Associations of MicroRNAs, Angiogenesis-Regulating Factors and CFH Y402H Polymorphism—An Attempt to Search for Systemic Biomarkers in Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Subjects
2.2. Levels of Angiogenesis-Regulating Factors
2.3. Plasma miRNA Expression Profiles
2.4. miRNA Correlations
2.5. Genotypes and miRNAs
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Group Characteristics
5.2. Blood Sample Collection
5.3. DNA Isolation
5.4. Genetic Analysis
5.4.1. Exon Capturing with Molecular Inversion Probes (MIPs)
5.4.2. Bioinformatic Analysis
5.5. Luminex Assay
5.6. MiRNA Analysis
5.7. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMD | Age-related macular degeneration |
ANGPT | Angiopoietin |
CNV | Choroidal neovascularization |
EC | Endothelial cells |
FGF | Fibroblast growth factor |
MAP | Mean arterial pressure |
MIP | Molecular inversion probes |
MMP | Matrix metalloproteinase |
NSAID | Non-steroidal anti-inflammatory drugs |
OCT | Optical coherence tomography |
OIR | Oxygen-induced retinopathy |
PDGF | Platelet-derived growth factor |
PEDF | Pigment epithelium-derived growth factor |
RPE | Retinal pigment epithelium |
SD | Standard deviation |
UMI | Unique molecular identifiers sequences |
VEGF | Vascular endothelial growth factor |
WHR | Waist–hip ratio |
References
- Nowak, J.Z. Age-related macular degeneration (AMD): Pathogenesis and therapy. Pharm. Rep. 2006, 58, 353–363. [Google Scholar]
- Al-Zamil, W.M.; Yassin, S.A. Recent developments in age-related macular degeneration: A review. Clin. Interv. Aging 2017, 12, 1313–1330. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lee, A.Y.; Wigg, J.P.; Peshavariya, H.; Liu, P.; Zhang, H. miRNA involvement in angiogenesis in age-related macular degeneration. J. Physiol. Biochem. 2016, 72, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Machalinska, A.; Kawa, M.P.; Marlicz, W.; Machalinski, B. Complement system activation and endothelial dysfunction in patients with age-related macular degeneration (AMD): Possible relationship between AMD and atherosclerosis. Acta Ophthalmol. 2012, 90, 695–703. [Google Scholar] [CrossRef]
- Ayoub, T.; Patel, N. Age-related macular degeneration. J. R. Soc. Med. 2009, 102, 56–61. [Google Scholar] [CrossRef]
- Bhise, N.S.; Shmueli, R.B.; Sunshine, J.C.; Tzeng, S.Y.; Green, J.J. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert Opin. Drug Deliv. 2011, 8, 485–504. [Google Scholar] [CrossRef]
- Heiferman, M.J.; Fawzi, A.A. Progression of subclinical choroidal neovascularization in age-related macular degeneration. PLoS ONE 2019, 14, e0217805. [Google Scholar] [CrossRef]
- Senger, D.R.; Davis, G.E. Angiogenesis. Cold Spring Harb. Perspect. Biol. 2011, 3, a005090. [Google Scholar] [CrossRef]
- Witmer, A.N.; Vrensen, G.F.; Van Noorden, C.J.; Schlingemann, R.O. Vascular endothelial growth factors and angiogenesis in eye disease. Prog. Retin Eye Res. 2003, 22, 1–29. [Google Scholar] [CrossRef]
- Farnoodian, M.; Wang, S.; Dietz, J.; Nickells, R.W.; Sorenson, C.M.; Sheibani, N. Negative regulators of angiogenesis: Important targets for treatment of exudative AMD. Clin. Sci. (Lond.) 2017, 131, 1763–1780. [Google Scholar] [CrossRef]
- Jabbarpoor Bonyadi, M.H.; Yaseri, M.; Bonyadi, M.; Soheilian, M.; Karimi, S. Association of Combined Complement Factor H Y402H and ARMS/LOC387715 A69S Polymorphisms with Age-related Macular Degeneration: A Meta-analysis. Curr. Eye Res. 2016, 41, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Lambert, N.G.; ElShelmani, H.; Singh, M.K.; Mansergh, F.C.; Wride, M.A.; Padilla, M.; Keegan, D.; Hogg, R.E.; Ambati, B.K. Risk factors and biomarkers of age-related macular degeneration. Prog. Retin. Eye Res. 2016, 54, 64–102. [Google Scholar] [CrossRef] [PubMed]
