Hyaluronic Acid Combined with Serum Rich in Growth Factors in Corneal Epithelial Defects
Abstract
:1. Introduction
2. Results
2.1. In Vitro Proliferation Assays in Rabbit Primary Corneal Epithelial Cells and Human Corneal Epithlial Cultures
2.2. In Vitro Scratch Wound-Healing Assays in RPCE and HCE Cultures
2.3. In Vivo Corneal Re-Epithelialization Assay in a Rabbit Animal Model
2.4. Immunohistochemical Analyses of the Epithelial Differentiation, Proliferation, Adhesion, and Fibrosis of the Re-Epithelialized Corneas
3. Discussion
4. Materials and Methods
4.1. Ethics Statements
4.2. Isolation and Expansion of Rabbit Primary Corneal Epithelial (RPCE) Cultures
4.3. Human Corneal Epithelial (HCE) Cell Line Culture
4.4. s-PRGF Preparation
4.5. Bioadhesive (Hyaluronic Acid) Preparation
4.6. In Vitro and In Vivo Treatments
4.7. Cell Proliferation Assays
4.8. In Vitro Wound Healing Assays
4.9. In Vivo Rabbit Corneal Re-Epithelialization Assays
4.10. Immunocytochemistry and Histochemical Analysis
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HA | Hyaluronic acid |
HaNA | Sodium hyaluronate |
PRP | Platelet Rich Plasma |
s-PRGF | Serum derived from Plasma Rich in Growth Factors |
HCE | Human Corneal Epithelial |
RPCE | Rabbit Primary Corneal Epithelial |
PBS | Phosphate Buffered Saline |
FBS | Fetal Bovine Serum |
BSA | Bovine Serum Albumin |
OCT | Optimal Cutting Temperature compound |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide |
DMSO | Dimethyl Sulfoxide |
DAPI | 4′,6-diamidino-2-phenylindole |
W-H | Wound-Healing |
CD | Cluster of Differentiation |
CK | Cytokeratin |
ZO-1 | Zonula Occludens-1 |
α-SMA | Alpha-Smooth Muscle Actin |
References
- Freire, V.; Andollo, N.; Etxebarria, J.; Hernáez-Moya, R.; Durán, J.A.; Morales, M.C. Corneal wound healing promoted by 3 blood derivatives: An in vitro and in vivo comparative study. Cornea 2014, 33, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.C.G.; Tsubota, K. Important concepts for treating ocular surface and tear disorders. Am. J. Ophthalmol. 1997, 124, 825–835. [Google Scholar] [CrossRef]
- Klenkler, B.; Sheardown, H. Growth factors in the anterior segment: Role in tissue maintenance, wound healing and ocular pathology. Exp. Eye Res. 2004, 79, 677–688. [Google Scholar] [CrossRef] [PubMed]
- López-Plandolit, S.; Morales, M.C.; Freire, V.; Etxebarria, J.; Durán, J.A. Plasma Rich in Growth Factors as a Therapeutic Agent for Persistent Corneal Epithelial Defects. Cornea 2010, 29, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Pushker, N.; Bageshwar, L.M. Lateral tarsorrhaphy: Is it preferable to patching? Cornea 1999, 18, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, P.; Cotter, J.M.; Baum, J. Treatment of persistent corneal epithelial defect with extended wear of a fluid-ventilated gas-permeable scleral contact lens. Am. J. Ophthalmol. 2000, 130, 33–41. [Google Scholar] [CrossRef]
- Seitz, B.; Grüterich, M.; Cursiefen, C.; Kruse, F.E. Konservative und chirurgische therapie der neurotrophen keratopathie. Ophthalmologe 2005, 102, 15–26. [Google Scholar] [CrossRef]
- Kruse, F.E.; Rohrschneider, K.; Völcker, H.E. Multilayer amniotic membrane transplantation for reconstruction of deep corneal ulcers. Ophthalmology 1999, 106, 1504–1511. [Google Scholar] [CrossRef]
- Lambiase, A.; Rama, P.; Bonini, S.; Caprioglio, G.; Aloe, L. Topical Treatment with Nerve Growth Factor for Corneal Neurotrophic Ulcers. N. Engl. J. Med. 1998, 338, 1174–1180. [Google Scholar] [CrossRef]
