Smith-Magenis Syndrome: Molecular Basis of a Genetic-Driven Melatonin Circadian Secretion Disorder
Abstract
:1. Introduction
2. Description of the Phenotype
2.1. Dysmorphism and Visceral Disorders
2.2. Neuro-Cognitive Impairment
2.3. Sleep-Wake Rhythm Disorders
3. Genetic Aspects
3.1. Deletion 17p11.2
3.2. RAI1
4. SMS and Inversion of the Melatonin Secretion Rhythm
5. Could SMS be a Disorder of Homeostasis?
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Patil, S.R.; Bartley, J.A. Interstitial deletion of the short arm of chromosome 17. Hum. Genet. 1984, 67, 237–238. [Google Scholar] [CrossRef]
- Smith, A.C.; McGavran, L.; Robinson, J.; Waldstein, G.; Macfarlane, J.; Zonona, J.; Reiss, J.; Lahr, M.; Allen, L.; Magenis, E. Interstitial deletion of (17) (p11.2p11.2) in nine patients. Am. J. Med. Genet. 1986, 24, 393–414. [Google Scholar] [CrossRef]
- Slager, R.E.; Newton, T.L.; Vlangos, C.N.; Finucane, B.; Elsea, S.H. Mutations in RAI1 associated with Smith-Magenis syndrome. Nat. Genet. 2003, 33, 466–468. [Google Scholar] [CrossRef]
- Vlangos, C.N.; Yim, D.K.C.; Elsea, S.H. Refinement of the Smith-Magenis syndrome critical region to approximately 950kb and assessment of 17p11.2 deletions. Are all deletions created equally? Mol. Genet. Metab. 2003, 79, 134–141. [Google Scholar] [CrossRef]
- Juyal, R.C.; Figuera, L.E.; Hauge, X.; Elsea, S.H.; Lupski, J.R.; Greenberg, F.; Baldini, A.; Patel, P.I. Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients. Am. J. Hum. Genet. 1996, 58, 998–1007. [Google Scholar]
- Greenberg, F.; Lewis, R.A.; Potocki, L.; Glaze, D.; Parke, J.; Killian, J.; Murphy, M.A.; Williamson, D.; Brown, F.; Dutton, R.; et al. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2). Am. J. Med. Genet. 1996, 62, 247–254. [Google Scholar] [CrossRef]
- Chou, I.-C.; Tsai, F.-J.; Yu, M.-T.; Tsai, C.-H. Smith-Magenis syndrome with bilateral vesicoureteral reflux: A case report. J. Formos. Med. Assoc. Taiwan Yi Zhi 2002, 101, 726–728. [Google Scholar]
- Elsea, S.H.; Girirajan, S. Smith-Magenis syndrome. Eur. J. Hum. Genet. 2008, 16, 412–421. [Google Scholar] [CrossRef]
- Smith, A.C.M.; Gropman, A.L.; Bailey-Wilson, J.E.; Goker-Alpan, O.; Elsea, S.H.; Blancato, J.; Lupski, J.R.; Potocki, L. Hypercholesterolemia in children with Smith-Magenis syndrome: Del (17) (p11.2p11.2). Genet. Med. Off. J. Am. Coll. Med. Genet. 2002, 4, 118–125. [Google Scholar] [CrossRef]
- Madduri, N.; Peters, S.U.; Voigt, R.G.; Llorente, A.M.; Lupski, J.R.; Potocki, L. Cognitive and adaptive behavior profiles in Smith-Magenis syndrome. J. Dev. Behav. Pediatr. 2006, 27, 188–192. [Google Scholar] [CrossRef]
- Poisson, A.; Nicolas, A.; Sanlaville, D.; Cochat, P.; De Leersnyder, H.; Rigard, C.; Franco, P.; des Portes, V.; Edery, P.; Demily, C. Smith-Magenis syndrome is an association of behavioral and sleep/wake circadian rhythm disorders. Arch. Pediatr. Organe Off. Soc. Francaise Pediatr. 2015, 22, 638–645. [Google Scholar]
