The Prognostic Significance of Eukaryotic Translation Initiation Factors (eIFs) in Endometrial Cancer
Abstract
:1. Introduction
2. Results
2.1. Correlation between Clinicopathological Features and eIF Expression
2.2. eIF Expression Is A Marker in Endometrial Cancer
2.3. Prognostic Significance of eIF Expression
3. Discussion
4. Materials and Methods
4.1. Patient Samples
4.2. TMA Construction
4.3. Immunohistochemistry (IHC)
4.4. Protein Extraction and Immunoblot
4.5. Statistical Analysis
4.6. Ethics Statement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EC | Endometrial cancer |
CS | Combined score |
eIF | Eukaryotic translation initiation factor |
NNT | Non-neoplastic tissue |
PIK3CA | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
PTEN | Phosphatase and Tensin homolog |
mTOR | Mechanistic Target of Rapamycin |
RNA | Ribonucleic acid |
NF-kB | Nuclear factor “kappa-light-chain-enhancer” of activated B-cells |
SD | Standard deviation |
HR | Hazard ratio |
95%CI | 95% Confidence interval |
IHC | Immunohistochemistry |
mRNA | Messenger RNA |
ATP | Adenosine triphosphate |
MAP | Mitogen-activated protein |
Mkn-1 | MAP kinase-interacting serine/threonine-protein kinase 1 |
PABP | Poly(A) binding protein |
IRES | Internal ribosome entry site |
VEGF | Vascular endothelial growth factor |
Bcl2 | B-cell lymphoma 2 |
HIF1alpha | Hypoxia-inducible factor 1-alpha |
HER2 | Human epidermal growth factor receptor 2 |
FFPE | Fresh-frozen paraffin-embedded |
TMA | Tissue micro-array |
WHO | World Health Organization |
UICC | Union International Contre le Cancer |
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Platz, C.E.; Benda, J.A. Female genital tract cancer. Cancer 1995, 75, 270–294. [Google Scholar] [CrossRef]
- Linkov, F.; Edwards, R.; Balk, J.; Yurkovetsky, Z.; Stadterman, B.; Lokshin, A.; Taioli, E. Endometrial hyperplasia, endometrial cancer and prevention: Gaps in existing research of modifiable risk factors. Eur. J. Cancer 2008, 44, 1632–1644. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.M.; Kapp, D.S.; Cheung, M.K.; Shin, J.Y.; Osann, K.; Husain, A.; Teng, N.N.; Berek, J.S.; Chan, J.K. Trends in demographic and clinical characteristics in women diagnosed with corpus cancer and their potential impact on the increasing number of deaths. Am. J. Obstet. Gynecol. 2008, 198, 218.e1–218.e6. [Google Scholar] [CrossRef] [PubMed]
- De Franciscis, P.; Riemma, G.; Schiattarella, A.; Cobellis, L.; Guadagno, M.; Vitale, S.G.; Mosca, L.; Cianci, A.; Colacurci, N. Concordance between the Hysteroscopic Diagnosis of Endometrial Hyperplasia and Histopathological Examination. Diagnostics 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Van Hanegem, N.; Prins, M.M.; Bongers, M.Y.; Opmeer, B.C.; Sahota, D.S.; Mol, B.W.; Timmermans, A. The accuracy of endometrial sampling in women with postmenopausal bleeding: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 197, 147–155. [Google Scholar] [CrossRef]
- Bokhman, J.V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef]
- Murali, R.; Soslow, R.A.; Weigelt, B. Classification of endometrial carcinoma: More than two types. Lancet Oncol. 2014, 15, e268–e278. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- McConechy, M.K.; Ding, J.; Cheang, M.C.; Wiegand, K.C.; Senz, J.; Tone, A.A.; Yang, W.; Prentice, L.M.; Tse, K.; Zeng, T.; et al. Use of mutation profiles to refine the classification of endometrial carcinomas. J. Pathol. 2012, 228, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Tashiro, H.; Isacson, C.; Levine, R.; Kurman, R.J.; Cho, K.R.; Hedrick, L. p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am. J. Pathol. 1997, 150, 177–185. [Google Scholar] [PubMed]
