Studies on the Interaction between Poly-Phosphane Gold(I) Complexes and Dihydrofolate Reductase: An Interplay with Nicotinamide Adenine Dinucleotide Cofactor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gold(I) Compounds Preparation
2.2. Inhibition Studies
2.3. Fluorimetric Studies
2.4. Enzyme Binding Studies by Fluorimetric Assays
2.5. Spectrometric Studies by ESI-MS
3. Materials and Methods
3.1. Syntheses
3.1.1. Synthesis of 4-(diphenylphosphanyl)benzoic acid methyl ester, 4MeL
3.1.2. Synthesis of [tris(4-benzoate-diphenylphosphanyl)-gold(I)chloride], 4L3AuCl
3.1.3. Synthesis of [tris(4-benzoate-diphenylphosphanyl)-gold(I)triflate], 4L3AuTfl
3.1.4. Synthesis of [tris(2-benzoate-diphenylphosphanyl)-gold(I)chloride], 2L3AuCl
3.1.5. Synthesis of [tris(4-methylbenzoate)-diphenylphosphanyl)-gold(I)chloride], 4MeL3AuCl
3.2. Enzyme Inhibition Studies
3.2.1. Preparation of the NADPH Stock
3.2.2. Preparation of the H2F Stock
3.2.3. Preparation of the DHFR Stock
3.2.4. Preparation of the Gold(I) Compounds Stocks
3.3. Inhibition Studies on DHFR
3.4. Fluorimetric Analysis
3.5. ESI-MS Spectrometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cannon, W.R.; Garrison, B.J.; Benkovic, S.J. Electrostatic Characterization of Enzyme Complexes: Evaluation of the Mechanism of Catalysis of Dihydrofolate Reductase. J. Am. Chem. Soc. 1997, 119, 2386–2395. [Google Scholar] [CrossRef]
- Schnell, J.R.; Dyson, H.J.; Wright, P.E. Structure, Dynamics, and Catalytic Function of Dihydrofolate Reductase. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, B.I.; Dicker, A.P.; Bertino, J.R. Dihydrofolate Reductase as a Therapeutic Target. FASEB J. 1990, 4, 2441–2452. [Google Scholar] [CrossRef]
- Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate Reductase Inhibitors as Antibacterial Agents. Biochem. Pharmacol. 2006, 71, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Sköld, O. Resistance to Trimethoprim and Sulfonamides. Vet. Res. 2001, 32, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Huovinen, P.; Sundström, L.; Swedberg, G.; Sköld, O. Trimethoprim and Sulfonamide Resistance. Antimicrob. Agents Chemother. 1995, 39, 279–289. [Google Scholar] [CrossRef]
- Matthews, D.; Alden, R.; Bolin, J.; Freer, S.; Hamlin, R.; Xuong, N.; Kraut, J.; Poe, M.; Williams, M.; Hoogsteen, K. Dihydrofolate Reductase: X-Ray Structure of the Binary Complex with Methotrexate. Science 1977, 197, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, P.T.R.; Zhang, Z.; McCourt, L.; Dwyer, M.; Benkovic, S.J.; Hammes, G.G. Interaction of Dihydrofolate Reductase with Methotrexate: Ensemble and Single-Molecule Kinetics. Proc. Natl. Acad. Sci. USA 2002, 99, 13481–13486. [Google Scholar] [CrossRef]
- Cammarata, M.; Thyer, R.; Lombardo, M.; Anderson, A.; Wright, D.; Ellington, A.; Brodbelt, J.S. Characterization of Trimethoprim Resistant E. Coli Dihydrofolate Reductase Mutants by Mass Spectrometry and Inhibition by Propargyl-Linked Antifolates. Chem. Sci. 2017, 8, 4062–4072. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Mayer-Kuckuk, P.; Capiaux, G.; Budak-Alpdogan, T.; Gorlick, R.; Bertino, J.R. Novel Aspects of Resistance to Drugs Targeted to Dihydrofolate Reductase and Thymidylate Synthase. Biochim. et Biophys. Acta 2002, 1587, 164–173. [Google Scholar] [CrossRef]
- Kuyper, L.F.; Roth, B.; Baccanari, D.P.; Ferone, R.; Beddell, C.R.; Champness, J.N.; Stammers, D.K.; Dann, J.G.; Norrington, F.E.A. Receptor-Based Design of Dihydrofolate Reductase Inhibitors: Comparison of Crystallographically Determined Enzyme Binding with Enzyme Affinity in a Series of Carboxy-Substituted Trimethoprim Analogs. J. Med. Chem. 1985, 28, 303–311. [Google Scholar] [CrossRef]
- Singh, A.; Deshpande, N.; Pramanik, N.; Jhunjhunwala, S.; Rangarajan, A.; Atreya, H.S. Optimized Peptide Based Inhibitors Targeting the Dihydrofolate Reductase Pathway in Cancer. Sci. Rep. 2018, 8, 3190. [Google Scholar] [CrossRef] [PubMed]
