De-Esterified Homogalacturonan Enrichment of the Cell Wall Region Adjoining the Preprophase Cortical Cytoplasmic Zone in Some Protodermal Cell Types of Three Land Plants
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Microtubule (MT) and Endoplasmic Reticulum (ER) Immunolocalization
4.3. Immunolocalization of Homogalacturonans
4.4. Transmission Electron Microscopy and Light Microscopy
4.5. Observation and Photography
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PPB | Preprophase band |
MT-PPB | Microtubule-preprophase band |
ER-PPB | Endoplasmic reticulum-preprophase band |
AF-PPB | Actin filament preprophase band |
GMC | Guard cell mother cell |
SMC | Subsidiary cell mother cell |
HG | Homogalacturonan |
References
- Smertenko, A.; Assaad, F.; Baluška, F.; Bezanilla, M.; Buschmann, H.; Drakakaki, G.; Hauser, M.T.; Janson, M.; Mineyuki, Y.; Moore, I.; et al. Plant cytokinesis: Terminology for structures and processes. Trends Cell Biol. 2017, 27, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Martinez, P.; Allsman, L.A.; Brakke, K.A.; Hoyt, C.; Hayes, J.; Liang, H.; Neher, W.; Rui, Y.; Roberts, A.M.; Moradifam, A.; et al. Predicting division planes of three-dimensional cells by soap-film minimization. Plant Cell 2018, 30, 2255–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facette, M.R.; Rasmussen, C.G.; Van Norman, J.M. A plane choice: Coordinating timing and orientation of cell division during plant development. Curr. Opin. Plant Biol. 2019, 47, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Livanos, P.; Müller, S. Division plane establishment and cytokinesis. Ann. Rev. Plant Biol. 2019, 70, 239–267. [Google Scholar] [CrossRef]
- Mineyuki, Y. The preprophase band of microtubules: Its function as a cytokinetic apparatus in higher plants. Intern. Rev. Cytol. 1999, 187, 1–49. [Google Scholar]
- Panteris, E. Cortical actin filaments at the division site of mitotic plant cells: A reconsideration of the “actin-depleted zone”. New Phytol. 2008, 179, 334–341. [Google Scholar] [CrossRef]
- Zachariadis, M.; Quader, H.; Galatis, B.; Apostolakos, P. Endoplasmic reticulum preprophase band in dividing root-tip cells of Pinus brutia. Planta 2001, 213, 824–827. [Google Scholar] [CrossRef]
- Zachariadis, M.; Quader, H.; Galatis, B.; Apostolakos, P. Organization of the endoplasmic reticulum in dividing cells of the gymnosperms Pinus brutia and Pinus nigra, and the pterophyte Asplenium nidus. Cell Biol. Intern. 2003, 27, 31–40. [Google Scholar] [CrossRef]
- Giannoutsou, E.; Galatis, B.; Zachariadis, M.; Apostolakos, P. Formation of an endoplasmic reticulum ring associated with acetylated microtubules in the angiosperm preprophase band. Cytoskeleton 2012, 69, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Giannoutsou, E.; Sotiriou, P.; Apostolakos, P.; Galatis, B. Polarised endoplasmic reticulum aggregations in the establishing division plane of protodermal cells of the fern Asplenium nidus. Protoplasma 2015, 252, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Galatis, B.; Apostolakos, P.; Katsaros, C. Synchronous organization of two preprophase microtubule bands and final cell plate arrangement in subsidiary cell mother cells of some Triticum species. Protoplasma 1983, 117, 24–39. [Google Scholar] [CrossRef]
- Galatis, B.; Apostolakos, P.; Katsaros, C. Experimental studies on the function of the cortical cytoplasmic zone of the preprophase microtubule band. Protoplasma 1984, 122, 11–26. [Google Scholar] [CrossRef]
- Rasmussen, C.G.; Wright, A.J.; Müller, S. The role of the cytoskeleton and associated proteins in determination of the plant cell division plane. Plant J. 2013, 75, 258–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galatis, B.; Mitrakos, K. On the differential divisions and preprophase microtubule bands involvement in the development of stomata of Vigna sinensis L. J. Cell Sci. 1979, 37, 11–37. [Google Scholar]
- Galatis, B.; Apostolakos, P.; Katsaros, C.; Loukari, M. Pre-prophase microtubule band and local wall thickening in guard cell mother cells of some Leguminosae. Ann. Bot. 1982, 50, 779–791. [Google Scholar] [CrossRef]
- Zhao, L.; Sack, F.D. Ultrastructure of stomatal development in Arabidopsis (Brassicaceae) leaves. Am. J. Bot. 1999, 86, 929–939. [Google Scholar] [CrossRef] [Green Version]
- Galatis, B.; Mitrakos, K. The ultrastructural cytology of the differentiating guard cells of Vigna sinensis. Am. J. Bot. 1980, 67, 1243–1261. [Google Scholar] [CrossRef]