- Takenaka, K.; Chen, B.J.; Modesitt, S.C.; Byrne, F.L.; Hoehn, K.L.; Janitz, M. The emerging role of long non-coding RNAs in endometrial cancer. Cancer Genet. 2016, 209, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Ferlita, A.; Battaglia, R.; Andronico, F.; Caruso, S.; Cianci, A.; Purrello, M.; Pietro, C.D. Non-Coding RNAs in Endometrial Physiopathology. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvesen, H.B.; Haldorsen, I.S.; Trovik, J. Markers for individualised therapy in endometrial carcinoma. Lancet Oncol. 2012, 13, e353–e361. [Google Scholar] [CrossRef]
- Spilka, R.; Ernst, C.; Mehta, A.K.; Haybaeck, J. Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett. 2013, 340, 9–21. [Google Scholar] [CrossRef]
- Golob-Schwarzl, N.; Krassnig, S.; Toeglhofer, A.M.; Park, Y.N.; Gogg-Kamerer, M.; Vierlinger, K.; Schroder, F.; Rhee, H.; Schicho, R.; Fickert, P.; et al. New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. Eur. J. Cancer 2017, 83, 56–70. [Google Scholar] [CrossRef]
- Golob-Schwarzl, N.; SChweiger, C.; Koller, C.; Krassnig, S.; Gogg-Kamerer, M.; Gantenbrein, N.; Toeglhofer, A.M.; Wodej, C.; Bergler, H.; Pertschy, B.; et al. Separation of low and high grade colon and rectum carcinoma by eukaryotic translation initiation factors 1, 5 and 6. Oncotarget 2017, 8, 101224–101243. [Google Scholar] [CrossRef] [Green Version]
- Gingras, A.C.; Raught, B.; Sonenberg, N. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 1999, 68, 913–963. [Google Scholar] [CrossRef]
- Noske, A.; Lindenberg, J.L.; Darb-Esfahani, S.; Weichert, W.; Buckendahl, A.C.; Roske, A.; Sehouli, J.; Dietel, M.; Denkert, C. Activation of mTOR in a subgroup of ovarian carcinomas: Correlation with p-eIF-4E and prognosis. Oncol. Rep. 2008, 20, 1409–1417. [Google Scholar] [CrossRef] [Green Version]
- Fenner, B.J.; Scannell, M.; Prehn, J.H. Expanding the substantial interactome of NEMO using protein microarrays. PLoS ONE 2010, 5, e8799. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.H.; Lee, J.S.; Kim, S.R.; Lee, Y.Y.; Kim, C.J.; Lee, J.W.; Kim, T.J.; Lee, J.H.; Kim, B.G.; Bae, D.S. Direct inhibition of eIF4E reduced cell growth in endometrial adenocarcinoma. J. Cancer Res. Clin. Oncol. 2011, 137, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Memin, E.; Hoque, M.; Jain, M.R.; Heller, D.S.; Li, H.; Cracchiolo, B.; Hanauske-Abel, H.M.; Pe’ery, T.; Mathews, M.B. Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation. Cancer Res. 2014, 74, 552–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Pang, T.; Gao, M.; Kang, H.; Ding, W.; Sun, X.; Zhao, Y.; Zhu, W.; Tang, X.; Yao, Y.; et al. HPV E6 induces eIF4E transcription to promote the proliferation and migration of cervical cancer. FEBS Lett. 2013, 587, 690–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.; Choi, J.J.; Lee, K.M.; Choi, C.H.; Kim, T.J.; Lee, J.H.; Kim, B.G.; Ahn, G.; Song, S.Y.; Bae, D.S. eIF-4E expression is associated with histopathologic grades in cervical neoplasia. Hum. Pathol. 2005, 36, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.S.; Gao, Y.; Wang, D.Y.; Xia, B.R.; Liu, Y.D.; Qin, Y.; Ning, X.M.; Li, G.Y.; Hao, L.X.; Xiao, M.; et al. Overexpression of eukaryotic initiation factor 5A2 (EIF5A2) is associated with cancer progression and poor prognosis in patients with early-stage cervical cancer. Histopathology 2016, 69, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.Y.; Guo, H.; Barengo, N.; Naora, H. Inhibition of ovarian cancer growth by a tumor-targeting peptide that binds eukaryotic translation initiation factor 4E. Clin. Cancer Res. 2009, 15, 4336–4347. [Google Scholar] [CrossRef] [Green Version]
