The Role of Metabotropic Glutamate Receptors in Social Behavior in Rodents
Abstract
:1. Introduction
2. Role of mGluRs in Social Interaction
2.1. Behavioral Tests Used to Assess Social Interaction in Rodents
2.2. Effects of Pharmacological Modulation of Group I mGluRs on Social Interaction
2.3. Effects of Pharmacological Modulation of Group II mGluRs on Social Interaction
2.4. Effects of Pharmacological Modulation of Group III mGluRs on Social Interaction
3. Role of mGluRs in Social Memory
3.1. Behavioral Tests Used to Assess Social Memory in Rodents
3.2. Effects of Pharmacological Modulation of mGluRs on Social Memory
4. Role of mGluRs in Male Aggressive Behavior
4.1. Behavioral Tests Used to Assess Aggressive Behavior in Male Rodents
4.2. Effects of Pharmacological Modulation of mGluRs on Male Aggressive Behavior
5. Role of mGluRs in Male Sexual Behavior
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Kim, C.H.; Lee, J.; Lee, J.Y.; Roche, K.W. Metabotropic glutamate receptors: Phosphorylation and receptor signaling. J. Neurosci. Res. 2008, 86, 1–10. [Google Scholar] [CrossRef]
- Willard, S.S.; Koochekpour, S. Glutamate, glutamate receptors, and downstream signaling pathways. Int. J. Biol. Sci. 2013, 9, 948–959. [Google Scholar] [CrossRef]
- Pin, J.P.; Galvez, T.; Prezeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 2003, 98, 325–354. [Google Scholar] [CrossRef]
- Jingami, H.; Nakanishi, S.; Morikawa, K. Structure of the metabotropic glutamate receptor. Curr. Opin. Neurobiol. 2003, 13, 271–278. [Google Scholar] [CrossRef]
- Kunishima, N.; Shimada, Y.; Tsuji, Y.; Sato, T.; Yamamoto, M.; Kumasaka, T.; Nakanishi, S.; Jingami, H.; Morikawa, K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature. 2000, 407, 971–977. [Google Scholar] [CrossRef]
- Francesconi, A.; Duvoisin, R.M. Divalent cations modulate the activity of metabotropic glutamate receptors. J. Neurosci. Res. 2004, 75, 472–479. [Google Scholar] [CrossRef]
- Christopoulos, A.; Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 2002, 54, 323–374. [Google Scholar] [CrossRef]
- Gregory, K.J.; Noetzel, M.J.; Niswender, C.M. Pharmacology of metabotropic glutamate receptor allosteric modulators: Structural basis and therapeutic potential for CNS disorders. Prog. Mol. Biol. Transl. Sci. 2013, 115, 61–121. [Google Scholar]
- Hampson, D.R.; Rose, E.M.; Antflick, J.E. The structures of metabotropic glutamate receptors. In The Glutamate Receptors; Gereau, R.W., Swanson, G.T., Eds.; Humana Press: Totowa, NJ, USA, 2008; pp. 363–386. [Google Scholar]
- Page, G.; Khadir, F.A.; Pain, S.; Barrier, L.; Fauconneau, B.; Guillard, O.; Piriou, A.; Hugon, J. Group I metabotropic glutamate receptors activate the p70S6 kinase via both mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK 1/2) signaling pathways in rat striatal and hippocampal synaptoneurosomes. Neurochem. Int. 2006, 49, 413–421. [Google Scholar] [CrossRef]
- Li, X.M.; Li, C.C.; Yu, S.S.; Chen, J.T.; Sabapathy, K.; Ruan, D.Y. JNK1 contributes to metabotropic glutamate receptor-dependent long-term depression and short-term synaptic plasticity in the mice area hippocampal CA1. Eur. J. Neurosci. 2007, 25, 391–396. [Google Scholar] [CrossRef]
- Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 295–322. [Google Scholar] [CrossRef]
- Iacovelli, L.; Bruno, V.; Salvatore, L.; Melchiorri, D.; Gradini, R.; Caricasole, A.; Barletta, E.; De Blasi, A.; Nicoletti, F. Native group-III metabotropic glutamate receptors are coupled to the mitogen-activated protein kinase/phosphatidylinositol-3-kinase pathways. J. Neurochem. 2002, 82, 216–223. [Google Scholar] [CrossRef]
- Pinheiro, P.S.; Mulle, C. Presynaptic glutamate receptors: Physiological functions and mechanisms of action. Nat. Rev. Neurosci. 2008, 9, 423–436. [Google Scholar] [CrossRef]
- Peterlik, D.; Flor, P.J.; Uschold-Schmidt, N. The emerging role of metabotropic glutamate receptors in the pathophysiology of chronic stress-related disorders. Curr. Neuropharmacol. 2016, 14, 514–539. [Google Scholar] [CrossRef]
- Swanson, C.J.; Bures, M.; Johnson, M.P.; Linden, A.M.; Monn, J.A.; Schoepp, D.D. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat. Rev. Drug Discov. 2005, 4, 131–144. [Google Scholar] [CrossRef]
- Pilc, A.; Chakib, S.; Nowaka, G.; Witkin, J.M. Mood disorders: Regulation by metabotropic glutamatereceptors. Biochem. Pharmacol. 2008, 75, 997–1006. [Google Scholar] [CrossRef]
- Moghaddam, B. Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology (Berl.) 2004, 174, 39–44. [Google Scholar] [CrossRef]
- Conn, P.J.; Lindsley, C.W.; Jones, C. Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol. Sci. 2008, 30, 25–31. [Google Scholar] [CrossRef]
- Oberman, L.M. mGluR antagonists and GABA agonists as novel pharmacological agents for the treatment of autism spectrum disorders. Expert Opin. Investig. Drugs 2012, 21, 1819–1825. [Google Scholar] [CrossRef]
- Lee, H.G.; Zhu, X.; O’Neill, M.J.; Webber, K.; Casadesus, G.; Marlatt, M.; Raina, A.K.; Perry, G.; Smith, M.A. The role of metabotropic glutamate receptors in Alzheimer’s disease. Acta Neurobiol. Exp. 2004, 64, 89–98. [Google Scholar]
- Conn, P.J.; Battaglia, G.; Marino, M.J.; Nicoletti, F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat. Rev. Neurosci. 2005, 6, 787–798. [Google Scholar] [CrossRef]
- Scharf, S.H.; Jaeschke, G.; Wettstein, J.G.; Lindemann, L. Metabotropic glutamate receptor 5 as drug target for Fragile X syndrome. Curr. Opin. Pharmacol. 2015, 20, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G.M.; Godwin, D.W. Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res. 2006, 71, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Bleakman, D.; Alt, A.; Nisenbaum, E.S. Glutamate receptors and pain. Semin. Cell Dev. Biol. 2006, 17, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 1974, 5, 325–383. [Google Scholar] [CrossRef]