- Galassi, R.; Burini, A.; Ricci, S.; Pellei, M.; Rigobello, M.P.; Citta, A.; Dolmella, A.; Gandin, V.; Marzano, C. Synthesis and Characterization of Azolate Gold(I) Phosphane Complexes as Thioredoxin Reductase Inhibiting Antitumor Agents. Dalton Trans. 2012, 41, 5307–5318. [Google Scholar] [CrossRef] [PubMed]
- Gambini, V.; Tilio, M.; Maina, E.W.; Andreani, C.; Bartolacci, C.; Wang, J.; Iezzi, M.; Ferraro, S.; Ramadori, A.T.; Simon, O.C.; et al. In Vitro and in Vivo Studies of Gold(I) Azolate/Phosphane Complexes for the Treatment of Basal like Breast Cancer. Eur. J. Med. Chem. 2018, 155, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Galassi, R.; Oumarou, C.S.; Burini, A.; Dolmella, A.; Micozzi, D.; Vincenzetti, S.; Pucciarelli, S. A Study on the Inhibition of Dihydrofolate Reductase (DHFR) from Escherichia Coli by Gold(I) Phosphane Compounds. X-Ray Crystal Structures of (4,5-Dichloro-1H-Imidazolate-1-Yl)-Triphenylphosphane-Gold(I) and (4,5-Dicyano-1H-Imidazolate-1-Yl)-Triphenylphosphane-Gold(I). Dalton Trans. 2015, 44, 3043–3056. [Google Scholar] [CrossRef] [PubMed]
- Carlos Lima, J.; Rodriguez, L. Phosphine-Gold(I) Compounds as Anticancer Agents: General Description and Mechanisms of Action. Anti-Cancer Agents Med. Chem. 2011, 11, 921–928. [Google Scholar] [CrossRef]
- Gandin, V.; Fernandes, A.P.; Rigobello, M.P.; Dani, B.; Sorrentino, F.; Tisato, F.; Björnstedt, M.; Bindoli, A.; Sturaro, A.; Rella, R.; et al. Cancer Cell Death Induced by Phosphine Gold(I) Compounds Targeting Thioredoxin Reductase. Biochem. Pharmacol. 2009, 79, 90. [Google Scholar] [CrossRef]
- Degan, P.; Carpano, P.; Cercignani, G.; Montagnoli, G. A Fluorescence Study of Substrate and Inhibitor Binding to Bovine Liver Dihydrofolate Reductase. Int. J. Biochem. 1989, 21, 291–295. [Google Scholar] [CrossRef]
- Fierke, C.A.; Johnson, K.A.; Benkovic, S.J. Construction and Evaluation of the Kinetic Scheme Associated with Dihydrofolate Reductase from Escherichia Coli. Biochemistry 1987, 26, 4085–4092. [Google Scholar] [CrossRef]
- Smith, V.F.; Matthews, C.R. Testing the Role of Chain Connectivity on the Stability and Structure of Dihydrofolate Reductase from E. Coli: Fragment Complementation and Circular Permutation Reveal Stable, Alternatively Folded Forms. Protein Sci. 2001, 10, 116–128. [Google Scholar] [CrossRef] [PubMed]
- King, C.; Khan, M.N.I.; Staples, R.J.; Fackler, J.P. Luminescent Mononuclear Gold(I) Phosphines. Inorg. Chem. 1992, 31, 3236–3238. [Google Scholar] [CrossRef]
- Hoshino, M.; Uekusa, H.; Ishii, S.; Otsuka, T.; Kaizu, Y.; Ozawa, Y.; Toriumi, K. Polymorphic Crystal Approach to Changing the Emission of [AuCl(PPh3)2], Analyzed by Direct Observation of the Photoexcited Structures by X-Ray Photocrystallography. Inorg. Chem. 2010, 49, 7257–7265. [Google Scholar] [CrossRef]
- Assefa, Z.; McBurnett, B.G.; Staples, R.J.; Fackler, J.P.; Assmann, B.; Angermaier, K.; Schmidbaur, H. Syntheses, Structures, and Spectroscopic Properties of Gold(I) Complexes of 1,3,5-Triaza-7-Phosphaadamantane (TPA). Correlation of the Supramolecular Au…..Au Interaction and Photoluminescence for the Species (TPA)AuCl and [(TPA-HCl)AuCl]. Inorg. Chem. 1995, 34, 75–83. [Google Scholar] [CrossRef]
- Ziolo, R.F.; Lipton, S.; Dori, Z. The Photoluminescence of Phosphine Complexes of d10 Metals. J. Chem. Soc. D 1970. [Google Scholar] [CrossRef]
- Lee, B.; Richards, F.M. The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 1971, 55. [Google Scholar] [CrossRef]
- Talukder, P.; Chen, S.; Roy, B.; Yakovchuk, P.; Spiering, M.M.; Alam, M.P.; Madathil, M.M.; Bhattacharya, C.; Benkovic, S.J.; Hecht, S.M. Cyanotryptophans as Novel Fluorescent Probes for Studying Protein Conformational Changes and DNA–Protein Interaction. Biochemistry 2015, 54, 7457–7469. [Google Scholar] [CrossRef]
- Ohmae, E.; Sasaki, Y.; Gekko, K. Effects of Five-Tryptophan Mutations on Structure, Stability and Function of Escherichia Coli Dihydrofolate Reductase. J. Biochem. 2001, 130, 439–447. [Google Scholar] [CrossRef]
- Available online: https://www.sciencedirect.com/topics/neuroscience/dihydrofolate-reductase (accessed on 27 November 2018).
