Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Laboratory Measurements
4.3. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AAA1 | autoantibodies against apolipoprotein A-1 |
ABCA1 | ATP-binding cassette transporter A1 |
ABCG1 | ATP-binding cassette transporter G1 |
Ac-terAA1 | autoantibodies against c-terminus of apolipoprotein A-1 |
Apo | apolipoprotein |
AU | arbitrary units |
BMI | body mass index |
BSA | bovine serum albumin |
CEC | cholesterol efflux capacity |
CV | coefficient of variation |
CET | cholesteryl ester transfer |
CETP | cholesteryl ester transfer protein |
DMEM | Dulbecco’s modified Eagle’s medium |
ELISA | enzyme-linked immunosorbent assay |
EDTA | ethylenediaminetetraacetic acid |
EST | cholesterol esterification |
HDL | high-density lipoproteins |
LCAT | lecithin–cholesterol acylesterase |
OD | optical density |
PBS | phosphate buffer solution |
PLTP | phospholipid transfer protein |
T2D | Type 2 diabetes mellitus |
References
- Vuilleumier, N.; Montecucco, F.; Hartley, O. Autoantibodies to apolipoprotein A-1 as a biomarker of cardiovascular autoimmunity. World J. Cardiol. 2014, 6, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Vuilleumier, N.; Charbonney, E.; Fontao, L.; Alvarez, M.; Turck, N.; Sanchez, J.C.; Burkhard, P.R.; Mensi, N.; Righini, M.; Reber, G.; et al. Anti-(apolipoprotein A-1) IgGs are associated with high levels of oxidized low-density lipoprotein in acute coronary syndrome. Clin. Sci. 2008, 115, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Batuca, J.R.; Ames, P.R.J.; Amaral, M.; Favas, C.; Isenberg, D.A.; Delgado Alves, J. Anti-atherogenic and anti-inflammatory properties of high-density lipoprotein are affected by specific antibodies in systemic lupus erythematosus. Rheumatology 2009, 48, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Vuilleumier, N.; Rossier, M.F.; Pagano, S.; Python, M.; Charbonney, E.; Nkoulou, R.; James, R.; Reber, G.; Mach, F.; Roux-Lombard, P.; et al. Anti-apolipoprotein A-1 IgG as an independent cardiovascular prognostic marker affecting basal heart rate in myocardial infarction. Eur. Heart J. 2010, 31, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Rubini Gimenez, M.; Pagano, S.; Virzi, J.; Montecucco, F.; Twerenbold, R.; Reichlin, T.; Wildi, K.; Grueter, D.; Jaeger, C.; Haaf, P.; et al. Diagnostic and prognostic value of autoantibodies anti-apolipoprotein A-1 and anti-phosphorylcholine in acute non-ST elevation myocardial infarction. Eur. J. Clin. Investig. 2015, 45, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Satta, N.; Montecucco, F.; Virzi, J.; Burger, F.; Roth, A.; Roversi, G.; Tamborino, C.; Casetta, I.; Seraceni, S.; et al. Anti-ApoA-1 IgG serum levels predict worse poststroke outcomes. Eur. J. Clin. Investig. 2016, 46, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Bastardot, F.; Hartley, O.; Montecucco, F.; Mach, F.; Waeber, G.; et al. Association between anti-apolipoprotein A-1 antibodies and cardiovascular disease in the general population. Results from the CoLaus study. Thromb. Haemost. 