderitide) | Fusion between 17 aa ring of CNP and urodilatin’s N-terminal | + cGMP => RAAS inhibition antihypertrophic (NHE-1/calcineurin pathway inhibition) renal function enhancement | [56,57] |
M-ANP (Mutant-ANP) | 12 aa extension to native ANP’s C-terminal | Enhances natriuresis and diuresis RAAS and sympathetic nervous system inhibition Inhibits cellular proliferation Antifibrotic | [58] |
ANX-042 (AS-BNP) | Fusion between AS-BNP’s 16 aa of C terminal and 26 aa of native BNP | + cGMP; RAAS inhibition natriuresis and diuresis stimulation | [57,59,60] |
Nesiritide | Recombinant BNP | Vasodilator Hypotension Less renal function deterioration as compared to diuretic treated HFpEF patients | [61] |
Carperitide | Recombinant ANP | Vasodilator Renoprotective Not widely recommended | [51] |
Class | Drug | Effects | References |
---|---|---|---|
Pure NEP inhibitors | Candoxatril | ↑NPs and natriuresis ↑angiotensin II (RAAS stimulation) => vasoconstriction | [62] |
Ecadotril | No proven clinical benefit; may determine aplastic anemia | [63] | |
Dual ECE/NEP inhibitors | Daglutril (SLV-306) | ↑NPs, ET-1, ↓BP, LV hypertrophy and pressure | [67] |
SLV-338 | ↓ LV remodelling (independently of BP lowering effects) | [64] | |
Dual NEP/ACE inhibition | Sampatrilat | Despite clinical benefits, its short half-life precluded its clinical use | [68] |
Omapatrilat | Symptoms relief and improved survival; ↓BP, vascular resistance (more than candoxatril) LV remodelling, myocardial fibrosis hypotension and angioedema (bradykinin) | [68,69,70] | |
Triple ACE/ECE/NEP inhibitors | Benazepril (ACE) + CGS 26303 (dual ECE/NEP inhibitor) | ↑NPs, bradykinin inhibits angiotensin II and ET-1 ↓ LV remodelling (including mass and end-diastolic pressure) | [71] |
Biomarker | Concentration | Utility | Reference | Additional Remarks |
---|---|---|---|---|
BNP | >540 pg/mL | Predicts in-hospital mortality | [93] | May be able to predict AF Levels affected by sacubitril/valsartan |
NT-proBNP | >300–500 pg/mL (339 pg/mL) | 5% 1 year mortality | [34] | AF patients hold better prognosis at the same NT-proBNP levels as their sinus rhythm counterparts |
MR-proANP | >313 pmol/L | Predicts all-cause mortality | [109] | May be able to predict AF; correlates with LAVI |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanase, D.M.; Radu, S.; Al Shurbaji, S.; Baroi, G.L.; Florida Costea, C.; Turliuc, M.D.; Ouatu, A.; Floria, M. Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction: From Molecular Evidences to Clinical Implications. Int. J. Mol. Sci. 2019, 20, 2629. https://doi.org/10.3390/ijms20112629
Tanase DM, Radu S, Al Shurbaji S, Baroi GL, Florida Costea C, Turliuc MD, Ouatu A, Floria M. Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction: From Molecular Evidences to Clinical Implications. International Journal of Molecular Sciences. 2019; 20(11):2629. https://doi.org/10.3390/ijms20112629
Chicago/Turabian StyleTanase, Daniela Maria, Smaranda Radu, Sinziana Al Shurbaji, Genoveva Livia Baroi, Claudia Florida Costea, Mihaela Dana Turliuc, Anca Ouatu, and Mariana Floria. 2019. "Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction: From Molecular Evidences to Clinical Implications" International Journal of Molecular Sciences 20, no. 11: 2629. https://doi.org/10.3390/ijms20112629
APA StyleTanase, D. M., Radu, S., Al Shurbaji, S., Baroi, G. L., Florida Costea, C., Turliuc, M. D., Ouatu, A., & Floria, M. (2019). Natriuretic Peptides in Heart Failure with Preserved Left Ventricular Ejection Fraction: From Molecular Evidences to Clinical Implications. International Journal of Molecular Sciences, 20(11), 2629. https://doi.org/10.3390/ijms20112629