- Poisson, A.; Nicolas, A.; Cochat, P.; Sanlaville, D.; Rigard, C.; de Leersnyder, H.; Franco, P.; Des Portes, V.; Edery, P.; Demily, C. Behavioral disturbance and treatment strategies in Smith-Magenis syndrome. Orphanet J. Rare Dis. 2015, 10, 111. [Google Scholar] [CrossRef]
- Smith, A.C.; Dykens, E.; Greenberg, F. Sleep disturbance in Smith-Magenis syndrome (del 17 p11.2). Am. J. Med. Genet. 1998, 81, 186–191. [Google Scholar] [CrossRef]
- Greenberg, F.; Guzzetta, V.; Montes de Oca-Luna, R.; Magenis, R.E.; Smith, A.C.; Richter, S.F.; Kondo, I.; Dobyns, W.B.; Patel, P.I.; Lupski, J.R. Molecular analysis of the Smith-Magenis syndrome: A possible contiguous-gene syndrome associated with del(17) (p11.2). Am. J. Hum. Genet. 1991, 49, 1207–1218. [Google Scholar]
- Osório, A.; Cruz, R.; Sampaio, A.; Garayzábal, E.; Carracedo, A.; Fernández-Prieto, M. Cognitive functioning in children and adults with Smith-Magenis syndrome. Eur. J. Med. Genet. 2012, 55, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Van der Zwaag, B.; Franke, L.; Poot, M.; Hochstenbach, R.; Spierenburg, H.A.; Vorstman, J.A.S.; van Daalen, E.; de Jonge, M.V.; Verbeek, N.E.; Brilstra, E.H.; et al. Gene-network analysis identifies susceptibility genes related to glycobiology in autism. PLoS ONE 2009, 4, e5324. [Google Scholar] [CrossRef]
- Hicks, M.; Ferguson, S.; Bernier, F.; Lemay, J.-F. A case report of monozygotic twins with Smith-Magenis syndrome. J. Dev. Behav. Pediatr. 2008, 29, 42–46. [Google Scholar] [CrossRef]
- Potocki, L.; Shaw, C.J.; Stankiewicz, P.; Lupski, J.R. Variability in clinical phenotype despite common chromosomal deletion in Smith-Magenis syndrome del (17) (p11.2p11.2). Genet. Med. Off. J. Am. Coll. Med. Genet. 2003, 5, 430–434. [Google Scholar] [CrossRef]
- Stratton, R.F.; Dobyns, W.B.; Greenberg, F.; DeSana, J.B.; Moore, C.; Fidone, G.; Runge, G.H.; Feldman, P.; Sekhon, G.S.; Pauli, R.M. Interstitial deletion of (17) (p11.2p11.2): Report of six additional patients with a new chromosome deletion syndrome. Am. J. Med. Genet. 1986, 24, 421–432. [Google Scholar] [CrossRef]
- De Leersnyder, H.; De Blois, M.C.; Claustrat, B.; Romana, S.; Albrecht, U.; Von Kleist-Retzow, J.C.; Delobel, B.; Viot, G.; Lyonnet, S.; Vekemans, M.; et al. Inversion of the circadian rhythm of melatonin in the Smith-Magenis syndrome. J. Pediatr. 2001, 139, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Dykens, E.M.; Finucane, B.M.; Gayley, C. Brief report: Cognitive and behavioral profiles in persons with Smith-Magenis syndrome. J. Autism Dev. Disord. 1997, 27, 203–211. [Google Scholar] [CrossRef]
- Boone, P.M.; Reiter, R.J.; Glaze, D.G.; Tan, D.-X.; Lupski, J.R.; Potocki, L. Abnormal circadian rhythm of melatonin in Smith-Magenis syndrome patients with RAI1 point mutations. Am. J. Med. Genet. A. 2011, 155, 2024–2027. [Google Scholar] [CrossRef]