- Dryman, M.T.; Heimberg, R.G. Emotion regulation in social anxiety and depression: A systematic review of expressive suppression and cognitive reappraisal. Clin. Psychol. Rev. 2018, 65, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E. Social skills deficits in autism spectrum disorder: Potential biological origins and progress in developing therapeutic agents. CNS Drugs 2018, 32, 713–734. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Van Der Wee, N.; van der Werff, S.; Aghajani, M.; Glennon, J.C.; van Heukelum, S.; Mogavero, F.; Lobo, A.; Olivera, F.J.; Lobo, E.; et al. Social brain, social dysfunction and social withdrawal. Neurosci. Biobehav. Rev. 2018, 97, 10–33. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Bermudez, M.B.; Macedo, M.J.A.; Passos, I.C. Comorbid social anxiety disorder in patients with alcohol use disorder: A systematic review. J. Psychiatr. Res. 2018, 106, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Protic, D.; Rajaratnam, A.; Salcedo-Arellano, M.J.; Aydin, E.Y.; Schneider, A. Fragile X-associated neuropsychiatric disorders (FXAND). Front. Psychiatry 2018, 13, 9–564. [Google Scholar] [CrossRef]
- File, S.E.; Hyde, J.R. Can social interaction be used to measure anxiety? Br. J. Pharmacol. 1978, 62, 19–24. [Google Scholar] [CrossRef]
- Berton, O.; McClung, C.A.; Dileone, R.J.; Krishnan, V.; Renthal, W.; Russo, S.J. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006, 311, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Lukas, M.; Toth, I.; Reber, S.O.; Slattery, D.A.; Veenema, A.H.; Neumann, I.D. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology 2011, 36, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Toth, I.; Neumann, I.D. Animal models of social avoidance and social fear. Cell Tissue Res. 2013, 354, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Landauer, M.R.; Balster, R.L. A new test for social investigation in mice: Effects of d-amphetamine. Psychopharmacology 1982, 78, 322–325. [Google Scholar] [CrossRef]
- Nadler, J.J.; Moy, S.S.; Dold, G.; Trang, D.; Simmons, N.; Perez, A.; Young, N.B.; Barbaro, R.P.; Piven, J.; Magnuson, T.R.; et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav. 2004, 3, 303–314. [Google Scholar] [CrossRef]
- Wee, B.E.; Francis, T.J.; Lee, C.Y.; Lee, J.M.; Dohanich, G.P. Mate preference and avoidance in female rats following treatment with scopolamine. Physiol. Behav. 1995, 58, 97–100. [Google Scholar] [CrossRef]
- Shigemoto, R.; Nakanishi, S.; Mizuno, N. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: An in situ hybridization study in adult and developing rat. J. Comp. Neurol. 1992, 322, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.; Sesma, M.A.; McDonald, C.T.; O’Malley, K.; Van den Pol, A.N.; Olney, J.W. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol. 1995, 355, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Maejima, T.; Hashimoto, K.; Yoshida, T.; Aiba, A.; Kano, M. Presynaptic Inhibition Caused by Retrograde Signal from Metabotropic Glutamate to Cannabinoid Receptors. Neuron 2001, 31, 463–475. [Google Scholar] [CrossRef]
- Kushmerick, C.; Price, G.D.; Taschenberger, H.; Puente, N.; Renden, R.; Wadiche, J.I.; Duvoisin, R.M.; Grandes, P.; von Gersdorff, H. Retroinhibition of presynaptic Ca2+ currents by endocannabinoids released via postsynaptic mGluR activation at a calyx synapse. J. Neurosci. 2004, 24, 5955–5965. [Google Scholar] [CrossRef] [PubMed]
- Awad, H.; Hubert, G.W.; Smith, Y.; Levely, A.I.; Conn, P.J. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J. Neurosci. 2000, 20, 7871–7879. [Google Scholar] [CrossRef] [PubMed]
- Benquet, P.; Gee, C.E.; Gerber, U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J. Neurosci. 2002, 22, 9679–9686. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, S.A.; Jackson, M.F.; Al-Mahrouki, A.; Roder, J.C.; Orser, B.A.; MacDonald, J.F. Co-stimulation of mGluR5 and N-methyl-d-aspartate receptors is required for potentiation of excitatory synaptic transmission in hippocampal neurons. J. Biol. Chem. 2003, 278, 27742–27749. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.C.; Xiao, B.; Naisbitt, S.; Yuan, J.P.; Petralia, R.S.; Brakeman, P.; Doan, A.; Aakalu, V.K.; Lanahan, A.A.; Sheng, M.; et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 1999, 23, 583–592. [Google Scholar] [CrossRef]
- Collett, V.J.; Collingridge, G.L. Interactions between NMDA receptors and mGlu5 receptors expressed in HEK293 cells. Br. J. Pharmacol. 2004, 142, 991–1001. [Google Scholar] [CrossRef]
- Turle-Lorenzo, N.; Breysse, N.; Baunez, C.; Amalric, M. Functional interaction between mGlu 5 and NMDA receptors in a rat model of Parkinson’s disease. Psychopharmacology (Berl.) 2005, 179, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Skeberdis, V.A.; Lan, J.; Opitz, T.; Zheng, X.; Bennett, M.V.; Zukin, R.S. mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology 2001, 40, 856–865. [Google Scholar] [CrossRef]
- Fujii, S.; Sasaki, H.; Mikoshiba, K.; Kuroda, Y.; Yamazaki, Y.; Mostafa Taufiq, A.; Kato, H. A chemical LTP induced by co-activation of metabotropic and N-methyl-d-aspartate glutamate receptors in hippocampal CA1 neurons. Brain Res. 2004, 999, 20–28. [Google Scholar] [CrossRef]
- Jin, D.Z.; Guo, M.L.; Xue, B.; Mao, L.M.; Wang, J.Q. Differential regulation of CaMKIIα interactions with mGluR5 and NMDA receptors by Ca(2+) in neurons. J. Neurochem. 2013, 127, 620–631. [Google Scholar] [CrossRef]
- Heidinger, V.; Manzerra, P.; Wang, X.Q.; Strasser, U.; Yu, S.P.; Choi, D.W.; Behrens, M.M. Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: Mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J. Neurosci. 2002, 22, 5452–5461. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; van den Pol, A.N. Rapid direct excitation and long-lasting enhancement of NMDA response by group I metabotropic glutamate receptor activation of hypothalamic melanin-concentrating hormone neurons. J. Neurosci. 2007, 27, 11560–11572. [Google Scholar] [CrossRef] [PubMed]