2016, 116, 764–771. [Google Scholar]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Impact of CD14 Polymorphisms on anti-apolipoprotein A-1 IgG-related coronary artery disease prediction in the general population. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2342–2349. [Google Scholar] [CrossRef]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Anti-apolipoprotein A-1 IgG predict all-cause mortality and are associated with Fc receptor-like 3 polymorphisms. Front. Immunol. 2017. [Google Scholar] [CrossRef]
- Pagano, S.; Satta, N.; Werling, D.; Offord, V.; de Moerloose, P.; Charbonney, E.; Hochstrasser, D.; Roux-Lombard, P.; Vuilleumier, N. Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex. J. Intern. Med. 2012, 272, 344–357. [Google Scholar] [CrossRef]
- Montecucco, F.; Braunersreuther, V.; Burger, F.; Lenglet, S.; Pelli, G.; Carbone, F.; Fraga-Silva, R.; Stergiopulos, N.; Monaco, C.; Mueller, C.; et al. Anti-apoA-1 auto-antibodies increase mouse atherosclerotic plaque vulnerability, myocardial necrosis and mortality triggering TLR2 and TLR4. Thromb. Haemost. 2015, 114, 410–422. [Google Scholar] [PubMed]
- Villeumier, N.; Bas, S.; Pagano, S.; Montecucco, F.; Guerne, P.A.; Finckh, A.; Lovis, C.; Mach, F.; Hochstrasser, D.; Roux-Lombard, P.; et al. Anti-apolipoprotein A-1 IgG predicts major cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheumatol. 2010, 62, 2640–2650. [Google Scholar] [CrossRef] [PubMed]
- Montecucco, F.; Vuilleumier, N.; Pagano, S.; Lenglet, S.; Bertolotto, M.; Braunersreuther, V.; Pelli, G.; Kovari, E.; Pane, B.; Spinella, G.; et al. Anti-apolipoprotein a-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability. Eur. Heart J. 2011, 32, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.C.; Ducret, A.; Ferber, P.; Gaertner, H.; Hartley, O.; Pagano, S.; Butterfield, M.; Langen, H.; Vuilleumier, N.; Cutler, P. Definition of human apolipoprotein A–I epitopes recognized by autoantibodies present in patients with cardiovascular diseases. J. Biol. Chem. 2014, 289, 28249–28259. [Google Scholar] [CrossRef] [PubMed]
- Pagano, S.; Gaertner, H.; Cerini, F.; Mannic, T.; Satta, N.; Teixeira, P.C.; Cutler, P.; Mach, F.; Vuilleumier, N.; Hartley, O. The human autoantibody response to apolipoprotein A-I is focused on the C-terminal helix: A new rationale for diagnosis and treatment of cardiovascular disease? PLoS ONE 2015, 10, e0132780. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.C.; Gillotte, K.L.; Haynes, M.P.; Johnson, W.J.; Lund-Katz, S.; Rothblat, G.H. Mechanisms of high density lipoprotein-mediated efflux of cholesterol from cell plasma membranes. Atherosclerosis 1998, 137, S13–S17. [Google Scholar] [CrossRef]
- Navab, M.; Anantharamaiah, G.M.; Reddy, S.T.; van Lenten, B.J.; Fogelman, A.M. HDL as a biomarker, potential therapeutic target, and therapy. Diabetes 2009, 58, 2711–2717. [Google Scholar] [CrossRef]
- Triolo, M.; Annema, W.; Dullaart, R.P.; Tietge, U.J. Assessing the functional properties of high-density lipoproteins: An emerging concept in cardiovascular research. Biomark Med. 2013, 7, 457–472. [Google Scholar] [CrossRef]
