Ultramicronized Palmitoylethanolamide and Paracetamol, a New Association to Relieve Hyperalgesia and Pain in a Sciatic Nerve Injury Model in Rat
Abstract
:1. Introduction
2. Results
2.1. Effect of PEAum–Paracetamol Association on Histological Changes after SNI
2.2. Effect of PEAum–Paracetamol on Mast Cell Degranulation
2.3. Effect of PEAum–Paracetamol on Behavior after SNI
2.4. Effect of PEAum–Paracetamol on Spinal c-Fos Activation and NGF Expression after SNI
2.5. Effect of PEAum–Paracetamol on Cytokine Levels and Oxidative Stress after SNI
2.6. Effect of PEAum–Paracetamol on Astrocyte and Microglial Activation after SNI
2.7. Effect of PEAum–Paracetamol on the Inflammatory Response after SNI
2.8. Effect of PEAum–Paracetamol on the Apoptotic Pathway after SNI
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Model
- Sham: The rats received anesthesia but did not receive the lesion, and were administered vehicle (1% carboxymethylcellulose and saline) orally for 14 days (n = 8)
- Sham + PEAum: The rats received anesthesia but did not receive the lesion, and were administered PEAum (5 mg/kg in 1% carboxymethylcellulose and saline o.s.) daily for 14 days (n = 8) (Data not shown)
- Sham + Paracetamol: The rats received anesthesia but did not receive the lesion, and were administered Paracetamol (30 mg/kg in 1% carboxymethylcellulose and saline o.s.) daily for 14 days (n = 8) (Data not shown)
- Sham + PEA + Paracetamol: The rats received anesthesia but did not receive the lesion, and were administered PEAum + Paracetamol (5 mg/kg + 30 mg/kg in 1% carboximethylcellulose and saline o.s.) daily for 14 days (n = 8) (Data not shown)
- Sciatic nerve injury (SNI) + Vehicle: the sciatic nerve crush was applied to the rats after anesthesia, and subsequently administered only with the vehicle (1% carboxymethylcellulose and saline) orally for 14 days (n = 8)
- SNI + PEAum: rats were subjected to SNI and treated with PEAum (5 mg/kg in 1% carboximethylcellulose and saline o.s.) daily for 14 days after SNI. (n = 8)
- SNI + Paracetamol rats were subjected to SNI and treated with Paracetamol (30 mg/kg in 1% carboximethylcellulose and saline o.s.) daily for 14 days after SNI. (n = 8)
- SNI + PEAum + Paracetamol: rats were subjected to SNI and treated with PEA + Paracetamol (5 mg/kg + 30 mg/kg in 1% carboximethylcellulose and saline o.s.) daily for 14 days after SNI. (n = 8)
4.3. Hot Plate Test
4.4. Von Frey Test
4.5. Histology
4.6. Western Blot
4.7. ELISA
4.8. TUNEL
4.9. Immunofluorescence
4.10. Cytokines Measurement
4.11. Statistical Evaluation
4.12. Materials
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PARA | paracetamol |
NGF | Nerve growth factor |
ICAM-1 | intercellular adhesion molecules-1 |
IL-1β | interleukin 1β |
IBA-1 | Ionized calcium binding adaptor molecule 1 |
PGE-2 | Prostaglandin E2 |
COX-2 | Cicloxigenase-2 |
NF-κB | nuclear factor kappa B |
PEA | Palmitoylethanolamide |
PBS | Phosphate buffered saline |
ALIA | Autocoid local injury antagonism |
GFAP | Glial fibrillary acid protein |
SNI | Sciatic nerve injury |
TNF-α | tumor necrosis factor-α |
References
- Koeppen, A.H. Wallerian degeneration: History and clinical significance. J. Neurol. Sci. 2004, 220, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Gureje, O.; Von Korff, M.; Simon, G.E.; Gater, R. Persistent pain and well-being: A World Health Organization Study in Primary Care. JAMA 1998, 280, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Dani, M.; Guindon, J.; Lambert, C.; Beaulieu, P. The local antinociceptive effects of paracetamol in neuropathic pain are mediated by cannabinoid receptors. Eur. J. Pharmacol. 2007, 573, 214–215. [Google Scholar] [CrossRef] [PubMed]