- Rosenbrock, H.; Kramer, G.; Hobson, S.; Koros, E.; Grundl, M.; Grauert, M.; Reymann, K.G.; Schröder, U.H. Functional interaction of metabotropic glutamate receptor 5 and NMDA-receptor by a metabotropic glutamate receptor 5 positive allosteric modulator. Eur. J. Pharmacol. 2010, 639, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Choi, J.; Yang, J.; Chung, W.; Kim, J.H.; Paik, S.K.; Kim, K.; Han, S.; Won, H.; Bae, Y.S.; et al. Enhanced NMDA receptor-mediated synaptic transmission, enhanced long-term potentiation, and impaired learning and memory in mice lacking IRSp53. J. Neurosci. 2009, 29, 1586–1595. [Google Scholar] [CrossRef]
- Won, H.; Lee, H.R.; Gee, H.Y.; Mah, W.; Kim, J.I.; Lee, J.; Ha, S.; Chung, C.; Jung, E.S.; Cho, Y.S.; et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 2012, 486, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Billingslea, E.N.; Tatard-Leitman, V.M.; Anguiano, J.; Jutzeler, C.R.; Suh, J.; Saunders, J.A.; Morita, S.; Featherstone, R.E.; Ortinski, P.I.; Gandal, M.J.; et al. Parvalbumin cell ablation of NMDA-R1 causes increased resting network excitability with associated social and self-care deficits. Neuropsychopharmacology 2014, 39, 1603–1613. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.; Choi, S.Y.; Lee, E.; Park, H.; Kang, J.; Park, H.; Choi, Y.; Lee, D.; Park, S.G.; Kim, R.; et al. Social deficits in IRSp53 mutant mice improved by NMDAR and mGluR5 suppression. Nat. Neurosci. 2015, 18, 435–443. [Google Scholar] [CrossRef]
- Chung, C.; Ha, S.; Kang, H.; Lee, J.; Um, S.M.; Yan, H.; Yoo, Y.E.; Yoo, T.; Jung, H.; Lee, D.; et al. Early correction of N-methyl-D-aspartate receptor function improves autistic-like social behaviors in adult Shank2-/- mice. Biol. Psychiatry 2018, 85, 534–543. [Google Scholar] [CrossRef]
- Michalon, A.; Sidorov, M.; Ballard, T.M.; Ozmen, L.; Spooren, W.; Wettstein, J.G.; Jaeschke, G.; Bear, M.F.; Lindemann, L. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 2012, 74, 49–56. [Google Scholar] [CrossRef]
- Tian, D.; Stoppel, L.J.; Heynen, A.J.; Lindemann, L.; Jaeschke, G.; Mills, A.A.; Bear, M.F. Contribution of mGluR5 to pathophysiology in a mouse model of human chromosome 16p11.2 microdeletion. Nat. Neurosci. 2015, 18, 182–184. [Google Scholar] [CrossRef]
- Lindemann, L.; Porter, R.H.; Scharf, S.H.; Kuennecke, B.; Bruns, A.; von Kienlin, M.; Harrison, A.C.; Paehler, A.; Funk, C.; Gloge, A.; et al. Pharmacology of basimglurant (RO4917523, RG7090), a unique mGlu5 negative allosteric modulator in clinical development for depression. J. Pharmacol. Exp. Ther. 2015, 353, 213–233. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Valles, A.; Matta-Camacho, E.; Khoutorsky, A.; Gkogkas, C.; Nader, K.; Lacaille, J.C.; Sonenberg, N. Inhibition of group I metabotropic glutamate receptors reverses autistic-like phenotypes caused by deficiency of the translation repressor eIF4E binding protein 2. J. Neurosci. 2015, 35, 11125–11132. [Google Scholar] [CrossRef]
- Gkogkas, C.G.; Khoutorsky, A.; Ran, I.; Rampakakis, E.; Nevarko, T.; Weatherill, D.B.; Vasuta, C.; Yee, S.; Truitt, M.; Dallaire, P.; et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 2013, 493, 371–377. [Google Scholar] [CrossRef]
- Santini, E.; Huynh, T.N.; MacAskill, A.F.; Carter, A.G.; Pierre, P.; Ruggero, D.; Kaphzan, H.; Klann, E. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 2013, 493, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Modi, M.E.; Brooks, J.M.; Guilmette, E.R.; Beyna, M.; Graf, R.; Reim, D.; Schmeisser, M.J.; Boeckers, T.M.; O’Donnell, P.; Buhl, D.L. Hyperactivity and hypermotivation associated with increased striatal mGluR1 signaling in a Shank2 rat model of autism. Front. Mol. Neurosci. 2018, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Satow, A.; Suzuki, G.; Maehara, S.; Hikichi, H.; Murai, T.; Murai, T.; Kawagoe-Takaki, H.; Hata, M.; Ito, S.; Ozaki, S.; et al. Unique antipsychotic activities of the selective metabotropic glutamate receptor 1 allosteric antagonist 2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one. J. Pharmacol. Exp. Ther. 2009, 330, 179–190. [Google Scholar] [CrossRef]
- Aiba, A.; Chen, C.; Herrup, K.; Rosenmund, C.; Stevens, C.F.; Tonegawa, S. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 1994, 79, 365–375. [Google Scholar] [CrossRef]
- Steckler, T.; Oliveira, A.F.; Van Dyck, C.; Van Craenendonck, H.; Mateus, A.M.; Langlois, X.; Lesage, A.S.; Prickaerts, J. Metabotropic glutamate receptor 1 blockade impairs acquisition and retention in a spatial Water maze task. Behav. Brain Res. 2005, 164, 52–60. [Google Scholar] [CrossRef]
- Gil-Sanz, C.; Delgado-García, J.M.; Fairén, A.; Gruart, A. Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice. Cereb. Cortex. 2008, 18, 1653–1663. [Google Scholar] [CrossRef]
- Balschun, D.; Wetzel, W. Inhibition of mGluR5 blocks hippocampal LTP in vivo and spatial learning in rats. Pharmacol. Biochem. Behav. 2002, 73, 375–380. [Google Scholar] [CrossRef]
- Schachtman, T.R.; Bills, C.; Ghinescu, R.; Murch, C.; Serfozo, P.; Simonyi, A. MPEP, a selective metabotropic glutamate receptor 5 antagonist, attenuates conditioned taste aversion in rats. Behav. Brain Res. 2003, 141, 177–182. [Google Scholar] [CrossRef]
- Campbell, U.C.; Lalwani, K.; Hernandez, L.; Kinney, G.G.; Conn, P.J.; Bristow, L.J. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology 2004, 175, 310–318. [Google Scholar] [CrossRef]