- Rye, K.A.; Barter, P.J. Cardioprotective functions of HDLs. J. Lipid Res. 2014, 55, 168–179. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer, H.B., Jr.; Barter, P.J.; Björkegren, J.L.M.; Chapman, M.J.; Gaudet, D.; Kim, D.S.; Niesor, E.; Rye, K.A.; Sacks, F.M.; et al. HDL and atherosclerotic cardiovascular disease: Genetic insights into complex biology. Nat. Rev. Cardiol. 2018, 15, 9–19. [Google Scholar] [CrossRef]
- Borggreve, S.E.; de Vries, R.; Dullaart, R.P. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: Role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins. Eur. J. Clin. Investig. 2003, 33, 1051–1069. [Google Scholar] [CrossRef]
- Dallinga-Thie, G.M.; Dullaart, R.P.; van Tol, A. Concerted actions of cholesteryl ester transfer protein and phospholipid transfer protein in type 2 diabetes: Effects of apolipoproteins. Curr. Opin. Lipidol. 2007, 18, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Batuca, J.R.; Amaral, M.C.; Favas, C.; Justino, G.C.; Papoila, A.L.; Ames, P.R.J.; Alves, J.D. Antibodies against HDL components in ischaemic stroke and coronary artery disease. Thromb. Haemost. 2018, 118, 1088–1100. [Google Scholar] [PubMed]
- Srivastava, R.; Yu, S.; Parks, B.W.; Black, L.L.; Kabarowski, J.H. Autoimmune-mediated reduction of high-density lipoprotein-cholesterol and paraoxonase 1 activity in systemic lupus rythematosus-prone gld mice. Arthritis Rheumatol. 2011, 63, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Ames, P.R.; Matsuura, E.; Batuca, J.R.; Ciampa, A.; Lopez, L.L.; Ferrara, F.; Iannaccone, L.; Alves, J.D. High-density lipoprotein inversely relates to its specific autoantibody favoring oxidation in thrombotic primary antiphospholipid syndrome. Lupus 2010, 19, 711–716. [Google Scholar] [CrossRef] [PubMed]
- El-Lebedy, D.; Rasheed, E.; Kafoury, M.; Abd-El Haleem, D.; Awadallah, E.; Ashmawy, I. Anti-apolipoprotein A-1 autoantibodies as risk biomarker for cardiovascular diseases in type 2 diabetes mellitus. J. Diabetes Complicat. 2016, 30, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Riemens, S.; van Tol, A.; Sluiter, W.; Dullaart, R. Elevated plasma cholesteryl ester transfer in NIDDM: Relationships with apolipoprotein B-containing lipoproteins and phospholipid transfer protein. Atherosclerosis 1998, 40, 71–79. [Google Scholar] [CrossRef]
- De Vries, R.; Groen, A.K.; Perton, F.G.; Dallinga-Thie, G.M.; van Wijland, M.J.; Dikkeschei, L.D.; Wolffenbuttel, B.H.; van Tol, A.; Dullaart, R.P. Increased cholesterol efflux from cultured fibroblasts to plasma from hypertriglyceridemic type 2 diabetic patients: Roles of pre beta-HDL, phospholipid transfer protein and cholesterol esterification. Atherosclerosis 2008, 196, 733–741. [Google Scholar] [CrossRef]
- Dullaart, R.P.; Groen, A.K.; Dallinga-Thie, G.M.; de Vries, R.; Sluiter, W.J.; van Tol, A. Fibroblast cholesterol efflux to plasma from metabolic syndrome subjects is not defective despite low high-density lipoprotein cholesterol. Eur. J. Endocrinol. 2008, 158, 53–60. [Google Scholar] [CrossRef]
