Dual Target Ligands with 4-tert-Butylphenoxy Scaffold as Histamine H3 Receptor Antagonists and Monoamine Oxidase B Inhibitors
Abstract
:1. Introduction
- -
- exchange of piperidine moiety for other cyclic amines (pyrrolidine, substituted piperidine, or azepane)
- -
- elongation of alkyl chain from three up to six atoms.
2. Results and Discussion
2.1. Synthesis of Compounds
2.2. Human Histamine H3 Receptor Affinity
2.3. Human Monoamine Oxidase B Inhibitory Activity
2.3.1. Screening and Determination of IC50
2.3.2. Reversibility Studies
2.3.3. Kinetic Studies
2.4. Human Monoamine Oxidase A Inhibitory Activity
2.5. Toxicity and Neuroprotection Studies In Vitro
2.6. Antiparkinsonian Activity in Haloperidol-Induced Catalepsy in Wistar Rats
2.6.1. Bar Test
2.6.2. Crossed-Leg Position Test
3. Materials and Methods
3.1. Chemistry
- 1-(3-bromopropoxy)-4-tert-butylbenzene(4a):CAS3245-63-4; 1-(4-bromobutoxy)-4-tert-butylbenzene (4b): CAS53669-73-1;
- 1-(5-bromopentyloxy)-4-tert-butylbenzene (4c): CAS53669-74-2;
- 1-(6-bromohexyloxy)-4-tert-butylbenzene (4d): CAS53669-73-3.
3.2. Biological Studies In Vitro
3.2.1. Affinity for Human Histamine H3 Receptor
3.2.2. Human Monoamine Oxidase Inhibitory Activity
General Method for Determining Activity Against MAO Isoforms
Screening and Determination of IC50
Reversibility Studies
Kinetic Studies
3.2.3. Toxicity and Neuroprotection Evaluation In Vitro
Cell Lines
Toxicity Studies
Neuroprotection Studies
3.3. Antiparkinsonian Activity in Haloperidol-Induced Catalepsy In Vivo
3.3.1. Animals
3.3.2. Drugs
3.3.3. Statistical Analysis
3.3.4. Determination of Antiparkinsonian Activity in Catalepsy Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
BuChE | Butyrylcholinesterase |
DA | Dopamine |
DMSO | Dimethyl sulfoxide |
DTL | Dual Target Ligands |
DX | Doxorubicin |
H3R | Histamine H3 receptor |
HEK293 | Human embryonic kidney |
i.p. | Intraperitoneal |
MAO B | Monoamine oxidase B |
MTDL | Multi-Target-Directed Ligands |
PD | Parkinson’s disease |
PEA | β-phenylethylamine |
SAL | Salsolinol |
s.c. | Subcutaneous |
TLC | Thin-layer Chromatography |
References
- Draoui, A.; El Hiba, O.; Aimrane, A.; El Khiat, A.; Gamrani, H. Parkinson’s disease: From bench to bedside. Rev. Neurol. 2020, in press. [Google Scholar] [CrossRef]
- Szökő, É.; Tábi, T.; Riederer, P.; Vécsei, L.; Magyar, K. Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J. Neural. Transm. 2018, 125, 1735–1749. [Google Scholar] [CrossRef] [PubMed]
- Proschak, E.J.; Stark, H.; Merk, D. Polypharmacology by Design: A Medicinal Chemist’s Perspective on Multitargeting Compounds. J. Med. Chem. 2019, 62, 420–444. [Google Scholar] [CrossRef] [PubMed]
- Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.; Stark, H.; Thurmond, R.L.; Haas, H.L. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol. Rev. 2015, 67, 601–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadek, B.; Łażewska, D.; Hagenow, S.; Kieć-Kononowicz, K.; Stark, H. Histamine H3R antagonists: From scaffold hopping to clinical candidates. In Histamine Receptors; Blandina, P., Passani, M.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 109–156. [Google Scholar]