- Potocki, L.; Glaze, D.; Tan, D.X.; Park, S.S.; Kashork, C.D.; Shaffer, L.G.; Reiter, R.J.; Lupski, J.R. Circadian rhythm abnormalities of melatonin in Smith-Magenis syndrome. J. Med. Genet. 2000, 37, 428–433. [Google Scholar] [CrossRef]
- Alberti, C. Melatonin: The first hormone isolated from the pineal body. Il Farm. Ed. Sci. 1958, 13, 604–605. [Google Scholar]
- Simonneaux, V.; Ribelayga, C. Generation of the melatonin endocrine message in mammals: A review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol. Rev. 2003, 55, 325–395. [Google Scholar] [CrossRef]
- Quintela, T.; Gonçalves, I.; Silva, M.; Duarte, A.C.; Guedes, P.; Andrade, K.; Freitas, F.; Talhada, D.; Albuquerque, T.; Tavares, S.; et al. Choroid plexus is an additional source of melatonin in the brain. J. Pineal Res. 2018, 65, e12528. [Google Scholar] [CrossRef]
- De Leersnyder, H. Inverted rhythm of melatonin secretion in Smith-Magenis syndrome: From symptoms to treatment. Trends Endocrinol. Metab. 2006, 17, 291–298. [Google Scholar] [CrossRef]
- De Leersnyder, H.; Bresson, J.L.; de Blois, M.-C.; Souberbielle, J.-C.; Mogenet, A.; Delhotal-Landes, B.; Salefranque, F.; Munnich, A. Beta 1-adrenergic antagonists and melatonin reset the clock and restore sleep in a circadian disorder, Smith-Magenis syndrome. J. Med. Genet. 2003, 40, 74–78. [Google Scholar] [CrossRef]
- Wheeler, B.; Taylor, B.; Simonsen, K.; Reith, D.M. Melatonin treatment in Smith Magenis syndrome. Sleep 2005, 28, 1609–1610. [Google Scholar] [CrossRef]
- Carpizo, R.; Martínez, A.; Mediavilla, D.; González, M.; Abad, A.; Sánchez-Barceló, E.J. Smith-Magenis syndrome: A case report of improved sleep after treatment with beta1-adrenergic antagonists and melatonin. J. Pediatr. 2006, 149, 409–411. [Google Scholar] [CrossRef]
- Leger, D.; Laudon, M.; Zisapel, N. Nocturnal 6-sulfatoxymelatonin excretion in insomnia and its relation to the response to melatonin replacement therapy. Am. J. Med. 2004, 116, 91–95. [Google Scholar] [CrossRef]
- Piggins, H.D.; Loudon, A. Circadian biology: Clocks within clocks. Curr. Biol. 2005, 15, R455–R457. [Google Scholar] [CrossRef]
- Prayag, A.S.; Münch, M.; Aeschbach, D.; Chellappa, S.L.; Gronfier, C. Light modulation of human clocks, wake, and sleep. Clocks Sleep 2019, 1, 193–208. [Google Scholar] [CrossRef]
- Duffy, J.F.; Cain, S.W.; Chang, A.-M.; Phillips, A.J.K.; Münch, M.Y.; Gronfier, C.; Wyatt, J.K.; Dijk, D.-J.; Wright, K.P.; Czeisler, C.A. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 3), 15602–15608. [Google Scholar] [CrossRef] [Green Version]
- Lupski, J.R. Genomic disorders: Structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 1998, 14, 417–422. [Google Scholar] [CrossRef]
- Moncla, A.; Livet, M.O.; Auger, M.; Mattei, J.F.; Mattei, M.G.; Giraud, F. Smith-Magenis syndrome: A new contiguous gene syndrome. Report of three new cases. J. Med. Genet. 1991, 28, 627–632. [Google Scholar] [CrossRef]