- Flavin, R.J.; Smyth, P.C.; Finn, S.P.; Laios, A.; O’Toole, S.A.; Barrett, C.; Ring, M.; Denning, K.M.; Li, J.; Aherne, S.T.; et al. Altered eIF6 and Dicer expression is associated with clinicopathological features in ovarian serous carcinoma patients. Mod. Pathol. 2008, 21, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, J.J.; Tian, Y.; Li, Z.Z.; Zhang, C.Y.; Zhang, S.F.; Cao, L.Q.; Zhang, Y.; Qian, C.Y.; Zhang, W.; et al. eIF3a improve cisplatin sensitivity in ovarian cancer by regulating XPC and p27Kip1 translation. Oncotarget 2015, 6, 25441–25451. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Shi, F.; Xu, Z.; Zhao, M. Knockdown of eIF4E suppresses cell proliferation, invasion and enhances cisplatin cytotoxicity in human ovarian cancer cells. Int. J. Oncol. 2015, 47, 2217–2225. [Google Scholar] [CrossRef] [Green Version]
- Silvera, D.; Arju, R.; Darvishian, F.; Levine, P.H.; Zolfaghari, L.; Goldberg, J.; Hochman, T.; Formenti, S.C.; Schneider, R.J. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat. Cell Biol. 2009, 11, 903–908. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Fu, P.; Du, F.; Hong, Y.; Yao, M.; Zhang, X.; Zheng, S. N1-Guanyl-1,7-Diaminoheptane Sensitizes Estrogen Receptor Negative Breast Cancer Cells to Doxorubicin by Preventing Epithelial-Mesenchymal Transition through Inhibition of Eukaryotic Translation Initiation Factor 5A2 Activation. Cell. Physiol. Biochem. 2015, 36, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Heikkinen, T.; Korpela, T.; Fagerholm, R.; Khan, S.; Aittomaki, K.; Heikkila, P.; Blomqvist, C.; Carpen, O.; Nevanlinna, H. Eukaryotic translation initiation factor 4E (eIF4E) expression is associated with breast cancer tumor phenotype and predicts survival after anthracycline chemotherapy treatment. Breast Cancer Res. Treat 2013, 141, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Shen, M.; Liu, X.; Guo, S.W. Reduced Expression of Eukaryotic Translation Initiation Factor 3 Subunit e and Its Possible Involvement in the Epithelial-Mesenchymal Transition in Endometriosis. Reprod. Sci. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korneeva, N.L.; Lamphear, B.J.; Hennigan, F.L.; Merrick, W.C.; Rhoads, R.E. Characterization of the two eIF4A-binding sites on human eIF4G-1. J. Biol. Chem. 2001, 276, 2872–2879. [Google Scholar] [CrossRef] [Green Version]
- Imataka, H.; Gradi, A.; Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 1998, 17, 7480–7489. [Google Scholar] [CrossRef] [Green Version]
- Lamphear, B.J.; Kirchweger, R.; Skern, T.; Rhoads, R.E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 1995, 270, 21975–21983. [Google Scholar] [CrossRef] [Green Version]
- Feoktistova, K.; Tuvshintogs, E.; Do, A.; Fraser, C.S. Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc. Natl. Acad. Sci. USA 2013, 110, 13339–13344. [Google Scholar] [CrossRef] [Green Version]
- Connolly, E.; Braunstein, S.; Formenti, S.; Schneider, R.J. Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol. Cell. Biol. 2006, 26, 3955–3965. [Google Scholar] [CrossRef] [Green Version]