- Packard, M.J.; Stack, S.M. The preprophase band: Possible involvement in the formation of the cell wall. J. Cell Sci. 1976, 22, 403–411. [Google Scholar]
- Sawidis, T.; Quader, H.; Bopp, M.; Schnepf, E. Presence and absence of the preperophase band of microtubules in moss protonemata: A clue to understanding its function? Protoplasma 1991, 163, 156–161. [Google Scholar] [CrossRef]
- Dhonukshe, P.; Mathur, J.; Hülskamp, M.; Gadella, T. Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol. 2005, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Dhonukshe, P.; Baluška, F.; Schlicht, M.; Hlavacka, A.; Samaj, J.; Friml, J.; Gadella, T.W.J., Jr. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev. Cell 2006, 10, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Karahara, I.; Suda, J.; Tahara, H.; Yokota, E.; Shimmen, T.; Misaki, K.; Yonemura, S.; Staehelin, L.A.; Mineyuki, Y. The preprophase band is a localized center of clathrin-mediated endocytosis in late prophase cells of the onion cotyledon epidermis. Plant J. 2009, 57, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Karahara, I.; Staehelin, L.A.; Mineyuki, Y. A role of endocytosis in plant cytokinesis. Commun. Integr. Biol. 2010, 3, 36–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannoutsou, E.; Apostolakos, P.; Galatis, B. Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays. Planta 2016, 244, 1125–1143. [Google Scholar] [CrossRef]
- Verhertbruggen, Y.; Marcus, S.E.; Haeger, A.; Ordaz-Ortiz, J.J.; Knox, J.P. An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr. Res. 2009, 344, 1858–1862. [Google Scholar] [CrossRef]
- Liners, F.; Letesson, J.J.; Didembourg, C.; Van Custen, P. Monoclonal antibodies against pectin: Recognition of a conformation induced by calcium. Plant Physiol. 1989, 91, 1419–1424. [Google Scholar] [CrossRef]
- Apostolakos, P.; Panteris, E.; Galatis, B. Microtubule and actin filament organization during stomatal morphogenesis in the fern Asplenium nidus. I. Guard cell mother cell. Protoplasma 1997, 198, 93–106. [Google Scholar] [CrossRef]
- Hofmeister, W. Zusatze und Berichtigungen zu den 1851 veroffentlichen Unterrsuchungengen der Entwicklung hoherer kryptogamen. Jahrb. Wiss. Bot. 1863, 3, 259–293. [Google Scholar]
- Errera, L. Uber Zellfromen und Siefenblasen. Bot. Cent. 1888, 34, 395–399. [Google Scholar]
- Müller, S. Universal rules for division plane selection in plants. Protoplasma 2012, 249, 239–253. [Google Scholar] [CrossRef]
- Besson, S.; Dumais, J. Stochasticity in the symmetric division of plant cells: When the exceptions are the rule. Front. Plant Sci. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, C.G.; Bellinger, M. An overview of plant division–plane orientation. New Phytol. 2018, 219, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louveaux, M.; Hamant, O. The mechanics behind cell division. Curr. Opin. Plant Biol. 2013, 16, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Louveaux, M.; Julien, J.D.; Mirabet, V.; Boudaoud, A.; Hamant, O. Cell division plane orientation based on tensile stress in Arabidopsis thaliana. PNAS 2016, 113, E4294–E4303. [Google Scholar] [CrossRef] [Green Version]
- Blilou, I.; Xu, J.; Wildwater, M.; Willemsen, V.; Paponov, I.; Friml, J.; Heidstra, R.; Aida, M.; Palme, K.; Scheres, B. The PIN auxin efflux facilitator controls growth and patterning in Arabidopsis roots. Nature 2005, 433, 39–44. [Google Scholar] [CrossRef]
- Dharmasiri, N.; Dharmasiri, S.; Weijers, D.; Lechner, E.; Yamada, M.; Hobbie, L.; Ehrismann, J.S.; Jürgens, G.; Estelle, M. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 2005, 9, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Van Damme, D.; Vanstraelen, M.; Geelen, D. Cortical division zone establishment in plant cells. Trends Plant Sci. 2007, 12, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dong, J. Cell polarity: Compassing cell division and differentiation in plants. Curr. Opin. Plant Biol. 2018, 45, 127–135. [Google Scholar] [CrossRef]
- Wolf, S.; Hématy, K.; Höfte, H. Growth control and cell wall signaling in plants. Ann. Rev. Plant Biol. 2012, 63, 381–407. [Google Scholar] [CrossRef] [Green Version]
- Galatis, B.; Apostolakos, P. The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytol. 2004, 161, 613–639. [Google Scholar] [CrossRef]
- Livanos, P.; Giannoutsou, E.; Apostolakos, P.; Galatis, B. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays. Plant Signal Behav. 2015, 10, e984531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livanos, P.; Galatis, B.; Apostolakos, P. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes. Protoplasma 2016, 253, 1081–1099. [Google Scholar] [CrossRef] [PubMed]
