Isolation and Characterization of Antibodies Induced by Immunization with TNF-α Inducible Globotetraosylceramide
Abstract
:1. Introduction
2. Results
2.1. Induction of Anti-Gb4Cer Antibodies in Serum from Mice Immunized with Gb4Cer-VLCFAs
2.2. Characterization of Antibodies Produced by Hybridoma Cells Generated from a Gb4Cer-VLCFA-Immunized Mouse
2.3. Properties of the Anti-Gb4Cer Monoclonal Antibodies Isolated in This Study
3. Discussion
4. Materials and Methods
4.1. Immunization and Preparation of Serum
4.2. Hybridoma Generation
4.3. Characterization of Immunoglobulin Isotypes
4.4. ELISAs
4.5. TLC-Immunostaining
4.6. Statistical Analysis
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GSLs | Glycosphingolipids |
Cer | Ceramide |
VLCFAs | Very long-chain fatty acids |
NKT cells | Natural killer T cells |
ECs | Vascular endothelial cells |
LPS | Lipopolysaccharide |
Gb4Cer | Globotetraosylceramide/globoside |
Gb3Cer | Globotriaosylceramide |
LacCer | Lactosylceramide |
ELISA | Enzyme-linked immunosorbent assay |
mAbs | Monoclonal antibodies |
TLC | Thin-layer chromatography |
CD1d | Cluster of differentiation 1d |
References
- Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 1997, 278, 1626–1629. [Google Scholar] [CrossRef] [PubMed]
- Goff, R.D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C., 3rd; Teyton, L.; Bendelac, A.; Savage, P.B. Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 2004, 126, 13602–13603. [Google Scholar] [CrossRef] [PubMed]
- Iwabuchi, K.; Nakayama, H.; Iwahara, C.; Takamori, K. Significance of glycosphingolipid fatty acid chain length on membrane microdomain-mediated signal transduction. FEBS Lett. 2010, 584, 1642–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Ikeda, K.; Tokuda, N.; Nishitani, C.; Ohto, U.; Akashi-Takamura, S.; Ito, Y.; Uchikawa, M.; Kuroki, Y.; Taguchi, R.; et al. TLR4-MD-2 complex is negatively regulated by an endogenous ligand, globotetraosylceramide. Proc. Natl. Acad. Sci. USA 2013, 110, 4714–4719. [Google Scholar] [CrossRef] [Green Version]
- Rossjohn, J.; Pellicci, D.G.; Patel, O.; Gapin, L.; Godfrey, D.I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 2012, 12, 845–857. [Google Scholar] [CrossRef] [Green Version]
- Okuda, T. Data set for characterization of TNF-α-inducible glycosphingolipids in vascular endothelial cells. Data Brief. 2018, 21, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Nakakita, S.; Nakayama, K. Structural characterization and dynamics of globotetraosylceramide in vascular endothelial cells under TNF-α stimulation. Glycoconj. J. 2010, 27, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Brodin, T.; Thurin, J.; Stromberg, N.; Karlsson, K.A.; Sjogren, H.O. Production of oligosaccharide-binding monoclonal antibodies of diverse specificities by immunization with purified tumor-associated glycolipids inserted into liposomes with lipid A. Eur. J. Immunol. 1986, 16, 951–956. [Google Scholar] [CrossRef]
- Okuda, T. PUGNAc treatment provokes globotetraosylceramide accumulation in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 2017, 487, 76–82. [Google Scholar] [CrossRef]
- Okuda, T. Data on immunoglobulin G antibodies induced by immunization of mice with globoside carrying very long-chain fatty acids. Data Brief. 2018, 19, 256–260. [Google Scholar] [CrossRef]
- von dem Borne, A.E.; Bos, M.J.; Joustra-Maas, N.; Tromp, J.F.; van’t Veer, M.B.; van Wijngaarden-du Bois, R.; Tetteroo, P.A. A murine monoclonal IgM antibody specific for blood group P antigen (globoside). Br. J. Haematol. 1986, 63, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Kotani, M.; Kawashima, I.; Ozawa, H.; Ogura, K.; Ariga, T.; Tai, T. Generation of one set of murine monoclonal antibodies specific for globo-series glycolipids: Evidence for differential distribution of the glycolipids in rat small intestine. Arch. Biochem. Biophys. 1994, 310, 89–96. [Google Scholar] [CrossRef]