- Svitkin, Y.V.; Herdy, B.; Costa-Mattioli, M.; Gingras, A.C.; Raught, B.; Sonenberg, N. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol. Cell. Biol. 2005, 25, 10556–10565. [Google Scholar] [CrossRef] [Green Version]
- Hellen, C.U.; Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001, 15, 1593–1612. [Google Scholar] [CrossRef] [Green Version]
- Braunstein, S.; Karpisheva, K.; Pola, C.; Goldberg, J.; Hochman, T.; Yee, H.; Cangiarella, J.; Arju, R.; Formenti, S.C.; Schneider, R.J. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol. Cell 2007, 28, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Lang, K.J.; Kappel, A.; Goodall, G.J. Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol. Biol. Cell. 2002, 13, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Sherrill, K.W.; Byrd, M.P.; Van Eden, M.E.; Lloyd, R.E. BCL-2 translation is mediated via internal ribosome entry during cell stress. J. Biol. Chem. 2004, 279, 29066–29074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, L.; Liu, Z.; He, X.; He, Y.; Yang, H.; Jiang, Q.; Xie, S.; Xiao, G.; Li, X.; Yao, K.; et al. Over-expression of eukaryotic translation initiation factor 4 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Mol. Cancer 2010, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Bauer, C.; Brass, N.; Diesinger, I.; Kayser, K.; Grasser, F.A.; Meese, E. Overexpression of the eukaryotic translation initiation factor 4G (eIF4G-1) in squamous cell lung carcinoma. Int. J. Cancer 2002, 98, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Schlosshauer, P.W.; Ellenson, L.H.; Soslow, R.A. Beta-catenin and E-cadherin expression patterns in high-grade endometrial carcinoma are associated with histological subtype. Mod. Pathol. 2002, 15, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
- Tavassoli, F.A.; Devilee, P. Pathology and Genetics of Tumours of the Breast and Genital Organs; IARC Press: Lyon, France, 2000. [Google Scholar]
Count | % | Missing | ||
---|---|---|---|---|
Age | <60 years | 117 | 41.9 | 0 |
>60 years | 162 | 58.1 | ||
EC Type | Type I | 216 | 90.0 | 39 |
Type II | 24 | 10.0 | ||
Grading | G1 | 134 | 48.0 | 0 |
G2 | 107 | 38.4 | ||
G3 | 38 | 13.6 | ||
Staging | I | 184 | 67.4 | 5 |
II | 42 | 15.2 | ||
III | 34 | 12.3 | ||
IV | 14 | 5.1 | ||
NNT | 15 | 100.0 | 0 |
eIF2a CS | eIF3c CS | eIF3h CS | eIF4e CS | ||||||
---|---|---|---|---|---|---|---|---|---|
Median (IQR) | p-Value | Median (IQR) | p-Value | Median (IQR) | p-Value | Median (IQR) | p-Value | ||
Tissue | NNT | 12 (12–12) | 0.317 | 12 (12–12) | 0.129 | 12 (12–12) | 0.304 | 8 (8–8.9) | 0.463 |
EC | 12 (12–12) | 12 (9.3–12) | 12 (12–12) | 8 (5.3–9.1) | |||||
Age | <60 years | 12 (12–12) | 0.051 | 12 (9.3–12) | 0.147 | 12 (12–12) | 0.948 | 8.4 (5–11.1) | 0.909 |
>60 years | 12 (12–12) | 12 (10–12) | 12 (12–12) | 8 (6–11) | |||||
EC Type | Type I | 12 (12–12) | 0.771 | 12 (9.3–12) | 0.906 | 12 (12–12) | 0.770 | 8 (5.7–11) | 0.566 |
Type II | 12 (12–12) | 12 (9.3–12) | 12 (12–12) | 8 (6–10) | |||||
Grading | NNT | 12 (12–12) | 0.722 | 12 (12–12) | 0.623 | 12 (12–12) | 0.413 | 8 (8–8) | 0.835 |
G1 | 12 (12–12) | 12 (9.3–12) | 12 (12–12) | 8 (5–11) | |||||
G2 | 12 (12–12) | 12 (10–12) | 12 (12–12) | 9 (6–11) | |||||
G3 | 12 (12–12) | 12 (8–12) | 12 (12–12) | 8 (5–12) | |||||
Staging | NNT | 12 (12–12) | 0.442 | 12 (12–12) | 0.578 | 12 (12–12) | 0.609 | 8 (8–12) | 0.214 |
I | 12 (12–12) | 12 (12–12) | 12 (12–12) | 8 (5–11) | |||||