- Lamb, Y.N. Pitolisant: A Review in Narcolepsy with or without Cataplexy. CNS Drugs. 2020, 34, 207–218. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, X.; He, S.; Jiang, H.; Feng, F.; Liu, W.; Qu, W.; Sun, H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J. Med. Chem. 2019, 62, 8881–8914. [Google Scholar] [CrossRef]
- Zindo, F.T.; Joubert, J.; Malan, S.F. Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med. Chem. 2015, 7, 609–629. [Google Scholar] [CrossRef]
- Bautista-Aguilera, Ó.M.; Hagenow, S.; Palomino-antolin, A.; Farré-Alins, V.; Ismaili, L.; Joffrin, P.L.; Jimeno, M.L.; Soukup, O.; Janočková, J.; Kalinowsky, L.; et al. Multitarget-directed ligands combining cholinesterase and monoamine oxidase inhibition with histamine H3R antagonism for neurodegenerative diseases. Angew. Chem. Int. Ed. Engl. 2018, 56, 12765–12769. [Google Scholar] [CrossRef] [Green Version]
- Lutsenko, K.; Hagenow, S.; Affini, A.; Reiner, D.; Stark, H. Rasagiline derivatives combined with histamine H3 receptor properties. Bioorg. Med. Chem. Lett. 2019, 29, 126612. [Google Scholar] [CrossRef]
- Affini, A.; Hagenow, S.; Zivkovic, A.; Marco-Contelles, J.; Stark, H. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem. 2018, 148, 487–497. [Google Scholar] [CrossRef]
- Łażewska, D.; Olejarz-Maciej, A.; Kaleta, M.; Bajda, M.; Siwek, A.; Karcz, T.; Doroz-Płonka, A.; Cichoń, U.; Kuder, K.; Kieć-Kononowicz, K. 4-tert-Pentylphenoxyalkyl derivatives—Histamine H3 receptor ligands and monoamine oxidase B inhibitors. Bioorg. Med. Chem. Lett. 2018, 28, 3596–3600. [Google Scholar] [CrossRef] [PubMed]
- Łażewska, D.; Ligneau, X.; Schwartz, J.C.; Schunack, W.; Stark, H.; Kieć-Kononowicz, K. Ether derivatives of 3-piperidinopropan-1-ol as non-imidazole histamine H3 receptor antagonists. Bioorg. Med. Chem. 2006, 14, 3522–3529. [Google Scholar] [CrossRef] [PubMed]
- Kuder, K.J.; Łażewska, D.; Latacz, G.; Schwed, J.S.; Karcz, T.; Stark, H.; Karolak-Wojciechowska, J.; Kieć-Kononowicz, K. Chlorophenoxyaminoalkyl derivatives as histamine H3R ligands and antiseizure agents. Bioorg. Med. Chem. 2016, 24, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Panchuk-Voloshina, N. A one-step fluorometric method for the continuous measurement of monoamine oxidase activity. Anal. Biochem. 1997, 253, 169–174. [Google Scholar] [CrossRef]
- Podlewska, S.; Latacz, G.; Łażewska, D.; Kieć-Kononowicz, K.; Handzlik, J. In silico and in vitro studies on interaction of novel non-imidazole histamine H3R ligands with CYP3A4. Bioorg. Med. Chem. Lett. 2020, 30, 127147. [Google Scholar] [CrossRef] [PubMed]
- Copeland, R.A. Evaluation of Enzyme Inhibitors in Drug Discovery. A Guide for Medicinal Chemists and Pharmacologists; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Ramsay, R.R.; Tipton, K.F. Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules 2017, 22, 1192. [Google Scholar] [CrossRef] [Green Version]
- Copeland, R.A. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, 2nd ed.; Willey-VCH: New York, NY, USA, 2000; ISBN 0-471-22063-9. [Google Scholar]