- Kanda, A.; Chen, W.; Othman, M.; Branham, K.E.; Brooks, M.; Khanna, R.; He, S.; Lyons, R.; Abecasis, G.R.; Swaroop, A. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2007, 104, 16227–16232. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, I.A.; Uno, K.; Merges, C.; Zhang, L.; McLeod, D.S.; Lutty, G.A. Reduction of endogenous angiogenesis inhibitors in Bruch’s membrane of the submacular region in eyes with age-related macular degeneration. Arch. Ophthalmol. 2008, 126, 670–678. [Google Scholar] [CrossRef]
- Vempati, P.; Popel, A.S.; Mac Gabhann, F. Extracellular regulation of VEGF: Isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev. 2014, 25, 1–19. [Google Scholar] [CrossRef]
- Cheung, G.C.M.; Lai, T.Y.Y.; Gomi, F.; Ruamviboonsuk, P.; Koh, A.; Lee, W.K. Anti-VEGF Therapy for Neovascular AMD and Polypoidal Choroidal Vasculopathy. Asia Pac. J. Ophthalmol. (Phila) 2017, 6, 527–534. [Google Scholar] [CrossRef]
- Amoaku, W.M.; Chakravarthy, U.; Gale, R.; Gavin, M.; Ghanchi, F.; Gibson, J.; Harding, S.; Johnston, R.L.; Kelly, S.P.; Lotery, A.; et al. Defining response to anti-VEGF therapies in neovascular AMD. Eye (Lond) 2015, 29, 721–731. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, J.; Sun, X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: A comprehensive review. Drug Des. Devel. 2016, 10, 1857–1867. [Google Scholar] [CrossRef]
- Keir, L.S.; Firth, R.; Aponik, L.; Feitelberg, D.; Sakimoto, S.; Aguilar, E.; Welsh, G.I.; Richards, A.; Usui, Y.; Satchell, S.C.; et al. VEGF regulates local inhibitory complement proteins in the eye and kidney. J. Clin. Investig. 2017, 127, 199–214. [Google Scholar] [CrossRef]
- Abdollahi, A.; Folkman, J. Evading tumor evasion: Current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat. 2010, 13, 16–28. [Google Scholar] [CrossRef]
- Kawa, M.; Machalińska, A. The role of microRNA in the pathogenesis of age-related macular degeneration: Its pathophysiology and potential pharmacological aspects. J. Biochem. Pharmacol. Res. 2014, 2, 21–32. [Google Scholar]
- Engels, B.M.; Hutvagner, G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 2006, 25, 6163–6169. [Google Scholar] [CrossRef] [PubMed]
- Litwińska, Z.; Machaliński, B. miRNAs in chronic myeloid leukemia: Small molecules, essential function. Leuk. Lymphoma 2017, 58, 1297–1305. [Google Scholar] [CrossRef]
- Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [Google Scholar] [PubMed]
- Szemraj, M.; Bielecka-Kowalska, A.; Oszajca, K.; Krajewska, M.; Gos, R.; Jurowski, P.; Kowalski, M.; Szemraj, J. Serum MicroRNAs as Potential Biomarkers of AMD. Med. Sci. Monit. 2015, 21, 2734–2742. [Google Scholar] [CrossRef] [PubMed]
- Caporali, A.; Emanueli, C. MicroRNA regulation in angiogenesis. Vasc. Pharm. 2011, 55, 79–86. [Google Scholar] [CrossRef]
- Berber, P.; Grassmann, F.; Kiel, C.; Weber, B.H.F. An Eye on Age-Related Macular Degeneration: The Role of MicroRNAs in Disease Pathology. Mol. Diagn. Ther. 2017, 21, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M. Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int. J. Mol. Med. 2013, 32, 763–767. [Google Scholar] [CrossRef]
- Lukiw, W.J.; Surjyadipta, B.; Dua, P.; Alexandrov, P.N. Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age-related macular degeneration (AMD). Int. J. Biochem. Mol. Biol. 2012, 3, 105–116. [Google Scholar] [PubMed]
- Sun, L.L.; Li, W.D.; Lei, F.R.; Li, X.Q. The regulatory role of microRNAs in angiogenesis-related diseases. J. Cell Mol. Med. 2018, 22, 4568–4587. [Google Scholar] [CrossRef]
- Ng, E.W.; Adamis, A.P. Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Can J. Ophthalmol. 2005, 40, 352–368. [Google Scholar] [CrossRef]