- Ottani, A.; Leone, S.; Sandrini, M.; Ferrari, A.; Bertolini, A. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur. J. Pharmacol. 2006, 531, 280–281. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.A.; Gentry, C.; Alenmyr, L.; Killander, D.; Lewis, S.E.; Andersson, A.; Bucher, B.; Galzi, J.L.; Sterner, O.; Bevan, S.; et al. TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Delta(9)-tetrahydrocannabiorcol. Nat. Commun. 2011, 2, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remy, C.; Marret, E.; Bonnet, F. State of the art of paracetamol in acute pain therapy. Curr. Opin. Anaesthesiol. 2006, 19, 562–565. [Google Scholar] [CrossRef]
- Iannotti, F.A.; Di Marzo, V.; Petrosino, S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog. Lipid Res. 2016, 62, 107–128. [Google Scholar] [CrossRef]
- Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Scince 1992, 258, 1946–1949. [Google Scholar] [CrossRef]
- Aloe, L.; Leon, A.; Levi-Montalcini, R. A proposed autacoid mechanism controlling mastocyte behaviour. Agents Actions 1993, 39, C145–C147. [Google Scholar] [CrossRef]
- Petrosino, S.; Moriello, A.S.; Verde, R.; Allarà, M.; Imperatore, R.; Ligresti, A.; Mahmoud, A.M.; Peritore, A.F.; Iannotti, F.A.; Di Marzo, V. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J. Neuroinflamm. 2019, 16, 274. [Google Scholar] [CrossRef] [Green Version]
- Bettoni, I.; Comelli, F.; Colombo, A.; Bonfanti, P.; Costa, B. Non-neuronal cell modulation relieves neuropathic pain: Efficacy of the endogenous lipid palmitoylethanolamide. CNS Neurol. Disord. Drug Targets 2013, 12, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Luongo, L.; Guida, F.; Boccella, S.; Bellini, G.; Gatta, L.; Rossi, F.; de Novellis, V.; Maione, S. Palmitoylethanolamide reduces formalin-induced neuropathic-like behaviour through spinal glial/microglial phenotypical changes in mice. CNS Neurol. Disord. Drug Targets 2013, 12, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Perkins, N.M.; Tracey, D.J.; Geczy, C.L. Inflammation and hyperalgesia induced by nerve injury in the rat: A key role of mast cells. Pain 2003, 105, 467–479. [Google Scholar] [CrossRef]
- Skaper, S.D.; Facci, L.; Barbierato, M.; Zusso, M.; Bruschetta, G.; Impellizzeri, D.; Cuzzocrea, S.; Giusti, P. N-Palmitoylethanolamine and Neuroinflammation: A Novel Therapeutic Strategy of Resolution. Mol. Neurobiol. 2015, 52, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Andresen, S.R.; Bing, J.; Hansen, R.M.; Biering-Sørensen, F.; Johannesen, I.L.; Hagen, E.M.; Rice, A.S.; Nielsen, J.F.; Bach, F.W.; Finnerup, N.B. Ultramicronized palmitoylethanolamide in spinal cord injury neuropathic pain: A randomized, double-blind, placebo-controlled trial. Pain 2016, 157, 2097–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gugliandolo, E.; D’amico, R.; Cordaro, M.; Fusco, R.; Siracusa, R.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. Effect of PEA-OXA on neuropathic pain and functional recovery after sciatic nerve crush. J. Neuroinflamm. 2018, 15, 264. [Google Scholar] [CrossRef] [Green Version]
- Impellizzeri, D.; Peritore, A.F.; Cordaro, M.; Gugliandolo, E.; Siracusa, R.; Crupi, R.; D’Amico, R.; Fusco, R.; Evangelista, M.; Cuzzocrea, S.; et al. The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice. FASEB J. 2019, 33, 11364–11380. [Google Scholar] [CrossRef]
- Chen, Z.; Hong, W.; Antti, P.; Jianhong, W.; Synnöve, C. Anxiety- and activity-related effects of paracetamol on healthy and neuropathic rats. Pharmacol. Res. Perspect. 2018, 6, e00367. [Google Scholar] [CrossRef] [Green Version]
- Schifilliti, C.; Cucinotta, L.; Fedele, V.; Ingegnosi, C.; Luca, S.; Leotta, C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res. Treat. 2014, 2014, 849623. [Google Scholar] [CrossRef]