- Girirajan, S.; Vlangos, C.N.; Szomju, B.B.; Edelman, E.; Trevors, C.D.; Dupuis, L.; Nezarati, M.; Bunyan, D.J.; Elsea, S.H. Genotype-phenotype correlation in Smith-Magenis syndrome: Evidence that multiple genes in 17p11.2 contribute to the clinical spectrum. Genet. Med. Off. J. Am. Coll. Med. Genet. 2006, 8, 417–427. [Google Scholar] [CrossRef]
- Wang, A.; Liang, Y.; Fridell, R.A.; Probst, F.J.; Wilcox, E.R.; Touchman, J.W.; Morton, C.C.; Morell, R.J.; Noben-Trauth, K.; Camper, S.A.; et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 1998, 280, 1447–1451. [Google Scholar] [CrossRef]
- Liburd, N.; Ghosh, M.; Riazuddin, S.; Naz, S.; Khan, S.; Ahmed, Z.; Riazuddin, S.; Liang, Y.; Menon, P.S.; Smith, T.; et al. Novel mutations of MYO15A associated with profound deafness in consanguineous families and moderately severe hearing loss in a patient with Smith-Magenis syndrome. Hum. Genet. 2001, 109, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Bi, W.; Yan, J.; Shi, X.; Yuva-Paylor, L.A.; Antalffy, B.A.; Goldman, A.; Yoo, J.W.; Noebels, J.L.; Armstrong, D.L.; Paylor, R.; et al. Rai1 deficiency in mice causes learning impairment and motor dysfunction, whereas Rai1 heterozygous mice display minimal behavioral phenotypes. Hum. Mol. Genet. 2007, 16, 1802–1813. [Google Scholar] [CrossRef]
- Mullegama, S.V.; Alaimo, J.T.; Fountain, M.D.; Burns, B.; Balog, A.H.; Chen, L.; Elsea, S.H. RAI1 overexpression promotes altered circadian gene expression and dyssomnia in Potocki-Lupski syndrome. J. Pediatr. Genet. 2017, 6, 155–164. [Google Scholar] [CrossRef]
- Seranski, P.; Hoff, C.; Radelof, U.; Hennig, S.; Reinhardt, R.; Schwartz, C.E.; Heiss, N.S.; Poustka, A. RAI1 is a novel polyglutamine encoding gene that is deleted in Smith-Magenis syndrome patients. Gene 2001, 270, 69–76. [Google Scholar] [CrossRef]
- Toulouse, A.; Rochefort, D.; Roussel, J.; Joober, R.; Rouleau, G.A. Molecular cloning and characterization of human RAI1, a gene associated with schizophrenia. Genomics 2003, 82, 162–171. [Google Scholar] [CrossRef]
- Fragoso, Y.D.; Stoney, P.N.; Shearer, K.D.; Sementilli, A.; Nanescu, S.E.; Sementilli, P.; McCaffery, P. Expression in the human brain of retinoic acid induced 1, a protein associated with neurobehavioural disorders. Brain Struct. Funct. 2015, 220, 1195–1203. [Google Scholar] [CrossRef]
- Huang, W.-H.; Guenthner, C.J.; Xu, J.; Nguyen, T.; Schwarz, L.A.; Wilkinson, A.W.; Gozani, O.; Chang, H.Y.; Shamloo, M.; Luo, L. Molecular and neural functions of Rai1, the causal gene for Smith-Magenis syndrome. Neuron 2016, 92, 392–406. [Google Scholar] [CrossRef]
- Carmona-Mora, P.; Canales, C.P.; Cao, L.; Perez, I.C.; Srivastava, A.K.; Young, J.I.; Walz, K. RAI1 transcription factor activity is impaired in mutants associated with Smith-Magenis syndrome. PLoS ONE 2012, 7, e45155. [Google Scholar] [CrossRef]
