Development and Palatability Assessment of Norvir® (Ritonavir) 100 mg Powder for Pediatric Population
Abstract
:1. Introduction
Development Overview of NOP
- Reduction/removal of the ethanol and propylene glycol solvents;
- Flexibility to accommodate doses for pediatric patients;
- An acceptable dosage form for pediatric patients or patients who may have difficulty swallowing a tablet;
- Storage stability to achieve an acceptable commercial shelf life under long term storage conditions;
- Bioavailability that maintains comparable pharmacokinetic profiles and exposures to the commercial oral solution;
- Offer opportunities to improve palatability.
2. Results and Discussion
2.1. NOP Palatability Assessment, Part 1: Dose/Response Sensory Analysis
2.2. NOP Palatability Assessment, Part 2: Evaluation with Foods
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hsu, A.; Granneman, G.R.; Bertz, R.J. Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin. Pharmacokinet. 1998, 35, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Kempf, D.J.; Marsh, K.C.; Denissen, J.F.; McDonald, E.; Vasavanonda, S.; Flentge, C.A.; Green, B.E.; Fino, L.; Park, C.H.; Kong, X.P.; et al. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci. USA 1995, 92, 2484–2488. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.N.; Rodrigues, A.D.; Buko, A.M.; Denissen, J.F. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther. 1996, 277, 423–431. [Google Scholar] [PubMed]
- Norvir (Ritonavir) [Package Insert]; AbbVie Inc.: North Chicago, IL, USA, 2017.
- Kempf, D.J.; Marsh, K.C.; Kumar, G.; Rodrigues, A.D.; Denissen, J.F.; McDonald, E.; Kukulka, M.J.; Hsu, A.; Granneman, G.R.; Baroldi, P.A.; et al. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob. Agents Chemother. 1997, 41, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Moyle, G.J.; Back, D. Principles and practice of HIV-protease inhibitor pharmacoenhancement. HIV Med. 2001, 2, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Sham, H.L.; Kempf, D.J.; Molla, A.; Marsh, K.C.; Kumar, G.N.; Chen, C.-M.; Kati, W.; Stewart, K.; Lal, R.; Hsu, A. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob. Agents Chemother. 1998, 42, 3218–3224. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.E.; Chiu, Y.-L.; Awni, W.; Zhu, T.; Heuser, R.S.; Doan, T.; Breitenbach, J.; Morris, J.B.; Brun, S.C.; Hanna, G.J. The tablet formulation of lopinavir/ritonavir provides similar bioavailability to the soft-gelatin capsule formulation with less pharmacokinetic variability and diminished food effect. JAIDS J. Acquired Immune Defic. Syndromes 2007, 44, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Law, D.; Schmitt, E.A.; Marsh, K.C.; Everitt, E.A.; Wang, W.; Fort, J.J.; Krill, S.L.; Qiu, Y. Ritonavir-PEG 8000 amorphous solid dispersions: In vitro and in vivo evaluations. J. Pharm. Sci. 2004, 93, 563–570. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Guideline on Pharmaceutical Development of Medicines for Paediatric Use; EMA: London, UK, 2013. [Google Scholar]
- Tho, I.; Liepold, B.; Rosenberg, J.; Maegerlein, M.; Brandl, M.; Fricker, G. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur. J. Pharm. Sci. 2010, 40, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Law, D.; Krill, S.L.; Schmitt, E.A.; Fort, J.J.; Qiu, Y.; Wang, W.; Porter, W.R. Physicochemical considerations in the preparation of amorphous ritonavir-poly(ethylene glycol) 8000 solid dispersions. J. Pharm. Sci. 2001, 90, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Strickley, R.G. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 2004, 21, 201–230. [Google Scholar] [CrossRef] [PubMed]
- Kanzer, J.; Hupfeld, S.; Vasskog, T.; Tho, I.; Hölig, P.; Mägerlein, M.; Fricker, G.; Brandl, M. In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation. J. Pharm. Biomed. Anal. 2010, 53, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Strickley, R.G.; Iwata, Q.; Wu, S.; Dahl, T.C. Pediatric drugs--a review of commercially available oral formulations. J. Pharm. Sci. 2008, 97, 1731–1774. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Heng, P.W.; Liew, C.V. Evaluation of coat uniformity and taste-masking efficiency of irregular-shaped drug particles coated in a modified tangential spray fluidized bed processor. Expert Opin. Drug Deliv. 2015, 12, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Douroumis, D. Orally disintegrating dosage forms and taste-masking technologies; 2010. Expert Opin. Drug Deliv. 2011, 8, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Guidance for Industry Size of Beads in Drug Products Labeled for Sprinkle; FDA: Silver Spring, MD, USA, 2012. [Google Scholar]