- Zehetner, C.; Kralinger, M.T.; Modi, Y.S.; Waltl, I.; Ulmer, H.; Kirchmair, R.; Bechrakis, N.E.; Kieselbach, G.F. Systemic levels of vascular endothelial growth factor before and after intravitreal injection of aflibercept or ranibizumab in patients with age-related macular degeneration: A randomised, prospective trial. Acta Ophthalmol. 2015, 93, e154–e159. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sawada, T.; Sawada, O.; Saishin, Y.; Liu, P.; Ohji, M. Serum and plasma vascular endothelial growth factor concentrations before and after intravitreal injection of aflibercept or ranibizumab for age-related macular degeneration. Am. J. Ophthalmol. 2014, 158, 738–744.e731. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, A.M.; Costa, R.; Falcao, M.S.; Barthelmes, D.; Mendonca, L.S.; Fonseca, S.L.; Goncalves, R.; Goncalves, C.; Falcao-Reis, F.M.; Soares, R. Vascular endothelial growth factor plasma levels before and after treatment of neovascular age-related macular degeneration with bevacizumab or ranibizumab. Acta Ophthalmol. 2012, 90, e25–e30. [Google Scholar] [CrossRef]
- Tsai, D.C.; Charng, M.J.; Lee, F.L.; Hsu, W.M.; Chen, S.J. Different plasma levels of vascular endothelial growth factor and nitric oxide between patients with choroidal and retinal neovascularization. Ophthalmologica 2006, 220, 246–251. [Google Scholar] [CrossRef]
- O’Reilly, M.S.; Boehm, T.; Shing, Y.; Fukai, N.; Vasios, G.; Lane, W.S.; Flynn, E.; Birkhead, J.R.; Olsen, B.R.; Folkman, J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997, 88, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Dixelius, J.; Cross, M.J.; Matsumoto, T.; Claesson-Welsh, L. Endostatin action and intracellular signaling: Beta-catenin as a potential target? Cancer Lett. 2003, 196, 1–12. [Google Scholar] [CrossRef]
- Tatar, O.; Shinoda, K.; Adam, A.; Rohrbach, J.M.; Lucke, K.; Henke-Fahle, S.; Bartz-Schmidt, K.U.; Grisanti, S. Expression of endostatin in human choroidal neovascular membranes secondary to age-related macular degeneration. Exp. Eye Res. 2006, 83, 329–338. [Google Scholar] [CrossRef]
- Mori, K.; Ando, A.; Gehlbach, P.; Nesbitt, D.; Takahashi, K.; Goldsteen, D.; Penn, M.; Chen, C.T.; Melia, M.; Phipps, S.; et al. Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am. J. Pathol. 2001, 159, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Pechan, P.; Wadsworth, S.; Scaria, A. Gene Therapies for Neovascular Age-Related Macular Degeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a017335. [Google Scholar] [CrossRef] [Green Version]
- Cabral, T.; Mello, L.G.M.; Lima, L.H.; Polido, J.; Regatieri, C.V.; Belfort, R., Jr.; Mahajan, V.B. Retinal and choroidal angiogenesis: A review of new targets. Int. J. Retin. Vitr. 2017, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.; Goodison, S.; Lawton, A.; Gomes-Giacoia, E.; Rosser, C.J. Angiogenin promotes tumoral growth and angiogenesis by regulating matrix metallopeptidase-2 expression via the ERK1/2 pathway. Oncogene 2015, 34, 890–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korc, M.; Friesel, R.E. The role of fibroblast growth factors in tumor growth. Curr. Cancer Drug Targets. 2009, 9, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Dewerchin, M.; Carmeliet, P. Placental growth factor in cancer. Expert Opin. Targets. 2014, 18, 1339–1354. [Google Scholar] [CrossRef]
- Skeie, J.M.; Zeng, S.; Faidley, E.A.; Mullins, R.F. Angiogenin in age-related macular degeneration. Mol. Vis. 2011, 17, 576–582. [Google Scholar]
- Ozaki, H.; Hayashi, H.; Oshima, K. Angiogenin levels in the vitreous from patients with proliferative diabetic retinopathy. Ophthalmic Res. 1996, 28, 356–360. [Google Scholar] [CrossRef]
- Tobe, T.; Ortega, S.; Luna, J.D.; Ozaki, H.; Okamoto, N.; Derevjanik, N.L.; Vinores, S.A.; Basilico, C.; Campochiaro, P.A. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am. J. Pathol. 1998, 153, 1641–1646. [Google Scholar] [CrossRef] [Green Version]
- Sheibani, N. Placental growth factor inhibition for choroidal neovascularization. J. Ophthalmic Vis. Res. 2013, 8, 1–3. [Google Scholar]
- Wong, C.G.; Taban, M.; Osann, K.; Ross-Cisneros, F.N.; Bruice, T.C.; Zahn, G.; You, T. Subchoroidal Release of VEGF and bFGF Produces Choroidal Neovascularization in Rabbit. Curr. Eye Res. 2017, 42, 237–243. [Google Scholar] [CrossRef]
- Frank, R.N. Growth factors in age-related macular degeneration: Pathogenic and therapeutic implications. Ophthalmic Res. 1997, 29, 341–353. [Google Scholar] [CrossRef]