- Fielding, C.J.; Fielding, P.E. Regulation of human plasma lecithin: Cholesterol acyltransferase activity by lipoprotein acceptor cholesteryl ester content. J. Biol. Chem. 1981, 256, 2102–2104. [Google Scholar]
- Duong, M.; Collins, H.L.; Jin, W.; Zanotti, I.; Favari, E.; Rothblat, G.H. Relative contributions of ABCA1 and SR-BI to cholesterol efflux to serum from fibroblasts and macrophages. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 541–547. [Google Scholar] [CrossRef] [PubMed]
- De Vries, R.; Kerstens, M.N.; Sluiter, W.J.; Groen, A.K.; van Tol, A.; Dullaart, R.P. Cellular cholesterol efflux to plasma from moderately hypercholesterolaemic type 1 diabetic patients is enhanced, and is unaffected by simvastatin treatment. Diabetologia 2005, 48, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Oram, J.F.; Wolfbauer, G.; Vaughan, A.M.; Tang, C.; Albers, J.J. Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J. Biol. Chem. 2003, 278, 52379–52385. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem. 2014, 289, 24020–24029. [Google Scholar] [CrossRef]
- Boadu, E.; Choi, H.Y.; Lee, D.W.; Waddington, E.I.; Chan, T.; Asztalos, B.; Vance, J.E.; Chan, A.; Castro, G.; Francis, G.A. Correction of apolipoprotein A-I-mediated lipid efflux and high density lipoprotein particle formation in human Niemann-Pick type C disease fibroblasts. J. Biol. Chem. 2006, 281, 37081–37090. [Google Scholar] [CrossRef]
- Triolo, M.; Annema, W.; de Boer, J.F.; Tietge, U.J.; Dullaart, R.P. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur. J. Clin. Investig. 2014, 44, 240–248. [Google Scholar] [CrossRef]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef]
- Saleheen, D.; Scott, R.; Javad, S.; Zhao, W.; Rodrigues, A.; Picataggi, A.; Lukmanova, D.; Mucksavage, M.L.; Luben, R.; Billheimer, J.; et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: A prospective case-control study. Lancet Diabetes Endocrinol. 2015, 3, 507–513. [Google Scholar] [CrossRef]
- Annema, W.; Dikkers, A.; de Boer, J.F.; van Greevenbroek, M.M.; van der Kallen, C.J.; Schalkwijk, C.G.; Stehouwer, C.D.; Dullaart, R.P.; Tietge, U.J. Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: The CODAM study. Sci. Rep. 2016, 6, 27367. [Google Scholar] [CrossRef]
- Hoang, A.; Murphy, A.J.; Coughlan, M.T.; Thomas, M.C.; Forbes, J.M.; O’Brien, R.; Cooper, M.E.; Chin-Dusting, J.P.; Sviridov, D. Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia 2007, 50, 1770–1779. [Google Scholar] [CrossRef]
- Duell, P.B.; Oram, J.F.; Bierman, E.L. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes 1991, 40, 377–384. [Google Scholar] [CrossRef] [PubMed]
- De Vries, R.; Groen, A.K.; Dullaart, R.P. Cholesterol efflux capacity and atherosclerosis. N. Engl. J. Med. 2011, 364, 1473–1474. [Google Scholar] [PubMed]
- De Vries, R.; Perton, F.G.; Dallinga-Thie, G.M.; van Roon, A.M.; Wolffenbuttel, B.H.; van Tol, A.; Dullaart, R.P. Plasma cholesteryl ester transfer is a determinant of intima-media thickness in type 2 diabetic and nondiabetic subjects: Role of CETP and triglycerides. Diabetes 2005, 54, 3554–3559. [Google Scholar] [CrossRef] [PubMed]