- Hayes, S.; Turecki, G.; Brisebois, K.; Lopes-Cendes, I.; Gaspar, C.; Riess, O.; Ranum, L.P.; Pulst, S.M.; Rouleau, G.A. CAG repeat length in RAI1 is associated with age at onset variability in spinocerebellar ataxia type 2 (SCA2). Hum. Mol. Genet. 2000, 9, 1753–1758. [Google Scholar] [CrossRef]
- Joober, R.; Benkelfat, C.; Toulouse, A.; Lafrenière, R.G.; Lal, S.; Ajroud, S.; Turecki, G.; Bloom, D.; Labelle, A.; Lalonde, P.; et al. Analysis of 14 CAG repeat-containing genes in schizophrenia. Am. J. Med. Genet. 1999, 88, 694–699. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Mumford, G.K.; Newton, K.; Ford, L.V.; Farrall, R.; Dellaire, G.; Cáceres, J.F.; Bickmore, W.A. Large-scale identification of mammalian proteins localized to nuclear sub-compartments. Hum. Mol. Genet. 2001, 10, 1995–2011. [Google Scholar] [CrossRef] [Green Version]
- Bi, W.; Saifi, G.M.; Shaw, C.J.; Walz, K.; Fonseca, P.; Wilson, M.; Potocki, L.; Lupski, J.R. Mutations of RAI1, a PHD-containing protein, in nondeletion patients with Smith-Magenis syndrome. Hum. Genet. 2004, 115, 515–524. [Google Scholar] [CrossRef]
- Darvekar, S.; Rekdal, C.; Johansen, T.; Sjøttem, E. A phylogenetic study of SPBP and RAI1: Evolutionary conservation of chromatin binding modules. PLoS ONE 2013, 8, e78907. [Google Scholar] [CrossRef]
- Diessler, S.; Kostic, C.; Arsenijevic, Y.; Kawasaki, A.; Franken, P. Rai1 frees mice from the repression of active wake behaviors by light. eLife 2017, 6, e23292. [Google Scholar] [CrossRef]
- Abbott, S.M.; Malkani, R.G.; Zee, P.C. Circadian disruption and human health: A bidirectional relationship. Eur. J. Neurosci. 2018. [Google Scholar] [CrossRef]
- Kervezee, L.; Cermakian, N.; Boivin, D.B. Individual metabolomic signatures of circadian misalignment during simulated night shifts in humans. PLoS Biol. 2019, 17, e3000303. [Google Scholar] [CrossRef]
- Mullegama, S.V.; Pugliesi, L.; Burns, B.; Shah, Z.; Tahir, R.; Gu, Y.; Nelson, D.L.; Elsea, S.H. MBD5 haploinsufficiency is associated with sleep disturbance and disrupts circadian pathways common to Smith-Magenis and fragile X syndromes. Eur. J. Hum. Genet. 2015, 23, 781–789. [Google Scholar] [CrossRef]
- Chen, L.; Tao, Y.; Song, F.; Yuan, X.; Wang, J.; Saffen, D. Evidence for genetic regulation of mRNA expression of the dosage-sensitive gene retinoic acid induced-1 (RAI1) in human brain. Sci. Rep. 2016, 6, 19010. [Google Scholar] [CrossRef] [Green Version]
- Roybal, K.; Theobold, D.; Graham, A.; DiNieri, J.A.; Russo, S.J.; Krishnan, V.; Chakravarty, S.; Peevey, J.; Oehrlein, N.; Birnbaum, S.; et al. Mania-like behavior induced by disruption of CLOCK. Proc. Natl. Acad. Sci. USA 2007, 104, 6406–6411. [Google Scholar] [CrossRef]
- Nováková, M.; Praško, J.; Látalová, K.; Sládek, M.; Sumová, A. The circadian system of patients with bipolar disorder differs in episodes of mania and depression. Bipolar Disord. 2015, 17, 303–314. [Google Scholar] [CrossRef]