- Kurnik-Łucka, M.; Latacz, G.; Martyniak, A.; Bugajski, A.; Kieć-Kononowicz, K.; Gil, K. Salsolinol-neurotoxic or neuroprotective? Neurotox. Res. 2020, 37, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Duty, S.; Jenner, P. Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol. 2011, 164, 1357–1391. [Google Scholar] [CrossRef] [Green Version]
- Hauber, W.; Neuscheler, P.; Nagel, J.; Müller, C.E. Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A(2A) receptors in the caudate-putamen of rats. Eur. J. Neurosci. 2001, 14, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
- Kottke, T.; Sander, K.; Weizel, L.; Schneider, E.H.; Seifert, R.; Stark, H. Receptor-specific functional efficacies of alkyl imidazoles as dual histamine H3/H4 receptor ligands. Eur. J. Pharmacol. 2011, 654, 200–208. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Prusoff, W. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [Google Scholar] [CrossRef] [PubMed]
- Załuski, M.; Schabikowski, J.; Schlenk, M.; Olejarz-Maciej, A.; Kubas, B.; Karcz, T.; Kuder, K.; Latacz, G.; Zygmunt, M.; Synak, D.; et al. Novel multi-target directed ligands based on annelated xanthine scaffold with aromatic substituents acting on adenosine receptor and monoamine oxidase B. Synthesis, in vitro and in silico studies. Bioorg. Med. Chem. 2019, 27, 1195–1210. [Google Scholar] [CrossRef] [PubMed]
- Tzvetkov, N.T.; Hinz, S.; Küppers, P.; Gastreich, M.; Müller, C.E. Indazole-and Indole-5-Carboxamides: Selective and Reversible Monoamine Oxidase B Inhibitors with Subnanomolar Potency. J. Med. Chem. 2014, 57, 6679–6703. [Google Scholar] [CrossRef] [PubMed]
- Latacz, G.; Kechagioglou, P.; Papi, R.; Łażewska, D.; Więcek, M.; Kamińska, K.; Wencel, P.; Karcz, T.; Schwed, J.S.; Stark, H.; et al. The Synthesis of 1,3,5-triazine Derivatives and JNJ7777120 Analogues with Histamine H4 Receptor Affinity and Their Interaction with PTEN Promoter. Chem. Biol. Drug Des. 2016, 88, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Prinssen, E.P.M.; Kleven, M.S.; Koek, W. Interactions between neuroleptics and 5-HT1A ligands in preclinical behavioral models for antipsychotic and extrapyramidal effects. Psychopharmacology 1999, 144, 20–29. [Google Scholar] [CrossRef] [PubMed]
Compounds | R | n | H3R a Ki (nM) (95%CI) | MAO B b IC50 (nM) (%Inh.) c | MAO A b IC50 (nM) (%Inh.) d |
---|---|---|---|---|---|
5 | 1 | 371 (136, 1009) | 2.7 ± 0.4 | nt e | |
DL76 | 1 | 38 f (8, 181) | 48 ± 15 | >10,000 (9%) | |
6 | 2 | 309 (166, 574) | 290 ± 7 | >10,000 (10%) | |
7 | 3 | 252 (64, 990) | (28%) | nt e | |
8 | 4 | 225 (98, 519) | (13%) | nt e | |
9 | 1 | 69 (49, 96) | 11 ± 1 | >10,000 (5%) | |
10 | 2 | 153 (46, 505) | 475 ± 38 | >10,000 (2%) | |
11 | 3 | 1556 (349, 6941) | (36%) | nt e | |
12 | 1 | 98 (43, 226) | 117 ±12 | >10,000 (10%) | |
13 | 2 | 102 (18, 571) | 1405 ± 494 | nt e | |
14 | 3 | 114 (33, 397) | (33%) | nt e | |
15 | 4 | 351 (223, 552) | (13%) | nt | |
16 | 1 | 1624 (1075, 2453) | 476 ± 38 | >10,000 (6%) | |
17 | 2 | 3437 (2701, 4374) | (38%) | nt e | |
18 | 3 | 3535 (2528, 4942) | 2777 ± 66 | >10,000 (19%) | |
19 | 4 | 2575 (542, 12227) | 1953 ± 45 | >10,000 (24%) | |
20 | 1 | 341 (49, 2388) | (37%) | nt e | |
21 | 2 | 1381 (923, 2066) | (35%) | nt e | |