- Petrosino, S.; Cordaro, M.; Verde, R.; Moriello, A.S.; Marcolongo, G.; Schievano, C.; Siracusa, R.; Piscitelli, F.; Peritore, A.F.; Crupi, R. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-hyperalgesic Effect. Front. Pharmacol. 2018, 9, 249. [Google Scholar] [CrossRef]
- Zochodne, D.W.; Nguyen, C.; Sharkey, K.A. Accumulation and degranulation of mast cells in experimental neuromas. Neurosci. Lett. 1994, 182, 3–6. [Google Scholar] [CrossRef]
- Metcalfe, D.D. Mast cells and mastocytosis. Blood 2008, 112, 946–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattori, A.; Iwasaki, S.; Murase, K.; Tsujimoto, M.; Sato, M.; Hayashi, K.; Kohno, M. Tumor necrosis factor is markedly synergistic with interleukin 1 and interferon-gamma in stimulating the production of nerve growth factor in fibroblasts. FEBS Lett. 1994, 340, 177–180. [Google Scholar] [CrossRef] [Green Version]
- Skaper, S.D. Nerve growth factor: A neuroimmune crosstalk mediator for all seasons. Immunology 2017, 151, 1–15. [Google Scholar] [CrossRef]
- Siniscalco, D.; Giordano, C.; Rossi, F.; Maione, S.; de Novellis, V. Role of neurotrophins in neuropathic pain. Curr. Neuropharmacol. 2011, 9, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Atef, M.M.; El-Sayed, N.M.; Ahmed, A.A.M.; Mostafa, Y.M. Donepezil improves neuropathy through activation of AMPK signalling pathway in streptozotocin-induced diabetic mice. Biochem. Pharmacol. 2019, 159, 1–10. [Google Scholar] [CrossRef]
- Achitei, D.; Ciobica, A.; Balan, G.; Gologan, E.; Stanciu, C.; Stefanescu, G. Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig. Dis. Sci. 2013, 58, 1244–1249. [Google Scholar] [CrossRef]
- Wang, D.; Couture, R.; Hong, Y. Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur. J. Pharmacol. 2014, 728, 59–66. [Google Scholar] [CrossRef]
- Kernie, S.G.; Erwin, T.M.; Parada, L.F. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J. Neurosci. Res. 2001, 66, 317–326. [Google Scholar] [CrossRef]
- Zhao, M.; Feng, L.; Hangdi, X.; Wei, Y.; Jianmin, Z. Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation. Mol. Med. Rep. 2016, 13, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, M.; Masuda, T.; Tozaki-Saitoh, H.; Inoue, K. Microglial regulation of neuropathic pain. J. Pharmacol. Sci. 2013, 121, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miladinovic, T.; Singh, G. Spinal microglia contribute to cancer-induced pain through system xC (-)-mediated glutamate release. Pain Rep. 2019, 4, e738. [Google Scholar] [CrossRef]
- Kudo, K.; Takahashi, T.; Suzuki, S. The changes of c-Fos expression by motor cortex stimulation in the deafferentation pain model. Neurol. Med. Chir. (Tokyo) 2014, 54, 537–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bester, H.; Beggs, S.; Woolf, C.J. Changes in tactile stimuli-induced behavior and c-Fos expression in the superficial dorsal horn and in parabrachial nuclei after sciatic nerve crush. J. Comp. Neurol. 2000, 428, 45–61. [Google Scholar] [CrossRef]
- Hengerer, B.; Lindholm, D.; Heumann, R.; Rüther, U.; Wagner, E.F.; Thoenen, H. Lesion-induced increase in nerve growth factor mRNA is mediated by c-fos. Proc. Natl. Acad. Sci. USA 1990, 87, 3899–3903. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Lee, H.; Noh, K.; Lee, S.J. IKK/NF-kappaB-dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 2017, 158, 1666–1677. [Google Scholar] [CrossRef]
- Yin, Q.; Qin, F.; Yu, Z.; Ming-Yue, C.; He, L.; Jing, L.; Fei-Fei, L.; Jin-Tai, J.; Wei, C.; Chang-Dong, Y. Spinal NF-kappaB and chemokine ligand 5 expression during spinal glial cell activation in a neuropathic pain model. PLoS ONE 2015, 10, e0115120. [Google Scholar]