- De Oliveira Dias, J.R.; Rodrigues, E.B.; Maia, M.; Magalhaes, O., Jr.; Penha, F.M.; Farah, M.E. Cytokines in neovascular age-related macular degeneration: Fundamentals of targeted combination therapy. Br. J. Ophthalmol. 2011, 95, 1631–1637. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Li, Y.; Jiang, Y.; Sun, X.; Gu, L.; Guo, W.; Sun, D. Inhibition of ocular neovascularization by co-inhibition of VEGF-A and PLGF. Cell Physiol. Biochem. 2015, 35, 1787–1796. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xie, K.; Zhang, L.; Yao, X.; Li, H.; Xu, Q.; Wang, X.; Jiang, J.; Fang, J. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects. Cancer Lett. 2016, 377, 164–173. [Google Scholar] [CrossRef]
- Ioanna, Z.; Christian, S.; Christian, G.; Daniel, B. Plasma levels of hypoxia-regulated factors in patients with age-related macular degeneration. Graefes. Arch. Clin. Exp. Ophthalmol. 2018, 256, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Wang, J.; Wang, W.; Huang, W.; Ding, X.; Zhang, X. Placenta Growth Factor in Eyes with Neovascular Glaucoma Is Decreased after Intravitreal Ranibizumab Injection. PLoS ONE 2016, 11, e0146993. [Google Scholar] [CrossRef] [PubMed]
- Ménard, C.; Rezende, F.A.; Miloudi, K.; Wilson, A.; Tétreault, N.; Hardy, P.; SanGiovanni, J.P.; De Guire, V.; Sapieha, P. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget 2016, 7, 19171–19184. [Google Scholar] [CrossRef] [Green Version]
- Rusanova, I.; Diaz-Casado, M.E.; Fernandez-Ortiz, M.; Aranda-Martinez, P.; Guerra-Librero, A.; Garcia-Garcia, F.J.; Escames, G.; Manas, L.; Acuna-Castroviejo, D. Analysis of Plasma MicroRNAs as Predictors and Biomarkers of Aging and Frailty in Humans. Oxid. Med Cell Longev. 2018, 2018, 7671850. [Google Scholar] [CrossRef] [Green Version]
- Landskroner-Eiger, S.; Moneke, I.; Sessa, W.C. miRNAs as modulators of angiogenesis. Cold Spring Harb. Perspect. Med. 2013, 3, a006643. [Google Scholar] [CrossRef] [Green Version]
- Chamorro-Jorganes, A.; Lee, M.Y.; Araldi, E.; Landskroner-Eiger, S.; Fernandez-Fuertes, M.; Sahraei, M.; Quiles Del Rey, M.; van Solingen, C.; Yu, J.; Fernandez-Hernando, C.; et al. VEGF-Induced Expression of miR-17-92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis. Circ. Res. 2016, 118, 38–47. [Google Scholar] [CrossRef]
- Nunes, D.N.; Dias-Neto, E.; Cardó-Vila, M.; Edwards, J.K.; Dobroff, A.S.; Giordano, R.J.; Mandelin, J.; Brentani, H.P.; Hasselgren, C.; Yao, V.J.; et al. Synchronous down-modulation of miR-17 family members is an early causative event in the retinal angiogenic switch. Proc. Natl. Acad. Sci. USA 2015, 112, 3770–3775. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, J.; Thum, T. New Insights Into miR-17-92 Cluster Regulation and Angiogenesis. Circ. Res. 2016, 118, 9–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guduric-Fuchs, J.; O’Connor, A.; Cullen, A.; Harwood, L.; Medina, R.J.; O’Neill, C.L.; Stitt, A.W.; Curtis, T.M.; Simpson, D.A. Deep sequencing reveals predominant expression of miR-21 amongst the small non-coding RNAs in retinal microvascular endothelial cells. J. Cell Biochem. 2012, 113, 2098–2111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatel, C.; Malvaux, L.; Bovy, N.; Deroanne, C.; Lambert, V.; Gonzalez, M.L.; Colige, A.; Rakic, J.M.; Noel, A.; Martial, J.A.; et al. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS ONE 2011, 6, e16979. [Google Scholar] [CrossRef]
- Ertekin, S.; Yildirim, O.; Dinc, E.; Ayaz, L.; Fidanci, S.B.; Tamer, L. Evaluation of circulating miRNAs in wet age-related macular degeneration. Mol. Vis. 2014, 20, 1057–1066. [Google Scholar] [PubMed]
- Zhou, Q.; Anderson, C.; Hanus, J.; Zhao, F.; Ma, J.; Yoshimura, A.; Wang, S. Strand and Cell Type-specific Function of microRNA-126 in Angiogenesis. Mol. Ther. 2016, 24, 1823–1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Lee, A.Y.W.; Wigg, J.P.; Peshavariya, H.; Liu, P.; Zhang, H. miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. Int. J. Mol. Sci. 2016, 17, 895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Bai, X.; Wang, Z.; Zhang, X.; Ruan, C.; Miao, J. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp. Mol. Pathol. 2011, 91, 471–477. [Google Scholar] [CrossRef]