- Murali, S.; Hardten, D.R.; Demartelaere, S.; Olevsky, O.M.; Mindrup, E.A.; Hecht, M.L.; Karlstad, R.; Chan, C.C.; Holland, E.J. Effect of topically administered platelet-derived growth factor on corneal wound strength. Curr. Eye Res. 1994, 13, 857–862. [Google Scholar] [CrossRef]
- Pastor, J.C.; Calonge, M. Epidermal growth factor and corneal wound healing: A multicenter study. Cornea 1992, 11, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Han, K.E.; Park, M.H.; Kong, K.H.; Choi, E.; Choi, K.-R.; Jun, R.M. Therapeutic Effects of Three Human-derived Materials in a Mouse Corneal Alkali Burn. Cutan. Ocul. Toxicol. 2019, 10, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Matsuda, R.; Morishige, N.; Yanai, R.; Chikama, T.I.; Nishida, T.; Ishimitsu, T.; Kamiya, A. Open clinical study of eye-drops containing tetrapeptides derived from substance P and insulin-like growth factor-1 for treatment of persistent corneal epithelial defects associated with neurotrophic keratopathy. Br. J. Ophthalmol. 2008, 92, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Tsubota, K.; Goto, E.; Shimmura, S.; Shimazaki, J. Treatment of persistent corneal epithelial defect by autologous serum application. Ophthalmology 1999, 106, 1984–1989. [Google Scholar] [CrossRef]
- Alio, J.L.; Abad, M.; Artola, A.; Rodriguez-Prats, J.L.; Pastor, S.; Ruiz-Colecha, J. Use of autologous Platelet-Rich Plasma in the treatment of dormant corneal ulcers. Ophthalmology 2007, 114, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Geerling, G.; MacLennan, S.; Hartwig, D. Autologous serum eye drops for ocular surface disorders. Br. J. Ophthalmol. 2004, 88, 1467–1474. [Google Scholar] [CrossRef] [Green Version]
- López-Plandolit, S.; Morales, M.C.; Freire, V.; Grau, A.E.; Durán, J.A. Efficacy of Plasma Rich in Growth Factors for the Treatment of Dry Eye. Cornea 2011, 30, 1312–1317. [Google Scholar] [CrossRef]
- Etxebarria, J.; Sanz-Lázaro, S.; Hernáez-Moya, R.; Freire, V.; Durán, J.A.; Morales, M.C.; Andollo, N. Serum from plasma rich in growth factors regenerates rabbit corneas by promoting cell proliferation, migration, differentiation, adhesion and limbal stemness. Acta Ophthalmol. 2017, 95, e693–e705. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; de la Fuente, M.; Muruzabal, F.; Riestra, A.; Merayo-Lloves, J.; Orive, G. Plasma rich in growth factors (PRGF) eye drops stimulates scarless regeneration compared to autologous serum in the ocular surface stromal fibroblasts. Exp. Eye Res. 2015, 135, 118–126. [Google Scholar] [CrossRef]
- Anitua, E.; Zalduendo, M.; Troya, M.; Padilla, S.; Orive, G. Leukocyte inclusion within a platelet rich plasma-derived fibrin scaffold stimulates a more pro-inflammatory environment and alters fibrin properties. PLoS ONE 2015, 10, e0121713. [Google Scholar] [CrossRef]
- Bongiovì, F.; Di Prima, G.; Palumbo, F.S.; Licciardi, M.; Pitarresi, G.; Giammona, G. Hyaluronic Acid-Based Micelles as Ocular Platform to Modulate the Loading, Release, and Corneal Permeation of Corticosteroids. Macromol. Biosci. 2017, 17, 1700261. [Google Scholar] [CrossRef]
- De Campos, A.M.; Sánchez, A.; Alonso, M.J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 2001, 224, 159–168. [Google Scholar] [CrossRef]
- Yenice, I.; Mocan, M.C.; Palaska, E.; Bochot, A.; Bilensoy, E.; Vural, I.; Irkeç, M.; Atilla Hincal, A. Hyaluronic acid coated poly-ε-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp. Eye Res. 2008, 87, 162–167. [Google Scholar] [CrossRef]