- Lacaria, M.; Gu, W.; Lupski, J.R. Circadian abnormalities in mouse models of Smith-Magenis syndrome: Evidence for involvement of RAI1. Am. J. Med. Genet. A. 2013, 161, 1561–1568. [Google Scholar] [CrossRef]
- Gropman, A.L.; Duncan, W.C.; Smith, A.C.M. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatr. Neurol. 2006, 34, 337–350. [Google Scholar] [CrossRef]
- Spruyt, K.; Braam, W.; Smits, M.; Curfs, L.M. Sleep complaints and the 24-h melatonin level in individuals with Smith-Magenis syndrome: Assessment for effective intervention. CNS Neurosci. Ther. 2016, 22, 928–935. [Google Scholar] [CrossRef]
- Kocher, L.; Brun, J.; Devillard, F.; Azabou, E.; Claustrat, B. Phase advance of circadian rhythms in Smith-Magenis syndrome: A case study in an adult man. Neurosci. Lett. 2015, 585, 144–148. [Google Scholar] [CrossRef]
- De Leersnyder, H.; de Blois, M.C.; Vekemans, M.; Sidi, D.; Villain, E.; Kindermans, C.; Munnich, A. beta (1)-adrenergic antagonists improve sleep and behavioural disturbances in a circadian disorder, Smith-Magenis syndrome. J. Med. Genet. 2001, 38, 586–590. [Google Scholar] [CrossRef]
- Boudreau, E.A.; Johnson, K.P.; Jackman, A.R.; Blancato, J.; Huizing, M.; Bendavid, C.; Jones, M.; Chandrasekharappa, S.C.; Lewy, A.J.; Smith, A.C.M.; et al. Review of disrupted sleep patterns in Smith-Magenis syndrome and normal melatonin secretion in a patient with an atypical interstitial 17p11.2 deletion. Am. J. Med. Genet. A. 2009, 149, 1382–1391. [Google Scholar] [CrossRef]
- Lockley, S.W.; Skene, D.J.; Arendt, J.; Tabandeh, H.; Bird, A.C.; Defrance, R. Relationship between melatonin rhythms and visual loss in the blind. J. Clin. Endocrinol. Metab. 1997, 82, 3763–3770. [Google Scholar] [CrossRef]
- Barboni, M.T.S.; Bueno, C.; Nagy, B.V.; Maia, P.L.; Vidal, K.S.M.; Alves, R.C.; Reiter, R.J.; do Amaral, F.G.; Cipolla-Neto, J.; Ventura, D.F. Melanopsin system dysfunction in Smith-Magenis syndrome patients. Invest. Ophthalmol. Vis. Sci. 2018, 59, 362–369. [Google Scholar] [CrossRef]
- Kasahara, T.; Abe, K.; Mekada, K.; Yoshiki, A.; Kato, T. Genetic variation of melatonin productivity in laboratory mice under domestication. Proc. Natl. Acad. Sci. USA 2010, 107, 6412–6417. [Google Scholar] [CrossRef] [Green Version]
- Kennaway, D.J.; Voultsios, A.; Varcoe, T.J.; Moyer, R.W. Melatonin in mice: Rhythms, response to light, adrenergic stimulation, and metabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R358–R365. [Google Scholar] [CrossRef]
- Goto, M.; Oshima, I.; Tomita, T.; Ebihara, S. Melatonin content of the pineal gland in different mouse strains. J. Pineal Res. 1989, 7, 195–204. [Google Scholar] [CrossRef]
- Williams, S.R.; Zies, D.; Mullegama, S.V.; Grotewiel, M.S.; Elsea, S.H. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am. J. Hum. Genet. 2012, 90, 941–949. [Google Scholar] [CrossRef]
- Amaral, F.G.D.; Cipolla-Neto, J. A Brief Review About Melatonin, a Pineal Hormone. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30304113 (accessed on 21 March 2019).