- Ye, P.; Liu, J.; He, F.; Xu, W.; Yao, K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int. J. Med. Sci. 2014, 11, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, P.N.; Dua, P.; Lukiw, W.J. Up-Regulation of miRNA-146a in Progressive, Age-Related Inflammatory Neurodegenerative Disorders of the Human CNS. Front. Neurol. 2014, 5, 181. [Google Scholar] [CrossRef] [Green Version]
- Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. miR-146 and miR-155: Two Key Modulators of Immune Response and Tumor Development. Non-Coding RNA 2017, 3, 22. [Google Scholar] [CrossRef]
- He, F.; Liu, B.; Meng, Q.; Sun, Y.; Wang, W.; Wang, C. Modulation of miR-146a/complement factor H-mediated inflammatory responses in a rat model of temporal lobe epilepsy. Biosci. Rep. 2016, 36, e00433. [Google Scholar] [CrossRef]
- Romano, G.L.; Platania, C.B.M.; Drago, F.; Salomone, S.; Ragusa, M.; Barbagallo, C.; Di Pietro, C.; Purrello, M.; Reibaldi, M.; Avitabile, T.; et al. Retinal and Circulating miRNAs in Age-Related Macular Degeneration: An In vivo Animal and Human Study. Front. Pharm. 2017, 8, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Lee, S.; Lazzaro, D.R.; Aranda, J.; Grant, M.B.; Chaqour, B. Single and Compound Knock-outs of MicroRNA (miRNA)-155 and Its Angiogenic Gene Target CCN1 in Mice Alter Vascular and Neovascular Growth in the Retina via Resident Microglia. J. Biol. Chem. 2015, 290, 23264–23281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Fu, H.; Sun, F.; Zhang, H.; Tie, Y.; Zhu, J.; Xing, R.; Sun, Z.; Zheng, X. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 2008, 36, 5391–5404. [Google Scholar] [CrossRef] [PubMed]
- Baird, P.N.; Islam, F.M.; Richardson, A.J.; Cain, M.; Hunt, N.; Guymer, R. Analysis of the Y402H variant of the complement factor H gene in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4194–4198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassmann, F.; Schoenberger, P.G.A.; Brandl, C.; Schick, T.; Hasler, D.; Meister, G.; Fleckenstein, M.; Lindner, M.; Helbig, H.; Fauser, S.; et al. A circulating microrna profile is associated with late-stage neovascular age-related macular degeneration. PLoS ONE 2014, 9, e107461. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Strafella, C.; Caputo, V.; Errichiello, V.; Zampatti, S.; Milano, F.; Potenza, S.; Mauriello, S.; Novelli, G.; Ricci, F.; et al. Towards the application of precision medicine in Age-Related Macular Degeneration. Prog. Retin Eye Res. 2018, 63, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Strafella, C.; Longo, G.; Ragazzo, M.; Manzo, L.; De Felici, C.; Errichiello, V.; Caputo, V.; Viola, F.; Eandi, C.M.; et al. Uncovering genetic and non-genetic biomarkers specific for exudative age-related macular degeneration: Significant association of twelve variants. Oncotarget 2017, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasiak, J.; Watala, C.; Tuuminen, R.; Kivinen, N.; Koskela, A.; Uusitalo-Jarvinen, H.; Tuulonen, A.; Winiarczyk, M.; Mackiewicz, J.; Zmorzynski, S.; et al. Expression of VEGFA-regulating miRNAs and mortality in wet AMD. J. Cell. Mol. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Boyle, E.A.; O’Roak, B.J.; Martin, B.K.; Kumar, A.; Shendure, J. MIPgen: Optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinformatics 2014, 30, 2670–2672. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 2011, 17. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [Green Version]
Parameter | AMD Group | Control Group | p-Value * |
---|---|---|---|
Number of subjects | 354 | 121 | — |
Sex (male/female) | 135/219 | 32/89 | 0.02 |
Patient’s age (years) (mean ± SD) | 73.4 ± 8.0 | 73.1 ± 6.0 | 0.41 |
BMI (kg/m2) (mean ± SD) | 26.93 ± 4.22 | 26.56 ± 3.66 | 0.43 |