- Zeng, W.; Li, Q.; Wan, T.; Liu, C.; Pan, W.; Wu, Z.; Zhang, G.; Pan, J.; Qin, M.; Lin, Y.; et al. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surf. B Biointerfaces 2016, 141, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wu, H.; Wang, Y.; Lin, J.; Chen, Q.; Zhu, X. Preparation and ocular pharmacokinetics of hyaluronan acid-modified mucoadhesive liposomes. Drug Deliv. 2016, 23, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Guerrero, V.; Vicario-de-la-Torre, M.; Molina-Martínez, I.T.; Benítez-del-Castillo, J.M.; García-Feijoo, J.; Herrero-Vanrell, R. Comparison of the in vitro tolerance and in vivo efficacy of traditional timolol maleate eye drops versus new formulations with bioadhesive polymers. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3548–3556. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.; Driver, V.R. Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: A systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen. 2012, 20, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Steven, P.; Scherer, D.; Krösser, S.; Beckert, M.; Cursiefen, C.; Kaercher, T. Semifluorinated Alkane Eye Drops for Treatment of Dry Eye Disease—A Prospective, Multicenter Noninterventional Study. J. Ocul. Pharmacol. Ther. 2015, 31, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Prause, J.U. Treatment of keratoconjunctivitis sicca with Lacrisert. Scand. J. Rheumatol. Suppl. 1986, 61, 261–263. [Google Scholar]
- Ciolino, J.B.; Ross, A.E.; Tulsan, R.; Watts, A.C.; Wang, R.F.; Zurakowski, D.; Serle, J.B.; Kohane, D.S. Latanoprost-Eluting Contact Lenses in Glaucomatous Monkeys. Ophthalmology 2016, 123, 2085–2092. [Google Scholar] [CrossRef]
- Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Mori, M.; Del Fante, C.; Perotti, C.; Scudeller, L.; Caramella, C. Platelet lysate formulations based on mucoadhesive polymers for the treatment of corneal lesions. J. Pharm. Pharmacol. 2011, 63, 189–198. [Google Scholar] [CrossRef] [PubMed]
- López-García, J.S.; García-Lozano, I.; Rivas, L.; Ramírez, N.; Raposo, R.; Méndez, M.T. Autologous serum eye drops diluted with sodium hyaluronate: Clinical and experimental comparative study. Acta Ophthalmol. 2014, 92, e22–e29. [Google Scholar] [CrossRef] [PubMed]
- Andia, I.; Abate, M. Knee osteoarthritis: Hyaluronic acid, platelet-rich plasma or both in association? Expert Opin. Biol. Ther. 2014, 14, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Goa, K.L.; Benfield, P. Hyaluronic Acid: A Review of its Pharmacology and Use as a Surgical Aid in Ophthalmology, and its Therapeutic Potential in Joint Disease and Wound Healing. Drugs 1994, 47, 536–566. [Google Scholar] [CrossRef]
- Choi, K.Y.; Lee, S.; Park, K.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Preparation and characterization of hyaluronic acid-based hydrogel nanoparticles. J. Phys. Chem. Solids 2008, 69, 1591–1595. [Google Scholar] [CrossRef]
- Aragona, P.; Papa, V.; Micali, A.; Santocono, M.; Milazzo, G. Long term treatment with sodium hyaluronate-containing artificial tears reduces ocular surface damage in patients with dry eye. Br. J. Ophthalmol. 2002, 86, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Müller, W. Bioquímica. Fundamentos para Medicina y Ciencias de la Vida; Ed Reverté: Barcelona, Spain, 2008; ISBN 9788429173932. [Google Scholar]