- Homayoun, H.; Stefani, M.R.; Adams, B.W.; Tamagan, G.D.; Moghaddam, B. Functional interaction between NMDA and mGlu5 receptors: Effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology 2004, 29, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.L.; Tolu, S.S.; Barkan, C.L.; Crawley, J.N. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 2010, 35, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Lee, D.K.; Go, H.S.; Kim, P.; Choi, C.S.; Kim, J.W.; Jeon, S.J.; Song, M.R.; Shin, C.Y. Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol. 2014, 49, 512–528. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.H.; Wang, Y.H.; Sun, L.H.; Deng, W.T.; Lee, H.T.; Yu, L. mGluR5 upregulation and the effects of repeated methamphetamine administration and withdrawal on the rewarding efficacy of ketamine and social interaction. Toxicol. Appl. Pharmacol. 2018, 360, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Burket, J.A.; Herndon, A.L.; Winebarger, E.E.; Jacome, L.F.; Deutsch, S.I. Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: Possible implications for the pharmacotherapy of autism spectrum disorders. Brain Res. Bull. 2011, 86, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.L.; Smith, D.G.; Rizzo, S.J.; Karras, M.N.; Turner, S.M.; Tolu, S.S.; Bryce, D.K.; Smith, D.L.; Fonseca, K.; Ring, R.H.; et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci. Transl. Med. 2012, 4, 131ra51. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Chen, C.Y.; Cheng, S.J.; Hu, H.T.; Hsueh, Y.P. Sarm1 deficiency impairs synaptic function and leads to behavioral deficits, which can be ameliorated by an mGluR allosteric modulator. Front. Cell. Neurosci. 2014, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Bara, A.; Manduca, A.; Bernabeu, A.; Borsoi, M.; Serviado, M.; Lassalle, O.; Murphy, M.; Wager-Miller, J.; Mackie, K.; Pelissier-Alicot, A.L.; et al. Sex-dependent effects of in utero cannabinoid exposure on cortical function. Elife 2018, 7, e36234. [Google Scholar] [CrossRef]
- Wierońska, J.M.; Kłeczek, N.; Woźniak, M.; Gruca, P.; Łasoń-Tyburkiewicz, M.; Papp, M.; Brański, P.; Burnat, G.; Pilc, A. mGlu5-GABAB interplay in animal models of positive, negative and cognitive symptoms of schizophrenia. Neurochem. Int. 2015, 88, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.A.; Arnold, M.B.; Wheeler, W.J.; Ornstein, P.L.; Schoepp, D.D. [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain. J. Pharmacol. Exp. Ther. 2001, 298, 453–460. [Google Scholar]
- Matosin, N.; Fernandez-Enright, F.; Frank, E.; Deng, C.; Wong, J.; Huang, X.F.; Newell, K.A. Metabotropic glutamate receptor mGluR2/3 and mGluR5 binding in the anterior cingulate cortex in psychotic and nonpsychotic depression, bipolar disorder and schizophrenia: Implications for novel mGluR-based therapeutics. J. Psychiatry Neurosci. 2014, 39, 407–416. [Google Scholar] [CrossRef]
- Petralia, R.S.; Wang, Y.X.; Niedzielski, A.S.; Wenthold, R.J. The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 1996, 71, 949–976. [Google Scholar] [CrossRef]
- Tamaru, Y.; Nomura, S.; Mizuno, N.; Shigemoto, R. Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: Differential location relative to pre- and postsynaptic sites. Neuroscience 2001, 106, 481–503. [Google Scholar] [CrossRef]
- Xi, D.; Li, Y.C.; Snyder, M.A.; Gao, R.Y.; Adelman, A.E.; Zhang, W.; Shumsky, J.S.; Gao, W.J. Group II metabotropic glutamate receptor agonist ameliorates MK801-induced dysfunction of NMDA receptors via the Akt/GSK-3beta pathway in adult rat prefrontal cortex. Neuropsychopharmacology 2011, 36, 1260–1274. [Google Scholar] [CrossRef] [PubMed]
- Trepanier, C.; Lei, G.; Xie, Y.F.; MacDonald, J.F. Group II metabotropic glutamate receptors modify N-methyl-D-aspartate receptors via Src kinase. Sci. Rep. 2013, 3, 926. [Google Scholar] [CrossRef] [PubMed]
- Linden, A.M.; Shannon, H.; Baez, M.; Yu, J.L.; Koester, A.; Schoepp, D.D. Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice. Psychopharmacology 2005, 179, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Linden, A.M.; Baez, M.; Bergeron, M.; Schoepp, D.D. Effects of mGlu2 or mGlu3 receptor deletions on mGlu2/3 receptor agonist (LY354740)-induced brain c-Fos expression: Specific roles for mGlu2 in the amygdala and subcortical nuclei, and mGlu3 in the hippocampus. Neuropharmacology 2006, 51, 213–228. [Google Scholar] [CrossRef]
- Shekhar, A.; Keim, S.R. LY354740, a potent group II metabotropic glutamate receptor agonist prevents lactate-induced panic-like response in panic-prone rats. Neuropharmacology 2000, 39, 1139–1146. [Google Scholar] [CrossRef]
- Chan, M.H.; Tsai, Y.L.; Lee, M.Y.; Stoker, A.K.; Markou, A.; Chen, H.H. The group II metabotropic glutamate receptor agonist LY379268 reduces toluene-induced enhancement of brain-stimulation reward and behavioral disturbances. Psychopharmacology 2015, 232, 3259–3268. [Google Scholar] [CrossRef] [PubMed]
- Matrisciano, F.; Tueting, P.; Maccari, S.; Nicoletti, F.; Guidotti, A. Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology 2012, 37, 929–938. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Iegaki, N.; Fu, K.; Ishikawa, Y.; Sumi, K.; Azuma, S.; Uno, K.; Muramatsu, S.I.; Nitta, A. Striatal N-acetylaspartate synthetase Shati/Nat8l regulates depression-like behaviors via mGluR3-mediated serotonergic suppression in mice. Int. J. Neuropsychopharmacol. 2017, 20, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Chaki, S.; Yoshikawa, R.; Hirota, S.; Shimazaki, T.; Maeda, M.; Kawashima, N.; Yoshimizu, T.; Yasuhara, A.; Sakagami, K.; Okuyama, S.; et al. MGS0039: A potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology 2004, 46, 457–467. [Google Scholar] [CrossRef]
- Corti, C.; Aldegheri, L.; Somogyi, P.; Ferraguti, F. Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 2002, 110, 403–420. [Google Scholar] [CrossRef]
- Kinoshita, A.; Shigemoto, R.; Ohishi, H.; van der Putten, H.; Mizuno, N. Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: A light and electron microscopic study. J. Comp. Neurol. 1998, 393, 332–352. [Google Scholar] [CrossRef]