- Apostolakos, P.; Livanos, P.; Giannoutsou, E.; Panteris, E.; Galatis, B. The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: Existing and novel components orchestrating cell polarization and asymmetric division. Ann. Bot. 2018, 122, 679–696. [Google Scholar] [CrossRef] [PubMed]
- Scarpella, E.; Barkoulas, M.; Tsiantis, M. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect Biol. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panteris, E.; Galatis, B.; Quader, H.; Apostolakos, P. Cortical actin filament organization in developing and functioning stomatal complexes of Zea mays and Triticum turgidum. Cell Motil. Cytoskel 2007, 64, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Apostolakos, P.; Panteris, E.; Galatis, B. The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays. Cell Motil. Cytoskel 2008, 65, 863–875. [Google Scholar] [CrossRef]
- Giannoutsou, E.; Apostolakos, P.; Galatis, B. Actin filament-organized local cortical endoplasmic reticulum aggregations in developing stomatal complexes of grasses. Protoplasma 2011, 248, 373–390. [Google Scholar] [CrossRef]
- Galatis, B. The organization of microtubules in guard cell mother cells of Zea mays. Can. J. Bot. 1982, 60, 1148–1166. [Google Scholar] [CrossRef]
- Galatis, B.; Apostolakos, P. Microtubule organization and morphogenesis of stomata in caffeine-affected seedlings of Zea mays. Protoplasma 1991, 165, 11–26. [Google Scholar] [CrossRef]
- Galatis, B. Differentiation of stomatal meristemoids and guard cell mother cells into guard-like cells in Vigna sinensis leaves after colchicines treatment. Planta 1977, 136, 103–114. [Google Scholar] [CrossRef]
- Giannoutsou, E.; Sotiriou, P.; Nikolakopoulou, T.L.; Galatis, B.; Apostolakos, P. Callose and homogalacturonan epitope distribution in stomatal complexes of Zea mays and Vigna sinensis. Protoplasma 2019. [Google Scholar] [CrossRef] [PubMed]
- Seifert, G.J.; Blaukpf, C. Irritable walls: The plant extracellular matrix and signalling. Plant Physiol. 2010, 153, 467–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nick, P. Microtubules, signalling and abiotic stress. Plant J. 2013, 75, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Landrein, B.; Hamant, O. How mechanical stress controls microtubule behavior and morphogenesis in plants: History, experiments and revisited theories. Plant J. 2013, 75, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Baluska, F.; Liners, F.; Hlavacka, A.; Schlicht, M.; Van Cutsem, P.; McCurdy, D.W.; Menzel, D. Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 2005, 225, 141–155. [Google Scholar] [CrossRef]
- Müller, S.; Jürgens, G. Plant cytokinesis–No ring, no constriction but centrifugal construction of the partitioning membrane. Sem. Cell Dev. Biol. 2016, 53, 10–18. [Google Scholar] [CrossRef]
- Livanos, P.; Galatis, B.; Quader, H.; Apostolakos, P. ROS homeostasis is a prerequisite for the accomplishment of plant cytokinesis. Protoplasma 2017, 254, 569–586. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannoutsou, E.; Galatis, B.; Apostolakos, P. De-Esterified Homogalacturonan Enrichment of the Cell Wall Region Adjoining the Preprophase Cortical Cytoplasmic Zone in Some Protodermal Cell Types of Three Land Plants. Int. J. Mol. Sci. 2020, 21, 81. https://doi.org/10.3390/ijms21010081
Giannoutsou E, Galatis B, Apostolakos P. De-Esterified Homogalacturonan Enrichment of the Cell Wall Region Adjoining the Preprophase Cortical Cytoplasmic Zone in Some Protodermal Cell Types of Three Land Plants. International Journal of Molecular Sciences. 2020; 21(1):81. https://doi.org/10.3390/ijms21010081
Chicago/Turabian StyleGiannoutsou, Eleni, Basil Galatis, and Panagiotis Apostolakos. 2020. "De-Esterified Homogalacturonan Enrichment of the Cell Wall Region Adjoining the Preprophase Cortical Cytoplasmic Zone in Some Protodermal Cell Types of Three Land Plants" International Journal of Molecular Sciences 21, no. 1: 81. https://doi.org/10.3390/ijms21010081
APA StyleGiannoutsou, E., Galatis, B., & Apostolakos, P. (2020). De-Esterified Homogalacturonan Enrichment of the Cell Wall Region Adjoining the Preprophase Cortical Cytoplasmic Zone in Some Protodermal Cell Types of Three Land Plants. International Journal of Molecular Sciences, 21(1), 81. https://doi.org/10.3390/ijms21010081