- Kappers, J.A. The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Zeitschrift für Zellforschung und mikroskopische Anatomie 1960, 52, 163–215. [Google Scholar] [CrossRef]
- Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.; Stopa, E.G. Putative melatonin receptors in a human biological clock. Science 1988, 242, 78–81. [Google Scholar] [CrossRef]
- Czeisler, C.A.; Shanahan, T.L.; Klerman, E.B.; Martens, H.; Brotman, D.J.; Emens, J.S.; Klein, T.; Rizzo, J.F. Suppression of melatonin secretion in some blind patients by exposure to bright light. N. Engl. J. Med. 1995, 332, 6–11. [Google Scholar] [CrossRef]
- Akiyama, T.; Katsumura, T.; Nakagome, S.; Lee, S.-I.; Joh, K.; Soejima, H.; Fujimoto, K.; Kimura, R.; Ishida, H.; Hanihara, T.; et al. An ancestral haplotype of the human PERIOD2 gene associates with reduced sensitivity to light-induced melatonin suppression. PLoS ONE 2017, 12, e0178373. [Google Scholar] [CrossRef]
- Ben-Moshe Livne, Z.; Alon, S.; Vallone, D.; Bayleyen, Y.; Tovin, A.; Shainer, I.; Nisembaum, L.G.; Aviram, I.; Smadja-Storz, S.; Fuentes, M.; et al. Genetically blocking the zebrafish pineal clock affects circadian behavior. PLoS Genet. 2016, 12, e1006445. [Google Scholar] [CrossRef]
- Porkka-Heiskanen, T.; Kalinchuk, A.V. Adenosine, energy metabolism and sleep homeostasis. Sleep Med. Rev. 2011, 15, 123–135. [Google Scholar] [CrossRef]
- Münch, M.; Knoblauch, V.; Blatter, K.; Schröder, C.; Schnitzler, C.; Kräuchi, K.; Wirz-Justice, A.; Cajochen, C. Age-related attenuation of the evening circadian arousal signal in humans. Neurobiol. Aging 2005, 26, 1307–1319. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef]
- Allada, R.; Cirelli, C.; Sehgal, A. Molecular mechanisms of sleep homeostasis in flies and mammals. Cold Spring Harb. Perspect. Biol. 2017, 9, a027730. [Google Scholar] [CrossRef]
- Garidou-Boof, M.-L.; Sicard, B.; Bothorel, B.; Pitrosky, B.; Ribelayga, C.; Simonneaux, V.; Pévet, P.; Vivien-Roels, B. Environmental control and adrenergic regulation of pineal activity in the diurnal tropical rodent, Arvicanthis ansorgei. J. Pineal Res. 2005, 38, 189–197. [Google Scholar] [CrossRef]
- Challet, E.; Pitrosky, B.; Sicard, B.; Malan, A.; Pévet, P. Circadian organization in a diurnal rodent, Arvicanthis ansorgei thomas 1910: Chronotypes, responses to constant lighting conditions, and photoperiodic changes. J. Biol. Rhythms 2002, 17, 52–64. [Google Scholar] [CrossRef]
- Mendoza, J.; Revel, F.G.; Pévet, P.; Challet, E. Shedding light on circadian clock resetting by dark exposure: Differential effects between diurnal and nocturnal rodents. Eur. J. Neurosci. 2007, 25, 3080–3090. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poisson, A.; Nicolas, A.; Bousquet, I.; Raverot, V.; Gronfier, C.; Demily, C. Smith-Magenis Syndrome: Molecular Basis of a Genetic-Driven Melatonin Circadian Secretion Disorder. Int. J. Mol. Sci. 2019, 20, 3533. https://doi.org/10.3390/ijms20143533
Poisson A, Nicolas A, Bousquet I, Raverot V, Gronfier C, Demily C. Smith-Magenis Syndrome: Molecular Basis of a Genetic-Driven Melatonin Circadian Secretion Disorder. International Journal of Molecular Sciences. 2019; 20(14):3533. https://doi.org/10.3390/ijms20143533
Chicago/Turabian StylePoisson, Alice, Alain Nicolas, Idriss Bousquet, Véronique Raverot, Claude Gronfier, and Caroline Demily. 2019. "Smith-Magenis Syndrome: Molecular Basis of a Genetic-Driven Melatonin Circadian Secretion Disorder" International Journal of Molecular Sciences 20, no. 14: 3533. https://doi.org/10.3390/ijms20143533
APA StylePoisson, A., Nicolas, A., Bousquet, I., Raverot, V., Gronfier, C., & Demily, C. (2019). Smith-Magenis Syndrome: Molecular Basis of a Genetic-Driven Melatonin Circadian Secretion Disorder. International Journal of Molecular Sciences, 20(14), 3533. https://doi.org/10.3390/ijms20143533