- Shigemoto, R.; Kinoshita, A.; Wada, E.; Nomura, S.; Ohishi, H.; Takada, M.; Flor, P.J.; Neki, A.; Abe, T.; Nakanishi, S.; et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 1997, 17, 7503–7522. [Google Scholar] [CrossRef] [PubMed]
- Lavreysen, H.; Dautzenberg, F.M. Therapeutic potential of group III metabotropic glutamate receptors. Curr. Med. Chem. 2008, 15, 671–684. [Google Scholar] [CrossRef]
- Mercier, M.S.; Lodge, D. Group III metabotropic glutamate receptors: Pharmacology, physiology and therapeutic potential. Neurochem. Res. 2014, 39, 1876–1894. [Google Scholar] [CrossRef]
- Becker, J.A.; Clesse, D.; Spiegelhalter, C.; Schwab, Y.; Le Merrer, J.; Kieffer, B.L. Autistic-like syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity. Neuropsychopharmacology 2014, 39, 2049–2060. [Google Scholar] [CrossRef]
- Woźniak, M.; Acher, F.; Marciniak, M.; Lasoń-Tyburkiewicz, M.; Gruca, P.; Papp, M.; Pilc, A.; Wierońska, J.M. Involvement of GABAB Receptor Signaling in Antipsychotic-like Action of the Novel Orthosteric Agonist of the mGlu4 Receptor, LSP4-2022. Curr. Neuropharmacol. 2016, 14, 413–426. [Google Scholar] [CrossRef]
- Sławińska, A.; Wierońska, J.M.; Stachowicz, K.; Marciniak, M.; Lasoń-Tyburkiewicz, M.; Gruca, P.; Papp, M.; Kusek, M.; Tokarski, K.; Doller, D.; et al. The antipsychotic-like effects of positive allosteric modulators of metabotropic glutamate mGluR4 receptors in rodents. Br. J. Pharmacol. 2013, 169, 1824–1839. [Google Scholar] [CrossRef] [PubMed]
- Wierońska, J.M.; Sławińska, A.; Łasoń-Tyburkiewicz, M.; Gruca, P.; Papp, M.; Zorn, S.H.; Doller, D.; Kłeczek, N.; Noworyta-Sokołowska, K.; Gołembiowska, K.; et al. The antipsychotic-like effects in rodents of the positive allosteric modulator Lu AF21934 involve 5-HT1A receptor signaling: Mechanistic studies. Psychopharmacology 2015, 232, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, P.; Woźniak, M.; Rook, J.M.; Tantawy, M.N.; Conn, P.J.; Acher, F.; Tokarski, K.; Kusek, M.; Pilc, A.; Wierońska, J.M. Mutual activation of glutamatergic mGlu4 and muscarinic M4 receptors reverses schizophrenia-related changes in rodents. Psychopharmacology 2018, 235, 2897–2913. [Google Scholar] [CrossRef] [PubMed]
- Duvoisin, R.M.; Villasana, L.; Davis, M.J.; Winder, D.G.; Raber, J. Opposing roles of mGluR8 in measures of anxiety involving non-social and social challenges. Behav. Brain Res. 2011, 221, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, G.; Tsukamoto, N.; Fushiki, H.; Kawagishi, A.; Nakamura, M.; Kurihara, H.; Mitsuya, M.; Ohkubo, M.; Ohta, H. In vitro pharmacological characterization of novel isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. J. Pharmacol. Exp. Ther. 2007, 323, 147–156. [Google Scholar] [CrossRef]
- Kalinichev, M.; Rouillier, M.; Girard, F.; Royer-Urios, I.; Bournique, B.; Finn, T.; Charvin, D.; Campo, B.; Le Poul, E.; Mutel, V.; et al. ADX71743, a potent and selective negative allosteric modulator of metabotropic glutamate receptor 7: In vitro and in vivo characterization. J. Pharmacol. Exp. Ther. 2013, 344, 624–636. [Google Scholar] [CrossRef]
- Cieślik, P.; Woźniak, M.; Kaczorowska, K.; Brański, P.; Burnat, G.; Chocyk, A.; Bobula, B.; Gruca, P.; Litwa, E.; Pałucha-Poniewiera, A.; et al. Negative allosteric modulators of mGlu7 receptor as putative antipsychotic drugs. Front. Mol. Neurosci. 2018, 11, 316. [Google Scholar] [CrossRef]
- Spooren, W.P.; Vassout, A.; Neijt, H.C.; Kuhn, R.; Gasparini, F.; Roux, S.; Porsolt, R.D.; Gentsch, C. Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J. Pharmacol. Exp. Ther. 2000, 295, 1267–1275. [Google Scholar]
- Koros, E.; Rosenbrock, H.; Birk, G.; Weiss, C.; Sams-Dodd, F. The selective mGlu5 receptor antagonist MTEP, similar to NMDA receptor antagonists, induces social isolation in rats. Neuropsychopharmacology 2007, 32, 562–576. [Google Scholar] [CrossRef]
- Hikichi, H.; Murai, T.; Okuda, S.; Maehara, S.; Satow, A.; Ise, S.; Nishino, M.; Suzuki, G.; Takehana, H.; Hata, M.; et al. Effects of a novel metabotropic glutamate receptor 7 negative allosteric modulator, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one (MMPIP), on the central nervous system in rodents. Eur. J. Pharmacol. 2010, 639, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Halpin, Z.T. Individual odors among mammals: Origins and functions. Adv. Study Behav. 1986, 16, 39–70. [Google Scholar]
- Hurst, J.L.; Fang, J.; Barnard, C. The role of substrate odours in maintaining social tolerance between male house mice, Mus musculus domesticus: Relatedness, incidental kinship effects and the establishment of social status. Anim. Behav. 1994, 48, 157–167. [Google Scholar] [CrossRef]
- Carr, W.J.; Yee, L.; Gable, D.; Marasco, E. Olfactory recognition of conspecifics by domestic Norway rats. J. Comp. Physiol. Psychol. 1976, 90, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Thor, D.H.; Holloway, W.R. Persistence of social investigatory behavior in the male rat: Evidence for long-term memory of initial copulatory experience. Anim. Learn. Behav. 1981, 9, 561–565. [Google Scholar] [CrossRef]
- Ferguson, J.; Young, L.; Hearn, E.F.; Matzuk, M.M.; Insel, T.R.; Winslow, J.T. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 2000, 25, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, T.; Kaku, A.; Chaki, S. Blockade of the metabotropic glutamate 2/3 receptors enhances social memory via the AMPA receptor in rats. Eur. J. Pharmacol. 2007, 575, 94–97. [Google Scholar] [CrossRef]
- Hikichi, H.; Kaku, A.; Karasawa, J.; Chaki, S. Stimulation of metabotropic glutamate (mGlu) 2 receptor and blockade of mGlu1 receptor improve social memory impairment elicited by MK-801 in rats. J. Pharmacol. Sci. 2013, 122, 10–16. [Google Scholar] [CrossRef]
- Engelmann, M.; Wotjak, C.; Landgraf, R. Social discrimination procedure: An alternative method to investigate juvenile recognition abilities in rats. Physiol. Behav. 1995, 58, 315–321. [Google Scholar] [CrossRef]