- Kappelle, P.J.; Perton, F.; Hillege, H.L.; Dallinga-Thie, G.M.; Dullaart, R.P. High plasma cholesteryl ester transfer but not CETP mass predicts incident cardiovascular disease: A nested case-control study. Atherosclerosis 2011, 217, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Yasuda, T.; Ishida, T.; Fujioka, Y.; Tsujino, T.; Miki, T.; Hirata, K. Increased serum cholesterol esterification rates predict coronary heart disease and sudden death in a general population. Arterioscler Thromb. Vasc. Biol. 2013, 33, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Dullaart, R.P.; Tietge, U.J.; Kwakernaak, A.J.; Dikkeschei, B.D.; Perton, F.; Tio, R.A. Alterations in plasma lecithin:cholesterol acyltransferase and myeloperoxidase in acute myocardial infarction: Implications for cardiac outcome. Atherosclerosis 2014, 234, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Dullaart, R.P.; Perton, F.; van der Klauw, M.M.; Hillege, H.L.; Sluiter, W.J. PREVEND Study Group. High plasma lecithin:cholesterol acyltransferase activity does not predict low incidence of cardiovascular events: Possible attenuation of cardioprotection associated with high HDL cholesterol. Atherosclerosis 2010, 208, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Ossoli, A.; Pavanello, C.; Calabresi, L. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis. Endocrinol. Metab. 2016, 31, 223–239. [Google Scholar] [CrossRef]
- Dullaart, R.P.; van Tol, A. Twenty four hour insulin infusion impairs the ability of plasma from healthy subjects and Type 2 diabetic patients to promote cellular cholesterol efflux. Atherosclerosis 2001, 157, 49–56. [Google Scholar] [CrossRef]
- Van Haperen, R.; van Tol, A.; Vermeulen, P.; Jauhiainen, M.; van Gent, T.; Ehnho, S.; van den Berg, P.; Grosveld, F.; van der Kamp, A.; de Crom, R. Human plasma phospholipid transfer protein ncreases the antiatherogenic potential of high density lipoproteins in transgenic mice. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1082–1088. [Google Scholar] [CrossRef]
- Speijer, H.; Groener, J.E.; van Ramshorst, E.; van Tol, A. Different locations of cholesteryl ester transfer protein and phospholipid transfer protein activities in plasma. Atherosclerosis 1991, 90, 159–168. [Google Scholar] [CrossRef]
- Riemens, S.C.; Van Tol, A.; Stulp, B.K.; Dullaart, R.P. Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinemia in non-diabetic men. J. Lipid Res. 1999, 40, 1467–1474. [Google Scholar] [PubMed]
- Florén, C.H.; Chen, C.H.; Franzén, J.; Albers, J.J. Lecithin: Cholesterol acyltransferase in liver disease. Scand. J. Clin. Lab. Investig. 1987, 47, 613–617. [Google Scholar] [CrossRef]
- Borggreve, S.E.; de Vries, R.; Dallinga-Thie, G.M.; Wolffenbuttel, B.H.; Groen, A.K.; van Tol, A.; Dullaart, R.P. The ability of plasma to stimulate fibroblast cholesterol efflux is associated with the -629C→>A cholesteryl ester transfer protein promoter polymorphism: Role of lecithin: Cholesterol acyltransferase activity. Biochim. Biophys. Acta 2008, 1781, 10–15. [Google Scholar] [CrossRef] [PubMed]