- Durrenberger, P.F.; Facer, P.; Casula, M.A.; Yiangou, Y.; Gray, R.A.; Chessell, I.P.; Day, N.C.; Collins, S.D.; Bingham, S.; Wilson, A.W.; et al. Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injuryA time-course study. BMC Neurol. 2006, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Eisenach, J.C. Morphological and pharmacological evidence for the role of peripheral prostaglandins in the pathogenesis of neuropathic pain. Eur. J. Neurosci. 2002, 15, 1037–1047. [Google Scholar] [CrossRef]
- Durrenberger, P.F.; Facer, P.; Gray, R.A.; Chessell, I.P.; Naylor, A.; Bountra, C.; Banati, R.B.; Birch, R.; Anand, P. Cyclooxygenase-2 (Cox-2) in injured human nerve and a rat model of nerve injury. J. Peripher. Nerv. Syst. 2004, 9, 15–25. [Google Scholar] [CrossRef]
- Takahashi, M.; Kawaguchi, M.; Shimada, K.; Konishi, N.; Furuya, H.; Nakashima, T. Cyclooxygenase-2 expression in Schwann cells and macrophages in the sciatic nerve after single spinal nerve injury in rats. Neurosci. Lett. 2004, 363, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Muja, N.; DeVries, G.H. Prostaglandin E(2) and 6-keto-prostaglandin F(1alpha) production is elevated following traumatic injury to sciatic nerve. Glia 2004, 46, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Quirion, R. Up-regulation of interleukin-6 induced by prostaglandin E from invading macrophages following nerve injury: An In Vivo and In Vitro study. J. Neurochem. 2005, 93, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Schafers, M.; Marziniak, M.; Sorkin, L.S.; Yaksh, T.L.; Sommer, C. Cyclooxygenase inhibition in nerve-injury- and TNF-induced hyperalgesia in the rat. Exp. Neurol. 2004, 185, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, K.; Gao, H.M.; Mandavilli, B.; Wang, J.Y.; Hong, J.S. Molecular consequences of activated microglia in the brain: Overactivation induces apoptosis. J. Neurochem. 2001, 77, 182–189. [Google Scholar] [CrossRef]
- Zhang, T.; Zhengwei, L.; Jianli, D.; Feng Nan, M.D.; Tao, L.; Qing, Y. Edaravone promotes functional recovery after mechanical peripheral nerve injury. Neural. Regen. Res. 2014, 9, 1709–1715. [Google Scholar]
- Stenberg, L.; Kanje, M.; Dolezal, K.; Dahlin, L.B. Expression of activating transcription factor 3 (ATF 3) and caspase 3 in Schwann cells and axonal outgrowth after sciatic nerve repair in diabetic BB rats. Neurosci. Lett. 2012, 515, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Renno, W.M.; Al-Maghrebi, M.; Rao, M.S.; Khraishah, H. (-)-Epigallocatechin-3-gallate modulates spinal cord neuronal degeneration by enhancing growth-associated protein 43, B-cell lymphoma 2, and decreasing B-cell lymphoma 2-associated x protein expression after sciatic nerve crush injury. J. Neurotrauma 2015, 32, 170–184. [Google Scholar] [CrossRef] [Green Version]
- Tamaddonfard, E.; Amir Abbas, F.; Elham, A.; Abbas, H. Crocin enhanced functional recovery after sciatic nerve crush injury in rats. Iran. J. Basic Med. Sci. 2013, 16, 83–90. [Google Scholar]
- Impellizzeri, D.; Bruschetta, G.; Cordaro, M.; Crupi, R.; Siracusa, R.; Esposito, E.; Cuzzocrea, S. Micronized/ultramicronized palmitoylethanolamide displays superior oral efficacy compared to nonmicronized palmitoylethanolamide in a rat model of inflammatory pain. J. Neuroinflamm. 2014, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, K.; Dubner, R.; Brown, F.; Flores, C.; Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32, 77–88. [Google Scholar] [CrossRef]
- Choi, S.; Na, H.S.; Kim, J.; Lee, J.; Lee, S.; Kim, D.; Park, J.; Chen, C.C.; Campbell, K.P.; Shin, H.S. Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes. Brain Behav. 2007, 6, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Ferrier, J.; Marchand, F.; Balayssac, D. Assessment of Mechanical Allodynia in Rats Using the Electronic Frey Test. Bio-protocol 2016, 6, 5. [Google Scholar] [CrossRef]