- Clifton, N.E.; Morisot, N.; Girardon, S.; Millan, M.J.; Loiseau, F. Enhancement of social novelty discrimination by positive allosteric modulators at metabotropic glutamate 5 receptors: Adolescent administration prevents adult-onset deficits induced by neonatal treatment with phencyclidine. Psychopharmacology 2013, 225, 579–594. [Google Scholar] [CrossRef]
- Harich, S.; Gross, G.; Bespalov, A. Stimulation of the metabotropic glutamate 2/3 receptor attenuates social novelty discrimination deficits induced by neonatal phencyclidine treatment. Psychopharmacology 2007, 192, 511–519. [Google Scholar] [CrossRef]
- Nakatani-Pawlak, A.; Yamaguchi, K.; Tatsumi, Y.; Mizoguchi, H.; Yoneda, Y. Neonatal phencyclidine treatment in mice induces behavioral, histological and neurochemical abnormalities in adulthood. Biol. Pharm. Bull. 2009, 32, 1576–1583. [Google Scholar] [CrossRef]
- Ellison, G. The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res. Brain Res. Rev. 1995, 20, 250–267. [Google Scholar] [CrossRef]
- Hikichi, H.; Hiyoshi, T.; Marumo, T.; Tomishima, Y.; Kaku, A.; Iida, I.; Urabe, H.; Tamita, T.; Yasuhara, A.; Karasawa, J.; et al. Antipsychotic profiles of TASP0443294, a novel and orally active positive allosteric modulator of metabotropic glutamate 2 receptor. J. Pharmacol. Sci. 2015, 127, 352–361. [Google Scholar] [CrossRef]
- Takahashi, A.; Miczek, K.A. Neurogenetics of aggressive behavior: Studies in rodents. Curr. Top. Behav. Neurosci. 2014, 17, 3–44. [Google Scholar]
- Navarro, J.F.; Postigo, D.; Martín, M.; Burón, E. Antiaggressive effects of MPEP, a selective antagonist of mGlu5 receptors, in agonistic interactions between male mice. Eur. J. Pharmacol. 2006, 551, 67–70. [Google Scholar] [CrossRef]
- Ago, Y.; Araki, R.; Tanaka, T.; Sasaga, A.; Nishiyama, S.; Takuma, K.; Matsuda, T. Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice. Neuropsychopharmacology 2013, 38, 1535–1547. [Google Scholar] [CrossRef]
- Newman, E.L.; Chu, A.; Bahamón, B.; Takahashi, A.; Debold, J.F.; Miczek, K.A. NMDA receptor antagonism: Escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology 2012, 224, 167–177. [Google Scholar] [CrossRef]
- Masugi-Tokita, M.; Flor, P.J.; Kawata, M. Metabotropic glutamate receptor subtype 7 in the bed nucleus of the stria terminalis is essential for intermale aggression. Neuropsychopharmacology 2016, 41, 726–735. [Google Scholar] [CrossRef]
- Navarro, J.F.; De Castro, V.; Martín-López, M. JNJ16259685, a selective mGlu1 antagonist, suppresses isolation-induced aggression in male mice. Eur. J. Pharmacol. 2008, 586, 217–220. [Google Scholar] [CrossRef]
- Navarro, J.F.; de Castro, V.; Martín-López, M. Behavioural profile of selective ligands for mGlu7 and mGlu8 glutamate receptors in agonistic encounters between mice. Psicothema 2009, 21, 475–479. [Google Scholar]
- Navarro, J.F.; de Castro, V.; Martín-López, M. Effects of (RS)-3,4-DCPG, a mixed AMPA antagonist/mGluR8 agonist, on aggressive behavior in mice. Rev. Psiquiatr Salud Ment. 2009, 2, 133–137. [Google Scholar] [CrossRef]
- Melis, M.R.; Argiolas, A. Dopamine and sexual behavior. Neurosci. Biobehav. Rev. 1995, 19, 19–38. [Google Scholar] [CrossRef]
- Barrett, A.C.; Miller, J.R.; Dohrmann, J.M.; Caine, S.B. Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology 2004, 47 (Suppl. 1), 256–273. [Google Scholar] [CrossRef]
- Lile, J.A.; Morgan, D.; Birmingham, A.M.; Davies, H.M.; Nader, M.A. Effects of the dopamine reuptake inhibitor PTT on reinstatement and on food- and cocaine-maintained responding in rhesus monkeys. Psychopharmacology 2004, 174, 246–253. [Google Scholar] [CrossRef]
- Hull, E.M.; Dominguez, J.M. Sexual behavior in male rodents. Horm. Behav. 2007, 52, 45–55. [Google Scholar] [CrossRef]
- Agmo, A. Male rat sexual behavior. Brain Res. Brain Res. Protoc. 1997, 1, 203–209. [Google Scholar] [CrossRef]
- Li, X.; Higley, A.; Song, R.; Xi, Z.X. Effects of metabotropic glutamate receptor ligands on male sexual behavior in rats. Neuropharmacology 2013, 66, 373–381. [Google Scholar] [CrossRef]
- Seredynski, A.L.; Balthazart, J.; Ball, G.F.; Cornil, C.A. Estrogen receptor β activation rapidly modulates male sexual motivation through the transactivation of metabotropic glutamate receptor 1a. J. Neurosci. 2015, 35, 13110–13123. [Google Scholar] [CrossRef]
- Meitzen, J.; Mermelstein, P.G. Estrogen receptors stimulate brain region specific metabotropic glutamate receptors to rapidly initiate signal transduction pathways. J. Chem. Neuroanat. 2011, 42, 236–241. [Google Scholar] [CrossRef]
- Hughes, Z.A.; Neal, S.J.; Smith, D.L.; Sukoff Rizzo, S.J.; Pulicicchio, C.M.; Lotarski, S.; Lu, S.; Dwyer, J.M.; Brennan, J.; Olsen, M.; et al. Negative allosteric modulation of metabotropic glutamate receptor 5 results in broad spectrum activity relevant to treatment resistant depression. Neuropharmacology 2013, 66, 202–214. [Google Scholar] [CrossRef]
- Pitchers, K.K.; Di Sebastiano, A.R.; Coolen, L.M. mGluR5 activation in the nucleus accumbens is not essential for sexual behavior or cross-sensitization of amphetamine responses by sexual experience. Neuropharmacology 2016, 107, 122–130. [Google Scholar] [CrossRef]
Action | Drug | Species | Behavioral Test | Dose Used | Behavioral Change | References |
---|---|---|---|---|---|---|
mGluR1 antagonist | JNJ16259685 | Shank2 KO rats | three-chambered SAT and SIT | 0.63 mg/kg, s.c. 30 min before test | Did not improve social impairments | [66] |
Eif4ebp2(-/-) mice | three-chambered SAT | 0.3 mg/kg, i.p. 30 min before test | Increased sniffing of social stimulus and time in social compartment | [63] | ||
C57BL/6J mice | three-chambered SAT | 0.3 and 1 mg/kg, i.p. 30 min before test | 1 mg/kg but not 0.3 mg/kg reduced time in social compartment | [63] | ||
mGluR1 antagonist | CFMTI | Sprague-Dawley rats | SIT | 3 and 10 mg/kg, p.o. 30 min before test, 4 h after MK-801 | Reduced MK-801-induced deficits in social interaction | [67] |