II | 12 (12–12) | 12 (12–12) | 12 (12–12) | 9 (6–11) | |||||
III | 12 (12–12) | 12 (12–12) | 12 (12–12) | 10 (7–12) | |||||
IV | 12 (12–12) | 12 (12–12) | 12 (12–12) | 9 (6–12) |
eIF4g CS | eIF5 CS | eIF6 CS | |||||
---|---|---|---|---|---|---|---|
Median (IQR) | p-Value | Median (IQR) | p-Value | Median (IQR) | p-Value | ||
Tissue | NNT | 8 (8–12) | 0.854 | 4 (4–4) | <0.001 | 12 (12–12) | <0.001 |
EC | 10 (8–12) | 8 (5–10.7) | 10 (8–12) | ||||
Age | <60 years | 10 (7–12) | 0.800 | 8 (4.7–10.7) | 0.826 | 11 (8–12) | 0.071 |
>60 years | 10 (7–12) | 8 (5–10.7) | 10 (8–12) | ||||
EC Type | Type I | 10 (6.7–12) | 0.034 | 8 (5–10) | 0.681 | 10 (8–12) | 0.763 |
Type II | 11 (9.8–12) | 7 (5–12) | 10 (9–12) | ||||
Grading | NNT | 8 (8–8) | 0.014 | 4 (4–4) | <0.001 | 12 (12–12) | 0.032 |
G1 | 9 (6–12) | 7 (4–10) | 10.7 (8–12) | ||||
G2 | 10.8 (8–12) | 8 (5–11) | 10 (8–12) | ||||
G3 | 11 (7–12) | 9 (7–12) | 11.7 (8.1–12) | ||||
Staging | NNT | 8 (8–12) | 0.315 | 4 (4–4) | 0.004 | 12 (12–12) | 0.020 |
I | 10 (7–12) | 8 (4–11) | 10 (8–12) | ||||
II | 9 (6.7–12) | 8 (5.3–10) | 10 (8–12) | ||||
III | 11 (9–12) | 7 (5–10) | 11 (8–12) | ||||
IV | 12 (5.5–12) | 8 (6–12) | 11 (7–12) |
HR | 95% Confidence Interval | p-Value | |||
---|---|---|---|---|---|
Lower | Upper | ||||
eIF2α | Low | 1 | 0.906 | ||
High | 1.039 | 0.552 | 1.953 | ||
eIF3c | Low | 1 | 0.484 | ||
High | 1.168 | 0.756 | 1.805 | ||
eIF3h | Low | 1 | 0.681 | ||
High | 1.208 | 0.490 | 2.977 | ||
eIF4e | Low | 1 | 0.842 | ||
High | 0.952 | 0.584 | 1.551 | ||
eIF4g | Low | 1 | 0.013 | ||
High | 1.687 | 1.116 | 2.550 | ||
eIF5 | Low | 1 | 0.708 | ||
High | 1.098 | 0.674 | 1.790 | ||
eIF6 | Low | 1 | 0.934 | ||
High | 1.018 | 0.671 | 1.542 |
HR | 95% Confidence Interval | p-Value | |||
---|---|---|---|---|---|
Lower | Upper | ||||
eIF4g | Low | 1 | 0.034 | ||
High | 1.604 | 1.037 | 2.483 | ||
Age | Continuous | 1.086 | 1.060 | 1.112 | <0.001 |
Stage | I | 1 | |||
II | 1.524 | 0.833 | 2.789 | 0.172 | |
III | 3.739 | 2.110 | 6.623 | <0.001 | |
IV | 8.969 | 4.608 | 17.456 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolle, M.A.; Czapiewski, P.; Lapińska-Szumczyk, S.; Majewska, H.; Supernat, A.; Zaczek, A.; Biernat, W.; Golob-Schwarzl, N.; Haybaeck, J. The Prognostic Significance of Eukaryotic Translation Initiation Factors (eIFs) in Endometrial Cancer. Int. J. Mol. Sci. 2019, 20, 6169. https://doi.org/10.3390/ijms20246169
Smolle MA, Czapiewski P, Lapińska-Szumczyk S, Majewska H, Supernat A, Zaczek A, Biernat W, Golob-Schwarzl N, Haybaeck J. The Prognostic Significance of Eukaryotic Translation Initiation Factors (eIFs) in Endometrial Cancer. International Journal of Molecular Sciences. 2019; 20(24):6169. https://doi.org/10.3390/ijms20246169
Chicago/Turabian StyleSmolle, Maria Anna, Piotr Czapiewski, Sylwia Lapińska-Szumczyk, Hanna Majewska, Anna Supernat, Anna Zaczek, Wojciech Biernat, Nicole Golob-Schwarzl, and Johannes Haybaeck. 2019. "The Prognostic Significance of Eukaryotic Translation Initiation Factors (eIFs) in Endometrial Cancer" International Journal of Molecular Sciences 20, no. 24: 6169. https://doi.org/10.3390/ijms20246169
APA StyleSmolle, M. A., Czapiewski, P., Lapińska-Szumczyk, S., Majewska, H., Supernat, A., Zaczek, A., Biernat, W., Golob-Schwarzl, N., & Haybaeck, J. (2019). The Prognostic Significance of Eukaryotic Translation Initiation Factors (eIFs) in Endometrial Cancer. International Journal of Molecular Sciences, 20(24), 6169. https://doi.org/10.3390/ijms20246169