WHR (arbitrary units) (mean ± SD) | 0.90 ± 0.09 | 0.88 ± 0.09 | 0.13 |
Waist circumference (cm) (mean ± SD) | 103.25 ± 9.09 | 102.10 ± 7.26 | 0.33 |
MAP (mmHg) (mean ± SD) | 98.30 ± 11.10 | 98.72 ± 9.66 | 0.86 |
Current smokers (%) | 13.62% | 6.25% | 0.0503 |
Former smokers (%) | 51.39% | 30.93% | 0.0004 |
Smoking pack-years (mean ± SD) | 13.58 ± 18.91 | 6.00 ± 13.09 | 0.00007 |
Period without smoking (years) (mean ± SD) | 6.79 ± 10.90 | 5.30 ± 10.23 | 0.055 |
Iris color (dark/light) | 91/261 | 26/95 | 0.39 |
Outdoor/indoor working conditions | 40.11/59.89% | 33.06/66.94% | 0.19 |
Hypertension (%) | 64.71% | 71.13% | 0.27 |
Duration of hypertension (years) (mean ± SD) | 8.17 ± 9.45 | 9.15 ± 9.86 | 0.27 |
History of ischemic heart disease (%) | 16.15% | 11.34% | 0.33 |
Duration of ischemic heart disease (years) (mean ± SD) | 1.23 ± 4.17 | 0.81 ± 3.28 | 0.26 |
History of cardiac infarction (%) | 6.21% | 6.19% | 1.00 |
History of cerebral stroke (%) | 2.81% | 3.09% | 1.00 |
History of peripheral artery disease (%) | 4.97% | 6.19% | 0.61 |
History of aortic aneurysm (%) | 1.57% | 0.00% | 0.59 |
Hypotensive drugs/vasodilators | 65.02% | 70.10% | 0.39 |
Hormonal drugs | 17.13% | 20.62% | 0.45 |
Thyroxine | 13.71% | 20.62% | 0.11 |
Steroids | 1.87% | 1.03% | 1.00 |
Other hormonal drugs | 1.25% | 0.00% | 0.58 |
Statins | 26.63% | 36.08% | 0.07 |
NSAIDs | 20.19% | 19.59% | 1.00 |
Cardiac medications/antiarrhythmic drugs | 13.93% | 14.43% | 0.87 |
Antiasthmatic drugs | 7.43% | 3.09% | 0.16 |
Antidepressants | 4.66% | 5.15% | 0.79 |
AMD Group | Control Group | p-Value * | |||
---|---|---|---|---|---|
N | Mean ± SD | N | Mean ± SD | ||
Angiogenin (pg/mL) | 312 | 3802.28 ± 2396.12 | 119 | 5341.18 ± 3800.49 | <0.001 |
Angiopoietin-1 | 313 | 7371.09 ± 4735.69 | 119 | 8032.73 ± 5305.49 | 0.338 |
Endostatin (pg/mL) | 313 | 34,804.05 ± 11,909.86 | 119 | 40,891.63 ± 13,835.72 | <0.001 |
FGF-basic (pg/mL) | 313 | 162.13 ± 72.68 | 118 | 188.32 ± 86.49 | 0.002 |
FGF-acidic (pg/mL) | 313 | 98.53 ± 65.14 | 119 | 86.52 ± 38.86 | 0.117 |
PDGF-AA (pg/mL) | 313 | 623.55 ± 392.73 | 119 | 559.00 ± 328.33 | 0.261 |
PlGF (pg/mL) | 313 | 10.45 ± 4.32 | 119 | 13.30 ± 6.86 | <0.001 |
Thrombospondin-2 (pg/mL) | 313 | 9557.33 ± 5308.18 | 119 | 8781.31 ± 4659.82 | 0.201 |
VEGF (pg/mL) | 313 | 37.94 ± 22.72 | 119 | 46.69 ± 34.89 | 0.137 |
VEGF-D (pg/mL) | 313 | 189.35 ± 81.74 | 118 | 196.68 ± 94.95 | 0.870 |
Dry AMD Group | Wet AMD Group | p-Value * | |||
---|---|---|---|---|---|
N | Mean ± SD | N | Mean ± SD | ||
Angiogenin (pg/mL) | 159 | 3908.10 ± 2493.55 | 153 | 3692.32 ± 2293.48 | 0.553 |
Angiopoietin-1 | 160 | 7060.17 ± 4163.04 | 153 | 7696.25 ± 5262.75 | 0.622 |
Endostatin (pg/mL) | 160 | 34,307.44 ± 11,932.47 | 153 | 35,323.38 ± 11,903.06 | 0.393 |
FGF-basic (pg/mL) | 160 | 164.67 ± 62.95 | 153 | 159.48 ± 81.76 | 0.128 |
FGF-acidic (pg/mL) | 160 | 101.54 ± 59.75 | 153 | 95.39 ± 70.40 | 0.241 |
PDGF-AA (pg/mL) | 160 | 624.48 ± 384.43 | 153 | 622.59 ± 402.48 | 0.859 |
PlGF (pg/mL) | 160 | 10.47 ± 3.53 | 153 | 10.44 ± 5.04 | 0.202 |
Thrombospondin-2 (pg/mL) | 160 | 9614.22 ± 5704.43 | 153 | 9497.83 ± 4877.54 | 0.747 |
VEGF (pg/mL) | 160 | 39.49 ± 24.27 | 153 | 36.32 ± 20.92 | 0.184 |
VEGF-D (pg/mL) | 160 | 190.05 ± 73.08 | 153 | 188.62 ± 90.14 | 0.359 |
AMD Group | Control Group | p-Value * | |||
---|---|---|---|---|---|
N | Mean ± SD | N | Mean ± SD | ||
miRNA-9-5p | 331 | 2.078 ± 3.050 | 113 | 1.900 ± 0.879 | 0.128 |
miRNA-16-5p | 334 | 16.370 ± 12.218 | 114 | 10.159 ± 10.085 | <0.001 |
miRNA-17-3p | 332 | 5.369 ± 3.554 | 114 | 4.428 ± 3.292 | <0.001 |
miRNA-17-5p | 333 | 2.600 ± 2.498 | 113 | 1.560 ± 0.888 | <0.001 |
miRNA-21-3p | 334 | 1.772 ± 1.458 | 113 | 2.408 ± 2.224 | <0.001 |
miRNA-23a-3p | 333 | 2.005 ± 2.6775 | 113 | 1.611 ± 2.080 | <0.001 |
miRNA-30b | 332 | 1.274 ± 0.606 | 113 | 1.306 ± 0.900 | 0.383 |
miRNA-93 | 331 | 4.195 ± 3.508 | 114 | 3.882 ± 2.992 | 0.860 |