- Boeri Erba, E.; Petosa, C. The Emerging Role of Native Mass Spectrometry in Characterizing the Structure and Dynamics of Macromolecular Complexes. Protein Sci 2015, 24, 1176–1192. [Google Scholar] [CrossRef]
- Yamamoto, T.; Izumi, S.; Gekko, K. Mass Spectrometry on Hydrogen/Deuterium Exchange of Dihydrofolate Reductase: Effects of Ligand Binding. J. Biochem. 2004, 135, 663–671. [Google Scholar] [CrossRef]
- Casini, A.; Messori, L. Molecular Mechanisms and Proposed Targets for Selected Anticancer Gold Compounds. Curr. Top Med. Chem. 2011, 11, 2647–2660. [Google Scholar] [CrossRef]
- Hashmi, A.S.K.; Rudolph, M. Gold Catalysis in Total Synthesis. Chem. Soc. Rev. 2008, 37, 1766–1775. [Google Scholar] [CrossRef]
- Gorin, D.J.; Toste, F.D. Relativistic Effects in Homogeneous Gold Catalysis. Nature 2007, 446, 395–403. [Google Scholar] [CrossRef]
- OriginLab—Origin and OriginPro—Data Analysis and Graphing Software. Available online: https://www.originlab.com/ (accessed on 15 March 2019).
- Weiss, J.N. The Hill Equation Revisited: Uses and Misuses. FASEB J. 1997, 11, 835–841. [Google Scholar] [CrossRef]
- Batruch, I.; Javasky, E.; Brown, E.D.; Organ, M.G.; Johnson, P.E. Thermodynamic and NMR Analysis of Inhibitor Binding to Dihydrofolate Reductase. Bioorg. Med. Chem. 2010, 18, 8485–8492. [Google Scholar] [CrossRef]
Compound | Labels | Ki (µM) |
---|---|---|
[(4-COOH Ph)Ph2P]3AuCl | 4L3AuCl | 4.6 ± 0.5 |
[(4-COOH Ph)Ph2P]3AuTfl | 4L3AuTfl | 6.33 ± 0.7 |
[(4-MeO-Ph)Ph2P]3AuCl | 4MeL3AuCl | 12.72 ± 2.1 |
[(2-COOH Ph)Ph2P]3AuCl | 2L3AuCl | 21.26 ± 3.8 |
(4COOHPh-Ph2P)2AuCl | 4L2AuCl | 27.84 ± 12.12 * |
(2COOHPh-Ph2P)2AuCl | 2L2AuCl | 2.066 ± 0.8 * |
(PPh3)2AuCl | L2AuCl | 0.53 ± 0.03 |
(4COOHPh-Ph2P)AuCl | 4LAuCl | 2.25 ± 0.62 * |
(2COOHPh-Ph2P)AuCl | 2LAuCl | 1.10 ± 0.3 * |
PPh3AuCl | LAuCl | 1.214 ± 0.20 * |
PPh3 | L | 6.16 ± 0.77 * |
4COOHPh-Ph2P | 4L | No inhibition * |
2COOHPh-Ph2P | 2L | No inhibition * |
Compound | Intrinsic Emission λem (λexc = 280 nm) Hepes/methanol | Stokes Shift | Kd ± s.d. *, T = 25 °C (µM); n = Hill Coefficient * | Kd ± s.d. * (25 °C) (µM); In Presence of Saturating NADPH |
---|---|---|---|---|
4L3AuCl | 520 and 485 nm | 16,483 and 15,095 cm−1 | 3.84 ± 0.29; n = 1.73; 3.32 ± 1.28 (10 °C); 2.0 ± 0.36 (−4 °C) | 5.05 ± 2.7 |
4L3AuTfl | 510 nm weak | 16,106 cm−1 | 21.4 ± 3.85; 7.36 ± 0.84 (10 °C); 8.08 ± 1.00 (−4 °C) | 7.36 ± 0.84 |
4MeL3AuCl | 517 and 500 nm | 16,371 and 15,714 cm−1 | 13.4 ± 2.24; 7.63 ± 0.93 (10 °C); 21.2 ± 1.83 (−4 °C) | 4.55 ± 1.04 |