- Waddell, D.D. Viscosupplementation with hyaluronans for osteoarthritis of the knee: Clinical efficacy and economic implications. Drugs Aging 2007, 24, 629–642. [Google Scholar] [CrossRef]
- Prasadam, I.; Mao, X.; Shi, W.; Crawford, R.; Xiao, Y. Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment. J. Mol. Med. 2013, 91, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Muto, J.; Yamasaki, K.; Taylor, K.R.; Gallo, R.L. Engagement of CD44 by hyaluronan suppresses TLR4 signaling and the septic response to LPS. Mol. Immunol. 2009, 47, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavan, B.; Ferroni, L.; Giorgi, C.; Calò, G.; Brun, P.; Cortivo, R.; Abatangelo, G.; Pinton, P. Hyaluronic acid induces activation of the κ-opioid receptor. PLoS ONE 2013, 8, e55510. [Google Scholar] [CrossRef] [PubMed]
- Scheibner, K.A.; Lutz, M.A.; Boodoo, S.; Fenton, M.J.; Powell, J.D.; Horton, M.R. Hyaluronan Fragments Act as an Endogenous Danger Signal by Engaging TLR2. J. Immunol. 2006, 177, 1272–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anitua, E.; Sanchez, M.; De la Fuente, M.; Zalduendo, M.M.; Orive, G. Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid. Knee Surg. Sport Traumatol. Arthrosc. 2012, 20, 1657–1665. [Google Scholar] [CrossRef]
- Calienno, R.; Curcio, C.; Lanzini, M.; Nubile, M.; Mastropasqua, L. In vivo and ex vivo evaluation of cell–cell interactions, adhesion and migration in ocular surface of patients undergone excimer laser refractive surgery after topical therapy with different lubricant eyedrops. Int. Ophthalmol. 2018, 38, 1591–1599. [Google Scholar] [CrossRef]
- Inoue, M.; Katakami, C. The effect of hyaluronic acid on corneal epithelial cell proliferation. Investig. Ophthalmol. Vis. Sci. 1993, 34, 2313–2315. [Google Scholar]
- Brignole, F.; Pisella, P.J.; Dupas, B.; Baeyens, V.; Baudouin, C. Efficacy and safety of 0.18% sodium hyaluronate in patients with moderate dry eye syndrome and superficial keratitis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2005, 243, 531–538. [Google Scholar] [CrossRef]
- Debbasch, C.; De La Salle, S.B.; Brignole, F.; Rat, P.; Warnet, J.M.; Baudouin, C. Cytoprotective effects of hyaluronic acid and carbomer 934P in ocular surface epithelial cells. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3409–3415. [Google Scholar]
- Gomes, J.A.; Amankwah, R.; Powell-Richards, A.; Dua, H.S. Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Br. J. Ophthalmol. 2004, 88, 821–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.H.; Lo, W.C.; Hsu, W.C.; Wei, H.J.; Liu, H.Y.; Lee, C.H.; Tina Chen, S.Y.; Shieh, Y.H.; Williams, D.F.; Deng, W.P. Synergistic anabolic actions of hyaluronic acid and platelet-rich plasma on cartilage regeneration in osteoarthritis therapy. Biomaterials 2014, 35, 9599–9607. [Google Scholar] [CrossRef] [PubMed]
- Lana, J.F.; Weglein, A.; Sampson, S.E.; Vicente, E.F.; Huber, S.C.; Souza, C.V.; Ambach, M.A.; Vincent, H.; Urban-Paffaro, A.; Onodera, C.M.; et al. Randomized controlled trial comparing hyaluronic acid, platelet-rich plasma and the combination of both in the treatment of mild and moderate osteoarthritis of the knee. J. Stem. Cells Regen. Med. 2016, 12, 69–78. [Google Scholar]
- Gesteira, T.F.; Sun, M.; Coulson-Thomas, Y.M.; Yamaguchi, Y.; Yeh, L.-K.; Hascall, V.; Coulson-Thomas, V.J. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4407–4421. [Google Scholar] [CrossRef] [Green Version]