mGluR5 antagonist | fenobam | Eif4ebp2(-/-) mice | three-chambered SAT | 3 mg/kg, i.p. 30 min before test | Increased sniffing of social stimulus and time in social compartment | [63] |
C57BL/6J mice | three-chambered SAT | 3 and 10 mg/kg, i.p. 30 min before test | 10 mg/kg but not 3 mg/kg reduced time in social compartment | [63] | ||
mGluR5 antagonist | MPEP | BTBR T+tf/J mice | three-chambered SAT | 1, 10 and 30 mg/kg, i.p. 30 min before test | Only 30 mg/kg increased sniffing of social stimulus, but did not change time in social compartment | [75] |
IRSp53(-/-) mice | three-chambered SAT | 10 and 30 mg/kg, i.p. 10 min before test | 30 mg/kg but not 10 mg/kg increased sniffing of social stimulus and time in social compartment | [58] | ||
Prenatally VPA-treated rats | three-chambered SAT | 30 mg/kg, i.p. 30 min before test | Increased social preference | [76] | ||
Balb/c mice | three-chambered SAT | 30 mg/kg, i.p. 20 min before test | Increased sniffing of social stimulus, but unchanged time in social compartment | [78] | ||
Swiss Webster mice | three-chambered SAT | 30 mg/kg, i.p. 20 min before test | Decreased sniffing of social stimulus, but did not change time in social compartment | [78] | ||
Lister Hooded rats | SIT | 0.3, 1 and 10 mg/kg, p.o. 1 h before test | 0.3 and 1 mg/kg but not 10 mg/kg increased social investigation | [110] | ||
mGluR5 antagonist | MTEP | Wistar rats | SIT | 1, 3 and 10 mg/kg, i.p. 60 min before test | 3 and 10 mg/kg but not 1 mg/kg decreased social interaction | [111] |
mGluR5 PAM | CDPPB | Wistar rats | SIT | 0.75 mg/kg, i.p. 30 min before test | Normalized social interaction deficits induced by prenatal cannabinoid exposure | [81] |
Wistar rats | SIT | 0.25, 0.5 and 1 mg/kg before test, 3.5 h after MK-801 | Reduced MK-801-induced deficits in social interaction | [82] | ||
Sarm1 KO mice | SIT | 10 mg/kg, i.p 6 h before test | Decreased freezing during social interaction | [80] | ||
Shank2 KO mice | SIT and three-chambered SAT | 3 and 10 mg/kg, i.p. 30 min before test | 10 mg/kg but not 3 mg/kg increased sniffing of social stimulus | [56] | ||
mGluR5 NAM | GRN-529 | BTBR T+tf/J mice | three-chambered SAT | 0.3, 1 and 3 mg/kg, i.p. 30 min before test | Increased sniffing of social stimulus (all doses) and time in social compartment (only 3 mg/kg) | [79] |
mGluR2/3 agonist | LY354740 | Sprague-Dawley rats | SIT | 0.3 and 0.6 mg/kg, i.p. 1 h before lactate | Decreased (0.3 mg/kg) and blocked (0.6 mg/kg) lactate-induced decrease in social interaction | [91] |
mGluR2/3 agonist | LY379268 | NMRI mice | SIT | 250, 500 and 750 mg/kg, i.p. 30 min before toluene, 30 min before test | Only 750 mg/kg normalized toluene-induced deficits in social interaction | [92] |
Mice | SIT | 0.5 mg/kg, i.p. for 5 days, twice per day | Increased social interaction in unstressed mice and in mice prenatally exposed to repeated episodes of restraint stress | [93] | ||
mGluR2/3 antagonist | LY341495 | dS-Shati/Nat8l mice | three-chambered SAT | 0.3 mg/kg, i.p. 30 min before test | Increased time in social compartment | [94] |
mGluR2/3 antagonist | MGS0039 | Sprague-Dawley rats | SIT | 0.3, 1 and 3 mg/kg, i.p. 1 h before test | Did not affect social interaction | [95] |
mGluR4 agonist | LSP4-2022 | Wistar rats | SIT | 0.5, 1 and 2 mg/kg, i.p. 45 min before test, 1 h 45 min after MK-801 | Reduced MK-801-induced social interaction deficits | [102] |
Swiss Webster mice | SIT | 0.1, 0.5 and 1 mg/kg, i.p. 45 min before MK-801, 10 min before test | 1 mg/kg but not 0.1 and 0.5 mg/kg prevented MK-801-induced social interaction deficits | [105] | ||
mGluR4 PAM | Lu AF21934 | Wistar rats | SIT | 0.2, 0.5 and 1 mg/kg, s.c. 60 min before test, 2.5 h after MK-801 | 0.5 mg/kg but not 0.2 and 1 mg/kg reversed MK-801-induced social interaction deficits | [103,104] |
mGluR4 PAM | Lu AF32615 | Wistar rats | SIT | 2, 5 and 10 mg/kg, s.c. 60 min before test, 2.5 h after MK-801 | 10 mg/kg but not 2 and 5 mg/kg reversed MK-801-induced social interaction deficits | [103] |
mGluR4 PAM | VU0155041 | Oprm1-/- mice | SIT | 5 mg/kg, i.p. for 8 days | Normalized social interaction deficits | [101] |
mGluR7 NAM | ADX71743 | Swiss mice | SIT | 1, 5 and 15 mg/kg, i.p. 30 min before MK-801, 30 min before test | 5 and 15 mg/kg but not 1 mg/kg prevented MK-801-induced social interaction deficits | [109] |
mGluR7 NAM | MMPIP | Swiss mice | SIT | 5, 10 and 15 mg/kg, i.p. 30 min before MK-801, 30 min before test | Did not prevent MK-801-induced social interaction deficits | [109] |
Sprague-Dawley rats | SIT | 3, 10 and 30 mg/kg, i.p. 30 min before test | 30 mg/kg but not 3 and 10 mg/kg decreased social interaction | [112] | ||
mGluR8 PAM | AZ12216052 | C57BL/6J mice | SIT | 10 mg/kg, i.p. 2 h before test | Did not affect social interaction | [106] |
Action | Drug | Species | Behavioral Test | Dose Used | Behavioral Change | References |
---|---|---|---|---|---|---|
mGluR1 antagonist | JNJ16259685 | Sprague-Dawley rats | SRT with one stimulus, 30 min IEI | 0.3 and 1 mg/kg, i.p. 90 min before MK-801, 60 min before test | Reversed MK-801-induced social memory impairment | [119] |
mGluR5 PAM | ADX47273 | Wistar rats | SD, 30 min IEI | 0.16, 0.63, 2.5 and 10 mg/kg, i.p. 30 min before test | 2.5 mg/kg but not 0.16, 0.63 and 10 mg/kg enhanced social discrimination | [121] |
0.16, 0.63 and 2.5 mg/kg/day, i.p. postnatal days 35–46 | 2.5 mg/kg but not 0.16 and 0.63 mg/kg reversed social memory impairment in neonatally PCP-treated adult rats | |||||
mGluR5 PAM | CDPPB | Wistar rats | SD, 30 min IEI | 0.16, 2.5, 10 and 40 mg/kg, i.p. 30 min before test | 2.5 and 10 mg/kg but not 0.16 and 40 mg/kg enhanced social discrimination | [121] |
10 mg/kg, i.p. 15 min before MK-801, 45 min before test | Attenuated MK-801-induced social memory impairment | |||||