Control Subjects (n = 75) | Type 2 Diabetic Subjects (n = 75) | p-Value | |
---|---|---|---|
Age (year) | 55 ± 10 | 59 ± 9 | 0.014 |
Sex (M/F) | 36/39 | 47/28 | 0.10 |
BMI (kg/m2) | 25.9 ± 3.9 | 28.7 ± 4.9 | <0.001 |
Systolic blood pressure (mmHg) | 131 ± 20 | 144 ± 20 | <0.001 |
Diastolic blood pressure (mmHg) | 82 ± 11 | 87 ± 9 | <0.001 |
Plasma glucose (mmol/L) | 5.6 ± 0.7 | 8.8 ± 2.4 | <0.001 |
HbA1c (%) | 5.3 ± 0.4 | 6.7 ± 1.0 | <0.001 |
Total cholesterol (mmol/L) | 5.67 ± 0.98 | 5.40 ± 0.98 | 0.07 |
Non-HDL cholesterol (mmol/L) | 4.20 ± 1.00 | 4.12 ± 1.07 | 0.65 |
HDL cholesterol (mmol/L) | 1.49 ± 0.40 | 1.28 ± 0.38 | 0.001 |
Triglycerides (mmol/L) | 1.31 (0.87–1.91) | 1.73 (1.17–2.17) | 0.036 |
Apolipoprotein A-1 (g/L) | 1.42 ± 0.22 | 1.28 ± 0.38 | 0.030 |
Apolipoprotein B (g/L) | 0.95 ± 0.23 | 0.93 ± 0.23 | 0.77 |
CEC (% per 4 h) | 8.56 ± 1.00 | 8.66 ± 0.90 | 0.52 |
Pre-β-HDL formation (apoA-1, g/L) | 0.31 ± 0.07 | 0.30 ± 0.07 | 0.31 |
PLTP activity (AU) | 94.0 ± 10.5 | 103.6 ± 11.4 | <0.001 |
LCAT activity (AU) | 106.8 ± 13.1 | 114.1 ± 17.4 | 0.004 |
EST (nmol/mL/h) | 56.1 ± 15.6 | 63.6 ± 18.9 | 0.009 |
CETP mass (mg/L) | 2.16 ± 0.67 | 2.49 ± 0.90 | 0.011 |
CET (nmol/mL/h) | 20.6 ± 7.5 | 24.1 ± 9.0 | 0.011 |
AAA1(AU) | 0.35 (0.24–0.45) | 0.27 (0.18–0.39) | 0.16 |
AAc-terAA1 (AU) | 0.23 (0.19–0.36) | 0.22 (0.15–0.29) | 0.17 |
A: All Subjects (n = 150) | Ac-terAA1 (AU) | AAA1 (AU) |
Glucose | −0.080 | −0.127 |
HbA1c | −0.145 | −0.019 |
Total cholesterol | −0.214 b | −0.085 |
Non-HDL cholesterol | −0.232 b | −0.075 |
HDL cholesterol | 0.078 | −0.014 |
Triglycerides | −0.274 c | −0.122 |
ApoA-1 | 0.017 | 0.001 |
Apo B | −0.221 b | −0.066 |
CEC | −0.188 a | −0.126 |
Pre-β-HDL formation | −0.052 | 0.030 |
PLTP activity | −0.072 | −0.073 |
LCAT activity | −0.197 a | −0.077 |
EST | −0.277 c | −0.093 |
CETP mass | −0.095 | 0.062 |
CET | −0.324 c | −0.093 |
B: Control Subjects (n = 75) | Ac-terAA1 (AU) | AAA1 (AU) |
Total cholesterol | −0.298 b | −0.038 |
Glucose | 0.004 | −0.193 |
HbA1c | −0.005 | −0.022 |
Non-HDL cholesterol | −0.352 c | −0.035 |
HDL cholesterol | 0.168 | 0.108 |
Triglycerides | −0.449 c | −0.115 |
ApoA-1 | 0.100 | 0.011 |
Apo B | −0.364 c | −0.042 |
CEC | −0.l99 | −0.115 |
Pre-β-HDL formation | 0.140 | −0.003 |
PLTP activity | −0.177 | 0.006 |
LCAT activity | −0.235 a | −0001 |
EST | −0.414 c | 0.015 |
CETP mass | 0.077 | 0.211 |
CET | −0.535 c | −0.048 |
C: Type 2 Diabetic Subjects (n = 75) | Ac-terAA1 (AU) | AAA1 (AU) |
Glucose | −0.006 | −0.043 |
HbA1c | −0.145 | 0.135 |
Total cholesterol | −0.172 | −0.179 |
Non-HDL cholesterol | −0.130 | −0.129 |
HDL cholesterol | −0.078 | −0.099 |
Triglycerides | −0.099 | −0.098 |
ApoA-1 | −0.101 | −0.054 |
Apo B | −0.081 | −0.101 |
CEC | −0.165 | −0.130 |
Pre-β-HDL formation | 0.022 | 0.050 |
PLTP activity | 0.022 | −0.068 |
LCAT activity | −0.129 | −0.099 |
EST | −0.131 | −0.016 |
CETP mass | −0.194 | −0.016 |
CET | −0.116 | −0.095 |
A: All Subjects (n = 150) | CEC |
Glucose | 0.073 |
HbA1c | 0.134 |
Pre-β-HDL formation | 0.283 c |
HDL cholesterol | −0.089 |
ApoA-1 | −0.056 |
PLTP activity | 0.313 c |
LCAT activity | 0.300 c |