- Cordaro, M.; Siracusa, R.; Crupi, R.; Impellizzeri, D.; Peritore, A.F.; D’Amico, R.; Gugliandolo, E.; Di Paola, R.; Cuzzocrea, S. 2-Pentadecyl-2-Oxazoline Reduces Neuroinflammatory Environment in the MPTP Model of Parkinson Disease. Mol. Neurobiol. 2018, 55, 9251–9266. [Google Scholar] [CrossRef]
- Smith, C.J.; Allard, D.E.; Wang, Y.; Howard, J.F., Jr.; Montgomery, S.A.; Su, M.A. IL-10 Paradoxically Promotes Autoimmune Neuropathy through S1PR1-Dependent CD4(+) T Cell Migration. J. Immunol. 2018, 200, 1580–1592. [Google Scholar] [CrossRef]
- Gugliandolo, E.; Fusco, R.; D’Amico, R.; Militi, A.; Oteri, G.; Wallace, J.L.; Di Paola, R.; Cuzzocrea, S. Anti-inflammatory effect of ATB-352, a H2S -releasing ketoprofen derivative, on lipopolysaccharide-induced periodontitis in rats. Pharmacol. Res. 2018, 132, 220–231. [Google Scholar] [CrossRef]
- D’Amico, R.; Fusco, R.; Gugliandolo, E.; Cordaro, M.; Siracusa, R.; Impellizzeri, D.; Peritore, A.F.; Crupi, R.; Cuzzocrea, S.; Di Paola, R. Effects of a new compound containing Palmitoylethanolamide and Baicalein in myocardial ischaemia/reperfusion injury in vivo. Phytomedicine 2019, 54, 27–42. [Google Scholar] [CrossRef]
- Impellizzeri, D.; Campolo, M.; Bruschetta, G.; Crupi, R.; Cordaro, M.; Paterniti, I.; Cuzzocrea, S.; Esposito, E. Traumatic Brain Injury Leads to Development of Parkinson’s Disease Related Pathology in Mice. Front. Neurosci. 2016, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Peritore, A.F.; Crupi, R.; Scuto, M.; Gugliandolo, E.; Siracusa, R.; Impellizzeri, D.; Cordaro, M.; D’amico, R.; Fusco, R.; Di Paola, R.; et al. The role of Annexin A1 and formyl peptide receptor 2/3 signaling on chronic corticosterone-induced depression-like behaviors and impairment in hippocampal-dependent memory. CNS Neurol. Disord. Drug Targets 2020, 19, 27–43. [Google Scholar] [CrossRef]
- Zhou, D.; Masliah, E.; Spector, S.A. Autophagy is increased in postmortem brains of persons with HIV-1-associated encephalitis. J. Infect. Dis. 2011, 203, 1647–1657. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peritore, A.F.; Siracusa, R.; Fusco, R.; Gugliandolo, E.; D’Amico, R.; Cordaro, M.; Crupi, R.; Genovese, T.; Impellizzeri, D.; Cuzzocrea, S.; et al. Ultramicronized Palmitoylethanolamide and Paracetamol, a New Association to Relieve Hyperalgesia and Pain in a Sciatic Nerve Injury Model in Rat. Int. J. Mol. Sci. 2020, 21, 3509. https://doi.org/10.3390/ijms21103509
Peritore AF, Siracusa R, Fusco R, Gugliandolo E, D’Amico R, Cordaro M, Crupi R, Genovese T, Impellizzeri D, Cuzzocrea S, et al. Ultramicronized Palmitoylethanolamide and Paracetamol, a New Association to Relieve Hyperalgesia and Pain in a Sciatic Nerve Injury Model in Rat. International Journal of Molecular Sciences. 2020; 21(10):3509. https://doi.org/10.3390/ijms21103509
Chicago/Turabian StylePeritore, Alessio Filippo, Rosalba Siracusa, Roberta Fusco, Enrico Gugliandolo, Ramona D’Amico, Marika Cordaro, Rosalia Crupi, Tiziana Genovese, Daniela Impellizzeri, Salvatore Cuzzocrea, and et al. 2020. "Ultramicronized Palmitoylethanolamide and Paracetamol, a New Association to Relieve Hyperalgesia and Pain in a Sciatic Nerve Injury Model in Rat" International Journal of Molecular Sciences 21, no. 10: 3509. https://doi.org/10.3390/ijms21103509
APA StylePeritore, A. F., Siracusa, R., Fusco, R., Gugliandolo, E., D’Amico, R., Cordaro, M., Crupi, R., Genovese, T., Impellizzeri, D., Cuzzocrea, S., & Di Paola, R. (2020). Ultramicronized Palmitoylethanolamide and Paracetamol, a New Association to Relieve Hyperalgesia and Pain in a Sciatic Nerve Injury Model in Rat. International Journal of Molecular Sciences, 21(10), 3509. https://doi.org/10.3390/ijms21103509