22 | 3 | 2235 (1136, 4397) | (41%) | nt e | |
23 | 4 | 2083 (936, 4637) | (34%) | nt e | |
24 | 1 | 316 (123, 808) | (37%) | nt e | |
25 | 2 | 400 (152, 1050) | (33%) | nt e | |
26 | 3 | 531 (344, 822) | (39%) | nt e | |
27 | 4 | 1350 (651, 2798) | (10%) | nt e | |
28 | 1 | 111 (68, 180) | 45 ± 4 | >10,000 (10%) | |
29 | 2 | 299 (105, 855) | 1627 ± 78 | >10,000 (23%) | |
30 | 3 | 324 (121, 870) | (18%) | nt e | |
31 | 4 | 829 g (313, 2194) | (23%) | nt e | |
rasagiline | nt e | 15 ± 1 | nt e | ||
pargiline | nt e | 360 ± 138 | nt e | ||
safinamide | nt e | 7.7 ± 1.2 | nt e | ||
clorgiline | nt e | nt e | 1.76 ± 0.5 nM |
Parameters | Compound 9 | DL76 | ||||||
---|---|---|---|---|---|---|---|---|
Concentration (nM) | 0 | 0.2 | 10 | 40 | 0 | 7 | 48 | 164 |
Vmax (RFU/min) | 1713 | 1652 | 1544 | 1238 | 2046 | 1628 | 1165 | 726.3 |
KM (mM) | 0.24 | 0.27 | 0.27 | 0.28 | 0.11 | 0.14 | 0.21 | 0.27 |
Compound | Dose | Times of Observation of Catalepsy (s) 1 | ||
---|---|---|---|---|
(mg/kg; i.p.) | 0 min | 3 min | 6 min | |
control | - | 17.5 ± 5.3 | 30.0 ± 0 | 30.0 ± 0 |
DL-76 | 25 | 19.5± 4.2 | 26.5 ± 3.5 | 30.0 ± 0 |
50 | 13.8 ± 5.9 | 13.5 ± 4.2 * | 22.0 ± 5.0 | |
MSX-3 | 25 | 0 ± 0 *** | 0 ± 0 *** | 0 ± 0 *** |
50 | 0 ± 0 *** | 0 ± 0 *** | 0 ± 0 *** |
Compound | Dose (mg/kg) | Times of Observation of Catalepsy (s) 1 | ||
---|---|---|---|---|
0 min | 3 min | 6 min | ||
control | - | 4.2 ± 1.6 | 23.5 ± 6.5 | 30.0 ± 0 |
DL-76 | 25 | 0.66 ± 0.68 | 10.6 ± 6.1 | 15.0 ± 6.7 |
50 | 0 ± 0 *** | 0 ± 0 *** | 0.16 ± 0.4 *** | |
MSX-3 | 25 | 0 ± 0 *** | 0 ± 0 *** | 0 ± 0 *** |
50 | 0 ± 0 *** | 0 ± 0 *** | 0 ± 0 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łażewska, D.; Olejarz-Maciej, A.; Reiner, D.; Kaleta, M.; Latacz, G.; Zygmunt, M.; Doroz-Płonka, A.; Karcz, T.; Frank, A.; Stark, H.; et al. Dual Target Ligands with 4-tert-Butylphenoxy Scaffold as Histamine H3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. Int. J. Mol. Sci. 2020, 21, 3411. https://doi.org/10.3390/ijms21103411
Łażewska D, Olejarz-Maciej A, Reiner D, Kaleta M, Latacz G, Zygmunt M, Doroz-Płonka A, Karcz T, Frank A, Stark H, et al. Dual Target Ligands with 4-tert-Butylphenoxy Scaffold as Histamine H3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. International Journal of Molecular Sciences. 2020; 21(10):3411. https://doi.org/10.3390/ijms21103411
Chicago/Turabian StyleŁażewska, Dorota, Agnieszka Olejarz-Maciej, David Reiner, Maria Kaleta, Gniewomir Latacz, Małgorzata Zygmunt, Agata Doroz-Płonka, Tadeusz Karcz, Annika Frank, Holger Stark, and et al. 2020. "Dual Target Ligands with 4-tert-Butylphenoxy Scaffold as Histamine H3 Receptor Antagonists and Monoamine Oxidase B Inhibitors" International Journal of Molecular Sciences 21, no. 10: 3411. https://doi.org/10.3390/ijms21103411
APA StyleŁażewska, D., Olejarz-Maciej, A., Reiner, D., Kaleta, M., Latacz, G., Zygmunt, M., Doroz-Płonka, A., Karcz, T., Frank, A., Stark, H., & Kieć-Kononowicz, K. (2020). Dual Target Ligands with 4-tert-Butylphenoxy Scaffold as Histamine H3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. International Journal of Molecular Sciences, 21(10), 3411. https://doi.org/10.3390/ijms21103411