- Marmotti, A.; Bruzzone, M.; Bonasia, D.E.; Castoldi, F.; Rossi, R.; PIras, L.; Maiello, A.; Realmuto, C.; Peretti, G.M. One-step osteochondral repair with cartilage fragments in a composite scaffold. Knee Surg. Sport Traumatol. Arthrosc. 2012, 20, 2590–2601. [Google Scholar] [CrossRef] [PubMed]
- Cervelli, V.; Lucarini, L.; Spallone, D.; Palla, L.; Colicchia, G.M.; Gentile, P.; De Angelis, B. Use of Platelet-Rich Plasma and Hyaluronic Acid in the Loss of Substance with Bone Exposure. Adv. Skin Wound Care 2011, 24, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Smyth, N.A.; Ross, K.A.; Haleem, A.M.; Hannon, C.P.; Murawski, C.D.; Do, H.T.; Kennedy, J.G. Platelet-Rich Plasma and Hyaluronic Acid Are Not Synergistic When Used as Biological Adjuncts with Autologous Osteochondral Transplantation. Cartilage 2017, 9, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Alcalde, I.; Íñigo-Portugués, A.; Carreño, N.; Riestra, A.C.; Merayo-Lloves, J.M. Efectos de nuevos agentes regenerativos biomiméticos sobre la cicatrización corneal en un modelo experimental de úlceras posquirúrgicas. Arch. Soc. Esp. Oftalmol. 2015, 90, 467–474. [Google Scholar] [CrossRef]
- Yoshida, S.; Shimmura, S.; Kawakita, T.; Miyashita, H.; Den, S.; Shimazaki, J.; Tsubota, K. Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4780–4786. [Google Scholar] [CrossRef] [PubMed]
- Schlötzer-Schrehardt, U.; Kruse, F.E. Identification and characterization of limbal stem cells. Exp. Eye Res. 2005, 81, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Secker, G.A.; Daniels, J.T. Limbal Epithelial Stem Cells of the Cornea. StemBook; Harvard Stem Cell Institute: Cambridge, MA, USA, 2008. [Google Scholar]
- Wu, Z.; Zhou, Q.; Duan, H.; Wang, X.; Xiao, J.; Duan, H.; Li, N.; Li, C.; Wan, P.; Liu, Y.; et al. Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: A rabbit model. PLoS ONE 2014, 9, e93012. [Google Scholar] [CrossRef] [PubMed]
- Lauweryns, B.; Van den Oord, J.J.; Volpes, R.; Foets, B.; Missotten, L. Distribution of very late activation integrins in the human cornea: An immunohistochemical study using monoclonal antibodies. Investig. Ophthalmol. Vis. Sci. 1991, 32, 2079–2085. [Google Scholar]
- Freire, V.; Andollo, N.; Etxebarria, J.; Durán, J.A.; Morales, M.C. In Vitro Effects of Three Blood Derivatives on Human Corneal Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5571–5578. [Google Scholar] [CrossRef] [Green Version]
- Calonge, M. The treatment of dry eye. Surv. Ophthalmol. 2001, 45, S227–S239. [Google Scholar] [CrossRef]
- Johnson, M.E.; Murphy, P.J.; Boulton, M. Carbomer and sodium hyaluronate eyedrops for moderate dry eye treatment. Optom. Vis. Sci. 2008, 85, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Andia, I.; Maffulli, N. A contemporary view of platelet-rich plasma therapies: Moving toward refined clinical protocols and precise indications. Regen. Med. 2018, 13, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Carmona, J.U.; Ríos, D.L.; López, C.; Álvarez, M.E.; Pérez, J.E.; Bohórquez, M.E. In vitro effects of platelet-rich gel supernatants on histology and chondrocyte apoptosis scores, hyaluronan release and gene expression of equine cartilage explants challenged with lipopolysaccharide. BMC Vet. Res. 2016, 12, 135. [Google Scholar] [CrossRef]
- Assirelli, E.; Filardo, G.; Mariani, E.; Kon, E.; Roffi, A.; Vaccaro, F.; Marcacci, M.; Facchini, A.; Pulsatelli, L. Effect of two different preparations of platelet-rich plasma on synoviocytes. Knee Surgery. Sport Traumatol. Arthrosc. 2015, 23, 2690–2703. [Google Scholar] [CrossRef] [PubMed]