miRNA-126-5p | 331 | 1.262 ± 0.400 | 113 | 1.020 ± 0.290 | <0.001 |
miRNA-146a | 332 | 0.712 ± 0.587 | 113 | 0.692 ± 0.825 | 0.002 |
miRNA-150-5p | 335 | 1.716 ± 6.580 | 114 | 3.318 ± 12.830 | 0.265 |
miRNA-155-5p | 334 | 1.551 ± 5.548 | 113 | 1.903 ± 2.224 | <0.001 |
miRNA-191-5p | 333 | 0.963 ± 0.685 | 113 | 1.178 ± 1.037 | 0.021 |
miRNA-223-3p | 333 | 1.813 ± 6.424 | 113 | 1.691 ± 4.181 | 0.019 |
Dry AMD Group | Wet AMD Group | p-Value * | |||
---|---|---|---|---|---|
N | Mean ± SD | N | Mean ± SD | ||
miRNA-9-5p | 164 | 2.344 ± 4.085 | 167 | 1.818 ± 1.405 | 0.426 |
miRNA-16-5p | 165 | 14.524 ± 11.308 | 169 | 18.172 ± 12.823 | 0.002 |
miRNA-17-3p | 165 | 5.082 ± 3.182 | 167 | 5.654 ± 3.875 | 0.292 |
miRNA-17-5p | 165 | 2.659 ± 2.544 | 168 | 2.542 ± 2.458 | 0.839 |
miRNA-21-3p | 165 | 1.851 ± 1.727 | 169 | 1.696 ± 1.135 | 0.627 |
miRNA-23a-3p | 165 | 2.105 ± 3.176 | 168 | 1.908 ± 2.080 | 0.040 |
miRNA-30b | 165 | 1.174 ± 0.598 | 167 | 1.373 ± 0.600 | <0.001 |
miRNA-93 | 164 | 3.798 ± 3.147 | 167 | 4.585 ± 3.802 | 0.099 |
miRNA-126-5p | 164 | 1.278 ± 0.336 | 167 | 1.247 ± 0.455 | 0.079 |
miRNA-146a | 165 | 0.702 ± 0.530 | 167 | 0.722 ± 0.640 | 0.922 |
miRNA-150-5p | 165 | 1.569 ± 4.142 | 170 | 1.859 ± 8.299 | 0.836 |
miRNA-155-5p | 165 | 1.233 ± 0.774 | 169 | 1.862 ± 7.761 | 0.431 |
miRNA-191-5p | 165 | 0.877 ± 0.636 | 168 | 1.048 ± 0.721 | 0.026 |
miRNA-223-3p | 164 | 1.587 ± 4.228 | 169 | 2.033 ± 8.008 | 0.291 |
miRNA | Angiogenin | Angiopoietin-1 | Endostatin | FGF-Basic | FGF-Acidic | PDGF-AA | PlGF | Thrombospondin-2 | VEGF | VEGF_D |
---|---|---|---|---|---|---|---|---|---|---|
miRNA-9-5p | 0.023 | 0.011 | −0.020 | 0.044 | −0.008 | −0.022 | 0.019 | −0.005 | −0.036 | 0.038 |
miRNA-16-5p | −0.031 | −0.011 | 0.015 | −0.037 | −0.082 | 0.098 | −0.070 | −0.038 | 0.019 | −0.075 |
miRNA-17-3p | 0.098 | −0.094 | 0.012 | −0.053 | −0.175 | −0.069 | −0.147 | −0.129 | −0.072 | −0.155 |
miRNA-17-5p | 0.247 | 0.031 | 0.209 | 0.102 | −0.214 | −0.054 | 0.051 | −0.015 | −0.073 | −0.083 |
miRNA-21-3p | 0.014 | 0.057 | -0.019 | 0.017 | −0.002 | 0.019 | 0.114 | −0.038 | 0.082 | 0.060 |
miRNA-23a-3p | −0.239 | 0.062 | −0.194 | −0.066 | 0.254 | 0.148 | −0.027 | 0.054 | 0.125 | 0.111 |
miRNA-30b | −0.155 | 0.047 | −0.068 | −0.015 | 0.073 | 0.138 | −0.101 | −0.034 | 0.113 | −0.030 |
miRNA-93 | 0.218 | 0.057 | 0.192 | 0.066 | −0.237 | −0.020 | 0.049 | 0.013 | −0.137 | −0.085 |
miRNA-126-5p | 0.054 | 0.045 | 0.108 | −0.013 | −0.096 | 0.045 | 0.014 | −0.030 | −0.006 | −0.071 |
miRNA-146a | −0.194 | 0.071 | −0.208 | −0.020 | 0.245 | 0.084 | −0.035 | 0.041 | 0.093 | 0.016 |
miRNA-150-5p | 0.230 | 0.140 | 0.211 | 0.076 | −0.231 | −0.064 | 0.161 | 0.030 | −0.087 | −0.016 |
miRNA-155-5p | −0.312 | −0.001 | −0.246 | −0.073 | 0.217 | 0.155 | −0.159 | 0.067 | 0.139 | 0.073 |
miRNA-191-5p | 0.134 | −0.034 | 0.111 | 0.028 | −0.057 | −0.062 | 0.057 | −0.010 | −0.087 | −0.005 |
miRNA-223-3p | −0.310 | 0.071 | −0.225 | −0.135 | 0.262 | 0.179 | −0.166 | −0.069 | 0.169 | 0.068 |
miRNA | Angiogenin | Angiopoietin-1 | Endostatin | FGF-Basic | FGF-Acidic | PDGF-AA | PlGF | Thrombospondin-2 | VEGF | VEGF_D |
---|---|---|---|---|---|---|---|---|---|---|
miRNA-9-5p | 0.114 | 0.004 | 0.153 | 0.010 | −0.027 | 0.010 | −0.186 | −0.179 | −0.029 | 0.073 |
miRNA-16-5p | −0.145 | −0.035 | 0.008 | 0.122 | 0.114 | −0.026 | −0.062 | −0.019 | 0.106 | 0.040 |
miRNA-17-3p | −0.046 | −0.088 | 0.051 | −0.004 | 0.026 | −0.032 | −0.159 | −0.083 | 0.039 | 0.001 |
miRNA-17-5p | 0.225 | −0.018 | 0.162 | −0.082 | 0.010 | 0.098 | −0.028 | −0.168 | 0.079 | 0.019 |
miRNA-21-3p | 0.010 | 0.014 | 0.032 | −0.047 | −0.145 | −0.031 | −0.089 | −0.099 | −0.114 | −0.129 |
miRNA-23a-3p | −0.035 | −0.220 | 0.038 | −0.188 | −0.042 | −0.134 | −0.024 | −0.193 | −0.158 | 0.009 |
miRNA-30b | 0.151 | −0.139 | 0.115 | −0.132 | 0.035 | 0.008 | −0.052 | −0.211 | 0.043 | −0.036 |
miRNA-93 | −0.007 | −0.111 | 0.036 | −0.022 | −0.096 | −0.053 | −0.063 | −0.114 | −0.145 | −0.033 |