0.63, 2.5 and 10 mg/kg/day, i.p. postnatal days 35–46 | 10 mg/kg but not 0.63 and 2.5 mg/kg reversed social memory impairment in neonatally PCP-treated adult rats | |||||
mGluR2 PAM | BINA | Sprague-Dawley rats | SRT with one stimulus, 30 min IEI | 10 and 30 mg/kg, i.p. 90 min before MK-801, 60 min before test | 30 mg/kg but not 10 mg/kg reversed MK-801-induced social memory impairment; effect blocked by pretreatment with the mGluR2/3 antagonist LY341495 (3 mg/kg, i.p.) | [119] |
mGluR2 PAM | LY487379 | Wistar rats | SD—30 min with one stimulus, last 5 min with two stimuli | 3, 10 and 30 mg/kg, i.p. 30 min before test | 10 and 30 mg/kg increased preference for social novelty in neonatally PCP-treated adult rats | [122] |
mGluR2 PAM | TASP0443294 | Sprague-Dawley rats | SRT with 1 stimulus, 30 min IEI | 10 and 30 mg/kg, p.o. 2 h before MK-801, 30 min before test | 30 mg/kg but not 10 mg/kg prevented MK-801-induced social memory impairment | [125] |
mGluR2/3 agonist | LY354740 | Wistar rats | SD—30 min with one stimulus, last 5 min with two stimuli | 1, 3 and 10 mg/kg, i.p. 30 min before test | Increased preference for social novelty in neonatally PCP-treated adult rats | [122] |
mGluR2/3 agonist | LY379268 | Sprague-Dawley rats | SRT with one stimulus, 30 min IEI | 0.3 and 1 mg/kg, s.c. 90 min before MK-801, 60 min before test | 1 mg/kg but not 0.3 mg/kg reversed MK-801-induced social memory impairment | [119] |
mGluR2/3 antagonist | MGS0039 | Sprague-Dawley rats | SRT with one stimulus, 30 min IEI | 0.3, 1 and 3 mg/kg, i.p. immediately after learning session | 1 and 3 mg/kg but not 0.3 mg/kg enhanced social recognition | [118] |
Action | Drug | Species | Behavioral Test | Dose Used | Behavioral Change | References |
---|---|---|---|---|---|---|
mGluR1 antagonist | JNJ16259685 | OF.1 mice | Standard opponent test | 0.125, 0.25, 0.5, 1, 2, 4 and 8 mg/kg, i.p. 30 min before test | All doses reduced isolation-induced aggressive behavior (threat and attack) | [131] |
mGluR5 antagonist | MPEP | OF.1 mice | Standard opponent test | 5, 10, 15, 20 and 25 mg/kg, i.p. 30 min before test | Increased social investigation and decreased aggression (threat and attack) | [127] |
mGluR5 antagonist | MTEP | Swiss Webster mice | Resident-intruder test | 1, 3 and 5.6 mg/kg, i.p. 10–30 min before test | Reduced attack bite frequency | [129] |
mGluR2/3 agonist | LY379268 | Swiss Webster mice | Resident-intruder test | 0.3, 1 and 3 mg/kg, i.p. 10–30 min before test | 3 mg/kg but not 0.3 and 1 mg/kg reduced attack bite frequency | [129] |
ddY mice | Resident-intruder test | 1 mg/kg, i.p. 60 min before test | Reduced isolation-induced aggressive behavior | [128] | ||
mGluR7 agonist | AMN082 | OF.1 mice | Standard opponent test | 0.5, 1, 2 and 4 mg/kg i.p. 60 min before test | 4 mg/kg decreased aggression (threat and attack) but did not affect social investigation | [132] |
mGluR7 antagonist | MMPIP | C57BL/6N mice | Resident-intruder test | 0.25 μL (5 μg/μL) in BNST | Decreased inter-male aggression | [130] |
mGluR8 agonist | (S)-3,4-DCPG | OF.1 mice | Standard opponent test | 2.5, 5 and 10 mg/kg i.p. 30 min before test | Did not affect aggressive behavior or social investigation | [132] |
mGluR8 agonist and AMPAR antagonist | (RS)-3,4-DCPG | OF.1 mice | Standard opponent test | 5, 10 and 20 mg/kg, i.p. 30 min before test | Did not affect aggressive behavior or social investigation | [133] |
Action | Drug | Species | Dose Used | Behavioral Change | References |
---|---|---|---|---|---|
mGluR1 antagonist | LY367385 | Japanese quail | 100 μg, i.c.v, 30 min before test | Inhibited sexual motivation | [140] |
mGluR5 antagonist | MPEP | Japanese quail | 100 μg, i.c.v, 30 min before test | Did not affect sexual motivation | [140] |
Wistar rats | 1 or 10 μg/μL, Nac, 15 min before test | Did not affect sexual behavior | [143] | ||
Sprague-Dawley rats | 10 mg/kg, i.p. for 14 days | Did not affect sexual behavior (number of erections within 30 min) | [142] | ||
Long-Evans rats | 10 and 20 mg/kg, i.p. 1 and 2 h before mating | Decreased sex-seeking behavior and inhibited sexual behavior at high doses | [139] | ||
mGluR5 antagonist | MTEP | Wistar rats | 1 μg/μL, Nac, 15 min before test | Did not affect sexual behavior | [143] |
Sprague-Dawley rats | 10 mg/kg, i.p. for 14 days | Did not affect sexual behavior (number of erections within 30 min) | [142] | ||
mGluR5 NAM | GRN-529 | Sprague-Dawley rats | 1 and 10 mg/kg, i.p. for 14 days | Did not affect sexual behavior (number of erections within 30 min) | [142] |
mGluR2/3 agonist | LY379268 | Long-Evans rats | 1 and 3 mg/kg, i.p. 1 and 2 h before mating | Did not affect sex-seeking behavior | [139] |
mGluR2/3 antagonist | LY341495 | Japanese quail | 100 μg, i.c.v, 30 min before test | Did not affect sexual motivation and sexual performance | [140] |
mGluR7 agonist | AMN082 | Long-Evans rats | 3, 10 and 20 mg/kg, i.p. 1 and 2 h before mating | Decreased sex-seeking behavior and inhibited sexual behavior at high doses | [139] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoicas, I.; Kornhuber, J. The Role of Metabotropic Glutamate Receptors in Social Behavior in Rodents. Int. J. Mol. Sci. 2019, 20, 1412. https://doi.org/10.3390/ijms20061412
Zoicas I, Kornhuber J. The Role of Metabotropic Glutamate Receptors in Social Behavior in Rodents. International Journal of Molecular Sciences. 2019; 20(6):1412. https://doi.org/10.3390/ijms20061412
Chicago/Turabian StyleZoicas, Iulia, and Johannes Kornhuber. 2019. "The Role of Metabotropic Glutamate Receptors in Social Behavior in Rodents" International Journal of Molecular Sciences 20, no. 6: 1412. https://doi.org/10.3390/ijms20061412
APA StyleZoicas, I., & Kornhuber, J. (2019). The Role of Metabotropic Glutamate Receptors in Social Behavior in Rodents. International Journal of Molecular Sciences, 20(6), 1412. https://doi.org/10.3390/ijms20061412