- Tobita, M.; Tajima, S.; Mizuno, H. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: Stem cell transplantation methods that enhance stemness. Stem Cell Res. Ther. 2015, 6, 215. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Usas, A.; Poddar, M.; Chen, C.W.; Thompson, S.; Ahani, B.; Cummins, J.; Lavasani, M.; Huard, J. Platelet-Rich Plasma Promotes the Proliferation of Human Muscle Derived Progenitor Cells and Maintains Their Stemness. PLoS ONE 2013, 8, e64923. [Google Scholar] [CrossRef] [PubMed]
- Vadalà, G.; Russo, F.; Musumeci, M.; D’Este, M.; Cattani, C.; Catanzaro, G.; Tirindelli, M.C.; Lazzari, L.; Alini, M.; Giordano, R.; et al. Clinically relevant hydrogel-based on hyaluronic acid and platelet rich plasma as a carrier for mesenchymal stem cells: Rheological and biological characterization. J. Orthop. Res. 2017, 35, 2109–2116. [Google Scholar] [CrossRef]
Treatment | TIME (days) | ||||||
---|---|---|---|---|---|---|---|
Day 0 | Day 1 | Day 1.5 | Day 2 | Day 2.5 | Day 3 | Day 3.5 | |
Control | 72.32 ± 7.32 | 47.02 ± 4.84 | 33.28 ± 3.06 | 12.93 ± 3.36 | 6.12 ± 3.24 | 0.53 ± 0.99 | 0.06 ± 0.16 |
s-PRGF | 71.91 ± 4.39 | 46.19 ± 4.06 | 30.22 ± 4.09 | 10.00 ± 3.15 | 3.65 ± 2.79 | 0.05 ± 0.10 | 0 |
NaHA | 72.48 ± 5.13 | 45.32 ± 4.20 | 36.72 ± 7.74 | 12.46 ± 5.17 | 5.98 ± 3.69 | 0.65 ± 1.23 | 0.10 ± 0.27 |
s-PRGF + NaHA | 72.57 ± 2.77 | 48.06 ± 8.97 | 37.44 ± 7.63 | 13.59 ± 5.26 | 6.14 ± 3.71 | 0.46 ± 0.76 | 0.02 ± 0.06 |
Treatment | ||||
---|---|---|---|---|
7 Days | PBS | s-PRGF | s-PRGF + NaHA | NaHA |
Epithelium | 17 ± 10 | 4 ± 2 | 16 ± 15 | 43 *** ± 20 |
Stroma | 2 ± 1 | 1 ± 1 | 2 ± 1 | 5 ± 4 |
30 days | PBS | s-PRGF | s-PRGF + NaHA | NaHA |
Epithelium | 12 ± 6 | 5 Φ ± 2 | 7 ± 3 | 4 ΦΦ ± 2 |
Stroma | 0.3 ± 0.5 | 0.3 ± 0.5 | 0.3 ± 0.5 | 0.4 ± 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Barrio, C.; Etxebarria, J.; Hernáez-Moya, R.; del Val-Alonso, M.; Rodriguez-Astigarraga, M.; Urkaregi, A.; Freire, V.; Morales, M.-C.; Durán, J.A.; Vicario, M.; et al. Hyaluronic Acid Combined with Serum Rich in Growth Factors in Corneal Epithelial Defects. Int. J. Mol. Sci. 2019, 20, 1655. https://doi.org/10.3390/ijms20071655
Suárez-Barrio C, Etxebarria J, Hernáez-Moya R, del Val-Alonso M, Rodriguez-Astigarraga M, Urkaregi A, Freire V, Morales M-C, Durán JA, Vicario M, et al. Hyaluronic Acid Combined with Serum Rich in Growth Factors in Corneal Epithelial Defects. International Journal of Molecular Sciences. 2019; 20(7):1655. https://doi.org/10.3390/ijms20071655
Chicago/Turabian StyleSuárez-Barrio, Carlota, Jaime Etxebarria, Raquel Hernáez-Moya, Marina del Val-Alonso, Maddalen Rodriguez-Astigarraga, Arantza Urkaregi, Vanesa Freire, María-Celia Morales, Juan Antonio Durán, Marta Vicario, and et al. 2019. "Hyaluronic Acid Combined with Serum Rich in Growth Factors in Corneal Epithelial Defects" International Journal of Molecular Sciences 20, no. 7: 1655. https://doi.org/10.3390/ijms20071655
APA StyleSuárez-Barrio, C., Etxebarria, J., Hernáez-Moya, R., del Val-Alonso, M., Rodriguez-Astigarraga, M., Urkaregi, A., Freire, V., Morales, M. -C., Durán, J. A., Vicario, M., Molina, I., Herrero-Vanrell, R., & Andollo, N. (2019). Hyaluronic Acid Combined with Serum Rich in Growth Factors in Corneal Epithelial Defects. International Journal of Molecular Sciences, 20(7), 1655. https://doi.org/10.3390/ijms20071655