EST | 0.402 c |
CETP mass | 0.031 |
CET | 0.364 c |
B: Control Subjects (n = 75) | CEC |
Glucose | 0.086 |
HbA1c | 0.032 |
Pre-β-HDL formation | 0.31 b |
ApoA-1 | −0.005 |
HDL cholesterol | −0.142 |
PLTP activity | 0.334 b |
LCAT activity | 0.189 |
EST | 0.320 b |
CETP mass | 0.004 |
CET | 0.377 c |
C: Type 2 Diabetic Subjects (n = 75) | CEC |
Glucose | 0.052 |
HbA1c | 0.197 |
Pre-β-HDL formation | 0.245 a |
ApoA-1 | 0.140 |
HDL cholesterol | −0.001 |
PLTP activity | 0.305 b |
LCAT activity | 0.396 c |
EST | 0.482 c |
CETP mass | 0.039 |
CET | 0.352 b |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
β | p-value | β | p-value | β | p-value | β | p-value | |
Age | −0.026 | 0.75 | −0.068 | 0.43 | −0.121 | 0.13 | −0.098 | 0.20 |
Sex (male vs. female) | 0.157 | 0.23 | −0.063 | 0.46 | 0.027 | 0.74 | 0.019 | 0.81 |
T2D | 0.053 | 0.53 | −0.025 | 0.84 | −0.030 | 0.80 | −0.027 | 0.81 |
Ac-terAA1 (AU) | −0.178 | 0.032 | −0.186 | 0.026 | −0.157 | 0.044 | −0.088 | 0.26 |
Pre-β-HDL formation | 0.282 | 0.001 | 0.240 | 0.003 | ||||
PLTP activity | 0.245 | 0.007 | 0.185 | 0.003 | ||||
EST | 0.288 | 0.038 |
A: EST | Model 1 | Model 2 | Model 3 | Model 4 | ||||
β | p-value | β | p-value | β | p-value | β | p-value | |
Age | −0.058 | 0.47 | −0.049 | 0.54 | −0.037 | 0.57 | 0.013 | 0.08 |
Sex (male vs. female) | −0.057 | 0.48 | −0.034 | 0.67 | −0.007 | 0.91 | −0.065 | 0.26 |
T2D | 0.205 | 0.012 | 0.010 | 0.93 | −0.033 | 0.72 | −0.001 | 0.99 |
Ac-terAA1 (AU) | −0.252 | 0.002 | −0.261 | 0.001 | −0.164 | 0.012 | −0.071 | 0.22 |
LCAT activity | 0.566 | <0.001 | 0.270 | 0.001 | ||||
Non-HDL cholesterol | −0.029 | 0.70 | ||||||
Triglycerides | 0.522 | <0.001 | ||||||
B: CET | Model 1 | Model 2 | Model 3 | Model 4 | ||||
β | p-value | β | p-value | β | p-value | β | p-value | |
Age | −0.158 | 0.045 | −0.163 | 0.036 | −0.154 | 0.045 | −0.085 | 0.074 |
Sex (male vs. female) | 0.067 | 0.39 | 0.095 | 0.21 | 0.120 | 0.12 | 0.031 | 0.97 |
T2D | 0.195 | 0.015 | −0.035 | 0.75 | −0.089 | 0.41 | 0.003 | 0.97 |
Ac-terAA1 (AU) | −0.308 | <0.001 | −0.321 | <0.001 | −0.312 | <0.001 | −0.087 | 0.077 |
CETP mass | 0.207 | 0.008 | 0.141 | 0.004 | ||||
Non-HDL cholesterol | 0.313 | <0.001 | ||||||
Triglycerides | 0.506 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dullaart, R.P.F.; Pagano, S.; Perton, F.G.; Vuilleumier, N. Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2019, 20, 732. https://doi.org/10.3390/ijms20030732
Dullaart RPF, Pagano S, Perton FG, Vuilleumier N. Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus. International Journal of Molecular Sciences. 2019; 20(3):732. https://doi.org/10.3390/ijms20030732
Chicago/Turabian StyleDullaart, Robin P. F., Sabrina Pagano, Frank G. Perton, and Nicolas Vuilleumier. 2019. "Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus" International Journal of Molecular Sciences 20, no. 3: 732. https://doi.org/10.3390/ijms20030732
APA StyleDullaart, R. P. F., Pagano, S., Perton, F. G., & Vuilleumier, N. (2019). Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 20(3), 732. https://doi.org/10.3390/ijms20030732