- Keane, P. The Flavor Profile. ASTM Manual on Descriptive Analysis Testing for Sensory Evaluation; ASTM International: West Conshohocken, PA, USA, 1992; pp. 2–15. [Google Scholar]
- Zajicek, A.; Fossler, M.J.; Barrett, J.S.; Worthington, J.H.; Ternik, R.; Charkoftaki, G.; Lum, S.; Breitkreutz, J.; Baltezor, M.; Macheras, P.; et al. A report from the pediatric formulations task force: Perspectives on the state of child-friendly oral dosage forms. AAPS J. 2013, 15, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Ternik, R.; Liu, F.; Bartlett, J.A.; Khong, Y.M.; Thiam Tan, D.C.; Dixit, T.; Wang, S.; Galella, E.A.; Gao, Z.; Klein, S. Assessment of swallowability and palatability of oral dosage forms in children: Report from an M-CERSI pediatric formulation workshop. Int. J. Pharm. 2018, 536, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.H.; Chiu, Y.L.; Valdes, J.M.; Nilius, A.M.; Klein, C.E. A novel ritonavir paediatric powder formulation is bioequivalent to ritonavir oral solution with a similar food effect. Antivir. Ther. 2015, 20, 425–432. [Google Scholar] [CrossRef] [PubMed]
Approach | Example Products | Results |
---|---|---|
Pre-coat mouth to dull sensory receptors | Peppermint Patties (trigeminal cooling); Orange Sherbet (thermal cooling) | No reduction in active pharmaceutical ingredient (API) bitterness or burning mouthfeel. |
Mix with food/beverages to dilute sensory effects | Chocolate milk (50/50) | No reduction in API bitterness or burning mouthfeel. Produced a larger volume of an equally bitter solution. |
Chase with foods/beverages to wash out aversive sensory attributes | Iced products, milk-based products, fruit juices, savory products, candies, cereals, chewing gums | Solid products reduced the aversive attributes more than liquids. Those more strongly flavored, requiring longer mastication and promoting salivation performed best. |
Pre-coat mouth (prime) and chase with foods/beverages | Iced products, milk-based products, fruit juices, savory products, candies | Liquids were ineffective in reducing the aversive attributes. The same solids that performed best as chasers worked as primer/chaser. |
Dose with oral syringe | N/A | Produced burning in throat and esophagus and did not reduce bitterness. |
Food | Brand | Quantity | Fat (g/5 g) | Sugar (g/5 g) | Water Activity (aw) |
---|---|---|---|---|---|
Peanut Butter | JifTM Natural; Creamy | 5 g | 2.4 | 0.5 | 0.251 |
Hazelnut Spread | NutellaTM | 5 g | 1.5 | 3.5 | 0.335 |
Black Currant Concentrate | RibenaTM; Concentrate | 5 g | 0 | 2.5 | 0.912 |
Golden Syrup | Lyle’sTM | 5 g | 0 | 5 | 0.545 |
Chocolate Syrup | Hershey’sTM; Regular Syrup | 5 g | 0 | 2.5 | 0.830 |
Sweet Potato Puree | GerberTM; 1st Foods | 5 g | 0 | 0.2 | 0.995 |
Chocolate Milk (Mix-In) | NesquikTM; Lowfat Chocolate Milk | 10 mL | 0.1 | 0.6 | 0.990 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, J.B.; Tisi, D.A.; Tan, D.C.T.; Worthington, J.H. Development and Palatability Assessment of Norvir® (Ritonavir) 100 mg Powder for Pediatric Population. Int. J. Mol. Sci. 2019, 20, 1718. https://doi.org/10.3390/ijms20071718
Morris JB, Tisi DA, Tan DCT, Worthington JH. Development and Palatability Assessment of Norvir® (Ritonavir) 100 mg Powder for Pediatric Population. International Journal of Molecular Sciences. 2019; 20(7):1718. https://doi.org/10.3390/ijms20071718
Chicago/Turabian StyleMorris, John B., David A. Tisi, David Cheng Thiam Tan, and Jeffrey H. Worthington. 2019. "Development and Palatability Assessment of Norvir® (Ritonavir) 100 mg Powder for Pediatric Population" International Journal of Molecular Sciences 20, no. 7: 1718. https://doi.org/10.3390/ijms20071718
APA StyleMorris, J. B., Tisi, D. A., Tan, D. C. T., & Worthington, J. H. (2019). Development and Palatability Assessment of Norvir® (Ritonavir) 100 mg Powder for Pediatric Population. International Journal of Molecular Sciences, 20(7), 1718. https://doi.org/10.3390/ijms20071718