4L2AuCl | No intrinsic emission | n. d. | 4.42 ± 0.56; 3.52 ± 0.15 (10 °C); 3.06 ± 0.87 (−4 °C) | 2.35 ± 0.61 |
2L3AuCl | No intrinsic emission | n. d. | 10.47 ± 1.074; n = 1.23 ± 0.082; 7.12 ± 0.22 (10 °C); n = 1.41 ± 0.048; 5.11 ± 4.2 (−4 °C) | 7.32 ± 2.46 |
2L2AuCl | No intrinsic emission | n. d. | 10.33 ± 0.65 | 4.73 ± 0.68 |
(PPh3)2AuCl | 521 and 490 nm | 16,520 and 15,306 cm−1 | 5.99 ± 0.40; 2.47 ± 0.29 (10 °C); 3.83 ± 1.85 (−4 °C) | 2.22 ± 0.25 |
4COOHPh2P | N.A. | n. d. | 59.6 ± 5.7 | N.A. |
Benzoic acid | N.A. | n. d. | ≈4000 | N.A. |
Compounds | ΔH° (kcal/mol) | ΔS° (cal/mol K) | TΔS° (kcal/mol) | ΔG° (kcal/mol) |
---|---|---|---|---|
4L3AuCl | −5.04 ± 0.08 | 7.34 ± 0.005 | 2.19 ± 0.1 | −7.23 ± 0.12 |
4L3AuTfl | −5.32 ± 3.2 | 3.92 ± 8.8 | 1.17 ± 0.9 | −4,15 ± 3.3 |
4MeL3AuCl | −4.35 ± n. d. * | 7.69 ± n. d. * | 2.29 ± n. d. * | −6.64 ± n. d. * |
2L3AuCl | −3.94 ± 0.1 | 9.58 ± 0.08 | 2.86 ± 0.1 | −6.8 ± 0.14 |
4L2AuCl | −2.02 ± 0.2 | 17.76 ± 0.1 | 5.29 ± 0.2 | −7.31 ± 0.28 |
L2AuCl | −4.87 ± n. d.* | 8.42 ± n. d. * | 2.5 ± n. d. * | −7.37 ± n. d. * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pucciarelli, S.; Vincenzetti, S.; Ricciutelli, M.; Simon, O.C.; Ramadori, A.T.; Luciani, L.; Galassi, R. Studies on the Interaction between Poly-Phosphane Gold(I) Complexes and Dihydrofolate Reductase: An Interplay with Nicotinamide Adenine Dinucleotide Cofactor. Int. J. Mol. Sci. 2019, 20, 1802. https://doi.org/10.3390/ijms20071802
Pucciarelli S, Vincenzetti S, Ricciutelli M, Simon OC, Ramadori AT, Luciani L, Galassi R. Studies on the Interaction between Poly-Phosphane Gold(I) Complexes and Dihydrofolate Reductase: An Interplay with Nicotinamide Adenine Dinucleotide Cofactor. International Journal of Molecular Sciences. 2019; 20(7):1802. https://doi.org/10.3390/ijms20071802
Chicago/Turabian StylePucciarelli, Stefania, Silvia Vincenzetti, Massimo Ricciutelli, Oumarou Camille Simon, Anna Teresa Ramadori, Lorenzo Luciani, and Rossana Galassi. 2019. "Studies on the Interaction between Poly-Phosphane Gold(I) Complexes and Dihydrofolate Reductase: An Interplay with Nicotinamide Adenine Dinucleotide Cofactor" International Journal of Molecular Sciences 20, no. 7: 1802. https://doi.org/10.3390/ijms20071802
APA StylePucciarelli, S., Vincenzetti, S., Ricciutelli, M., Simon, O. C., Ramadori, A. T., Luciani, L., & Galassi, R. (2019). Studies on the Interaction between Poly-Phosphane Gold(I) Complexes and Dihydrofolate Reductase: An Interplay with Nicotinamide Adenine Dinucleotide Cofactor. International Journal of Molecular Sciences, 20(7), 1802. https://doi.org/10.3390/ijms20071802