miRNA-126-5p | −0.228 | 0.031 | −0.090 | 0.092 | 0.107 | 0.011 | 0.172 | 0.064 | 0.042 | 0.042 |
miRNA-146a | −0.131 | −0.228 | −0.106 | −0.117 | −0.031 | −0.129 | 0.037 | −0.155 | −0.150 | −0.010 |
miRNA-150-5p | −0.131 | −0.070 | 0.004 | 0.049 | 0.052 | −0.071 | −0.155 | −0.094 | 0.052 | 0.045 |
miRNA-155-5p | −0.046 | 0.026 | −0.138 | 0.114 | 0.072 | 0.005 | 0.216 | −0.013 | 0.015 | 0.138 |
miRNA-191-5p | 0.027 | −0.037 | 0.052 | −0.049 | 0.016 | 0.106 | 0.026 | −0.082 | 0.025 | −0.009 |
miRNA-223-3p | −0.210 | −0.081 | 0.001 | 0.152 | 0.064 | −0.160 | 0.003 | −0.088 | −0.042 | 0.007 |
p-Value 1 | TT | TC + CC | p-Value 2 | CC | TT + TC | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Mean | Median | Mean | Median | Mean | Median | ||||
miRNA-9-5p | 0.776 | 2.225 | 1.533 | 1.931 | 1.672 | 0.927 | 1.910 | 1.583 | 2.036 | 1.734 | 0.535 |
miRNA-16-5p | 0.002 | 20.079 | 16.305 | 15.004 | 12.011 | 0.0007 * | 16.187 | 12.252 | 15.981 | 12.537 | 0.567 |
miRNA-17-3p | 0.101 | 5.805 | 5.290 | 5.056 | 4.460 | 0.049 | 5.146 | 4.695 | 5.247 | 4.490 | 0.960 |
miRNA-17-5p | 0.012 | 3.333 | 2.098 | 2.409 | 1.527 | 0.005 | 2.139 | 1.507 | 2.844 | 1.677 | 0.058 |
miRNA-21-3p | 0.502 | 1.916 | 1.283 | 1.731 | 1.286 | 0.654 | 1.627 | 1.248 | 1.845 | 1.324 | 0.241 |
miRNA-23a-3p | 0.026 | 1.447 | 1.123 | 2.119 | 1.325 | 0.057 | 1.607 | 1.285 | 2.176 | 1.302 | 0.288 |
miRNA-30b | 0.119 | 1.340 | 1.196 | 1.236 | 1.103 | 0.043 | 1.243 | 1.094 | 1.266 | 1.157 | 0.265 |
miRNA-93 | 0.213 | 4.852 | 3.891 | 4.015 | 2.691 | 0.109 | 3.876 | 2.434 | 4.357 | 3.199 | 0.204 |
miRNA-126-5p | 0.562 | 1.273 | 1.221 | 1.241 | 1.179 | 0.712 | 1.204 | 1.167 | 1.271 | 1.191 | 0.283 |
miRNA-146a | 0.235 | 0.613 | 0.474 | 0.727 | 0.602 | 0.230 | 0.674 | 0.506 | 0.719 | 0.604 | 0.499 |
miRNA-150-5p | 0.383 | 1.232 | 0.744 | 1.808 | 0.667 | 0.246 | 2.414 | 0.656 | 1.305 | 0.697 | 0.256 |
miRNA-155-5p | 0.432 | 1.091 | 0.948 | 1.760 | 1.080 | 0.195 | 2.375 | 1.154 | 1.227 | 0.994 | 0.648 |
miRNA-191-5p | 0.628 | 0.955 | 0.883 | 0.953 | 0.863 | 0.917 | 0.914 | 0.789 | 0.975 | 0.899 | 0.353 |
miRNA-223-3p | 0.056 | 2.919 | 0.742 | 1.520 | 1.022 | 0.045 | 1.839 | 1.009 | 1.786 | 1.021 | 0.628 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulańczyk, Z.; Sobuś, A.; Łuczkowska, K.; Grabowicz, A.; Mozolewska-Piotrowska, K.; Safranow, K.; Kawa, M.P.; Pałucha, A.; Krawczyk, M.; Sikora, P.; et al. Associations of MicroRNAs, Angiogenesis-Regulating Factors and CFH Y402H Polymorphism—An Attempt to Search for Systemic Biomarkers in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2019, 20, 5750. https://doi.org/10.3390/ijms20225750
Ulańczyk Z, Sobuś A, Łuczkowska K, Grabowicz A, Mozolewska-Piotrowska K, Safranow K, Kawa MP, Pałucha A, Krawczyk M, Sikora P, et al. Associations of MicroRNAs, Angiogenesis-Regulating Factors and CFH Y402H Polymorphism—An Attempt to Search for Systemic Biomarkers in Age-Related Macular Degeneration. International Journal of Molecular Sciences. 2019; 20(22):5750. https://doi.org/10.3390/ijms20225750
Chicago/Turabian StyleUlańczyk, Zofia, Anna Sobuś, Karolina Łuczkowska, Aleksandra Grabowicz, Katarzyna Mozolewska-Piotrowska, Krzysztof Safranow, Miłosz Piotr Kawa, Andrzej Pałucha, Mariusz Krawczyk, Piotr Sikora, and et al. 2019. "Associations of MicroRNAs, Angiogenesis-Regulating Factors and CFH Y402H Polymorphism—An Attempt to Search for Systemic Biomarkers in Age-Related Macular Degeneration" International Journal of Molecular Sciences 20, no. 22: 5750. https://doi.org/10.3390/ijms20225750
APA StyleUlańczyk, Z., Sobuś, A., Łuczkowska, K., Grabowicz, A., Mozolewska-Piotrowska, K., Safranow, K., Kawa, M. P., Pałucha, A., Krawczyk, M., Sikora, P., Matczyńska, E., Machaliński, B., & Machalińska, A. (2019). Associations of MicroRNAs, Angiogenesis-Regulating Factors and CFH Y402H Polymorphism—An Attempt to Search for Systemic Biomarkers in Age-Related Macular Degeneration. International Journal of Molecular Sciences, 20(22), 5750. https://doi.org/10.3390/ijms20225750