- Snapper, C.M.; McIntyre, T.M.; Mandler, R.; Pecanha, L.M.; Finkelman, F.D.; Lees, A.; Mond, J.J. Induction of IgG3 secretion by interferon gamma: A model for T cell-independent class switching in response to T cell-independent type 2 antigens. J. Exp. Med. 1992, 175, 1367–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, D.; Shimada, Y.; Kamiya, S.; Yamazaki, K.; Makimura, Y.; Ito, K.; Minamiura, N.; Yamamoto, K. Convenient preparation and characterization of a monoclonal antibody for the N-linked sugar chain of a glycoprotein using a microbial endoglycosidase. Arch. Biochem. Biophys. 2008, 477, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Fukui, A. Generation of anti-oligosaccharide antibodies that recognize mammalian glycoproteins by immunization with a novel artificial glycosphingolipid. Biochem. Biophys. Res. Commun. 2018, 497, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Shimizu, K.; Hasaba, S.; Date, M. Induction of specific adaptive immune responses by immunization with newly designed artificial glycosphingolipids. Sci. Rep. 2019, 9, 18803. [Google Scholar] [CrossRef]
- Okuda, T.; Tokuda, N.; Numata, S.; Ito, M.; Ohta, M.; Kawamura, K.; Wiels, J.; Urano, T.; Tajima, O.; Furukawa, K.; et al. Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem. 2006, 281, 10230–10235. [Google Scholar] [CrossRef] [Green Version]
- Legros, N.; Pohlentz, G.; Steil, D.; Muthing, J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int. J. Med. Microbiol. 2018, 308, 1073–1084. [Google Scholar] [CrossRef]
- John, C.M.; Griffiss, J.M.; Apicella, M.A.; Mandrell, R.E.; Gibson, B.W. The structural basis for pyocin resistance in Neisseria gonorrhoeae lipooligosaccharides. J. Biol. Chem. 1991, 266, 19303–19311. [Google Scholar]
- Masoud, H.; Moxon, E.R.; Martin, A.; Krajcarski, D.; Richards, J.C. Structure of the variable and conserved lipopolysaccharide oligosaccharide epitopes expressed by Haemophilus influenzae serotype b strain Eagan. Biochemistry 1997, 36, 2091–2103. [Google Scholar] [CrossRef]
- Risberg, A.; Alvelius, G.; Schweda, E.K. Structural analysis of the lipopolysaccharide oligosaccharide epitopes expressed by Haemophilus influenzae strain RM.118-26. Eur. J. Biochem. 1999, 265, 1067–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, K.E.; Anderson, S.M.; Young, N.S. Erythrocyte P antigen: Cellular receptor for B19 parvovirus. Science 1993, 262, 114–117. [Google Scholar] [CrossRef] [PubMed]
Reactivity to Gb4Cer | Number of Clones | Rate (%) |
---|---|---|
Strong (A450 ≥ 0.5) | 97 | 20.2 |
Moderate (0.5 > A450 ≥ 0.1) | 208 | 43.3 |
Weak (0.1 > A450 ≥ 0.05) | 88 | 18.3 |
Trace or negative (A450 < 0.05) | 87 | 18.1 |
Epitope | Number of Clones | Rate (%) |
---|---|---|
Gb4Cer | 10 | 37.0 |
Gb4Cer and Gb3Cer | 2 | 7.4 |
Gb4Cer and precursors | 15 | 55.6 |
GSL | Structure |
---|---|
LacCer | Galβ1,4GlcCer |
Gb3Cer | Galα1,4Galβ1,4GlcCer |
Gb4Cer | GalNAcβ1,3Galα1,4Galβ1,4GlcCer |
Gg3Cer | GalNAcβ1,4Galβ1,4GlcCer |
Gg4Cer | Galβ1,3GalNAcβ1,4Galβ1,4GlcCer |
GM3 | Neu5Acα2,3Galβ1,4GlcCer |
GM2 | GalNAcβ1,4(Neu5Acα2,3)Galβ1,4GlcCer |
GM1 | Galβ1,3GalNAcβ1,4(Neu5Acα2,3)Galβ1,4GlcCer |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuda, T. Isolation and Characterization of Antibodies Induced by Immunization with TNF-α Inducible Globotetraosylceramide. Int. J. Mol. Sci. 2020, 21, 3632. https://doi.org/10.3390/ijms21103632
Okuda T. Isolation and Characterization of Antibodies Induced by Immunization with TNF-α Inducible Globotetraosylceramide. International Journal of Molecular Sciences. 2020; 21(10):3632. https://doi.org/10.3390/ijms21103632
Chicago/Turabian StyleOkuda, Tetsuya. 2020. "Isolation and Characterization of Antibodies Induced by Immunization with TNF-α Inducible Globotetraosylceramide" International Journal of Molecular Sciences 21, no. 10: 3632. https://doi.org/10.3390/ijms21103632
APA StyleOkuda, T. (2020). Isolation and Characterization of Antibodies Induced by Immunization with TNF-α Inducible Globotetraosylceramide. International Journal of Molecular Sciences, 21(10), 3632. https://doi.org/10.3390/ijms21103632