Modulation of VEGF Expression and Oxidative Stress Response by Iodine Deficiency in Irradiated Cancerous and Non-Cancerous Breast Cells
Abstract
:1. Introduction
2. Results
2.1. Additive Effects of Radiation and ID on Total VEGF and VEGF165 mRNA Up-Regulation in MCF12A But Not in MCF7 Cells
2.2. Radiation- and ID-Induced ROS Production and Oxidative Stress in MCF12A and MCF7 Cells
2.3. ID and Radiation-Induced Increase in VEGF mRNA Depends on Cellular ROS
2.4. Additive Up-Regulation of Antioxidant Enzymes mRNA by ID and Radiation
3. Discussion
4. Materials and Methods
4.1. Cell Models
4.2. Irradiation
4.3. Quantitative Polymerase Chain Reaction
4.4. Western Blot
4.5. Immunofluorescence
4.6. ROS Measurement Using Flow Cytometry
4.7. Statistics
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DPI GY 4-HNE ID NAC NIS OS ROS SOD VEGF | Diphenyleneiodonium (DPI) Gray (Gy) 4-Hydroxynonenal (4-HNE) Iodine deficiency (ID) N-acetylcysteine (NAC) Sodium/iodide symporter (NIS) Oxidative stress (OS) Reactive oxygen species (ROS) Superoxide dismutase (SOD) Vascular endothelial growth factor (VEGF) |
References
- Hall, E.J.; Giacca, E. Radiobiology for the Radiologist, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- International Atomic Energy Agency. Radiation Biology: A Handbook for Teacher and Students; IAEA: Vienna, Italy, 2010. [Google Scholar]
- Adams, M.J.; Dozier, A.; E Shore, R.; Lipshultz, S.E.; Schwartz, R.G.; Constine, L.S.; Pearson, T.A.; Stovall, M.; Winters, P.; Fisher, S.G. Breast cancer risk 55+ years after irradiation for an enlarged thymus and its implications for early childhood medical irradiation today. Cancer Epidemiol Biomark. Prev. 2010, 19, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inskip, P.D.; Robison, L.L.; Stovall, M.; Smith, S.A.; Hammond, S.; Mertens, A.C.; Whitton, J.A.; Diller, L.; Kenney, L.; Donaldson, S.S.; et al. Radiation dose and breast cancer risk in the childhood cancer survivor study. J. Clin. Oncol. 2009, 27, 3901–3907. [Google Scholar] [CrossRef] [PubMed]
- Preston, D.L.; Kitahara, C.M.; Freedman, D.M.; Sigurdson, A.J.; Simon, S.L.; Little, M.P.; Cahoon, E.K.; Rajaraman, P.; Miller, J.S.; Alexander, B.H.; et al. Breast cancer risk and protracted low-to-moderate dose occupational radiation exposure in the US Radiologic Technologists Cohort, 1983–2008. Br. J. Cancer 2016, 115, 1105–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kil, W.J.; Tofilon, P.J.; Camphausen, K. Post-radiation increase in VEGF enhances glioma cell motility in vitro. Radiat. Oncol. 2012, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Mohan, S.; Natarajan, M. Radiation-Triggered NF-kappaB Activation is Responsible for the Angiogenic Signaling Pathway and Neovascularization for Breast Cancer Cell Proliferation and Growth. Breast Cancer (Auckl.) 2012, 6, 125–135. [Google Scholar]
- Vala, I.S.; Martins, L.R.; Imaizumi, N.; Nunes, R.J.; Rino, J.; Kuonen, F.; Carvalho, L.M.; Rüegg, C.; Grillo, I.M.; Barata, J.T.; et al. Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS ONE 2010, 5, e11222. [Google Scholar]
- Paris, F.; Fuks, Z.; Kang, A.; Capodieci, P.; Juan, G.; Ehleiter, D.; Haimovitz-Friedman, A.; Cordon-Cardo, C.; Kolesnick, R. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001, 293, 293–297. [Google Scholar] [CrossRef]
- Gupta, V.K.; Jaskowiak, N.T.; Beckett, M.A.; Mauceri, H.J.; Grunstein, J.; Johnson, R.S.; Calvin, D.A.; Nodzenski, E.; Pejovic, M.; Kufe, D.; et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002, 8, 47–54. [Google Scholar] [CrossRef]
- Abdollahi, A.; Lipson, K.; Han, X.; Krempien, R.; Trinh, T.; Weber, K.J.; Hahnfeldt, P.; Hlatky, L.; Debus, J.; Howlett, A.R.; et al. SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res. 2003, 63, 3755–3763. [Google Scholar] [PubMed]
- Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Ameziane-El-Hassani, R.; Talbot, M.; Santos, M.C.D.S.D.; Al Ghuzlan, A.; Hartl, D.; Bidart, J.-M.; De Deken, X.; Miot, F.; Diallo, I.; De Vathaire, F.; et al. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc. Natl. Acad. Sci. USA 2015, 112, 5051–5056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyemi, U.; Redon, C.E.; Aziz, T.; Choudhuri, R.; Maeda, D.; Parekh, P.R.; Bonner, M.Y.; Arbiser, J.L.; Bonner, W.M. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat Res. 2015, 183, 262–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, G.; Cramer, T.; Suske, G.; Kemmner, W.; Wiedenmann, B.; Hocker, M. Oxidative stress regulates vascular endothelial growth factor-A gene transcription through Sp1- and Sp3-dependent activation of two proximal GC-rich promoter elements. J. Biol. Chem. 2003, 278, 8190–8198. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, K.D.; Guzy, R.D.; Pan, Y.; Young, R.M.; Cash, T.P.; Schumacker, P.T.; Simon, M.C. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab. 2005, 1, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Hardmeier, R.; Hoeger, H.; Fang-Kircher, S.; Khoschsorur, A.; Lubec, G. Transcription and activity of antioxidant enzymes after ionizing irradiation in radiation-resistant and radiation-sensitive mice. Proc. Natl. Acad. Sci. USA 1997, 94, 7572–7576. [Google Scholar] [CrossRef] [Green Version]
- Bravard, A.; Luccioni, C.; Moustacchi, E.; Rigaud, O. Contribution of antioxidant enzymes to the adaptive response to ionizing radiation of human lymphoblasts. Int. J. Radiat Biol. 1999, 75, 639–645. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Nakayama, H.; Yoshida, R.; Hirosue, A.; Nagata, M.; Tanaka, T.; Kawahara, K.; Sakata, J.; Arita, H.; Nakashima, H.; et al. IL-6 controls resistance to radiation by suppressing oxidative stress via the Nrf2-antioxidant pathway in oral squamous cell carcinoma. Br. J. Cancer 2016, 115, 1234–1244. [Google Scholar] [CrossRef] [Green Version]
- Vaiserman, A.M. Radiation hormesis: Historical perspective and implications for low-dose cancer risk assessment. Dose Response 2010, 8, 172–191. [Google Scholar] [CrossRef]
- Grabham, P.; Sharma, P. The effects of radiation on angiogenesis. Vasc Cell 2013, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Nowosielska, E.M.; Wrembel-Wargocka, J.; Cheda, A.; Lisiak, E.; Janiak, M.K. Enhanced cytotoxic activity of macrophages and suppressed tumor metastases in mice irradiated with low doses of X- rays. J. Radiat Res. 2006, 47, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Krueger, S.A.; Joiner, M.C.; Weinfeld, M.; Piasentin, E.; Marples, B. Role of apoptosis in low-dose hyper-radiosensitivity. Radiat Res. 2007, 167, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Neumaier, T.; Swenson, J.; Pham, C.; Polyzos, A.; Lo, A.T.; Yang, P.; Dyball, J.; Asaithamby, A.; Chen, D.J.; Bissell, M.J.; et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc. Natl. Acad. Sci. USA 2012, 109, 443–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eskin, B.A.; Bartuska, D.G.; Dunn, M.R.; Jacob, G.; Dratman, M.B. Mammary gland dysplasia in iodine deficiency. Studies in rats. JAMA 1967, 200, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Eskin, B.A.; Shuman, R.; Krouse, T.; Merion, J.A. Rat mammary gland atypia produced by iodine blockade with perchlorate. Cancer Res. 1975, 35, 2332–2339. [Google Scholar] [PubMed]
- Krouse, T.B.; Eskin, B.A.; Mobini, J. Age-related changes resembling fibrocystic disease in iodine-blocked rat breasts. Arch. Pathol. Lab. Med. 1979, 103, 631–634. [Google Scholar]
- Lund, E.; Bonaa, K.H. Reduced breast cancer mortality among fishermen’s wives in Norway. Cancer Causes Control 1993, 4, 283–287. [Google Scholar]
- Pisani, P.; Parkin, D.M.; Bray, F.; Ferlay, J. Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer 1999, 83, 18–29. [Google Scholar] [CrossRef]
- Derry, D.M. Breast Cancer and Iodine; Trafford on Demand Pub.: Bloomington, IN, USA, 2001. [Google Scholar]
- Gerard, A.C.; Poncin, S.; Audinot, J.N.; Denef, J.F.; Colin, I.M. Iodide deficiency-induced angiogenic stimulus in the thyroid occurs via HIF- and ROS-dependent VEGF-A secretion from thyrocytes. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1414–E1422. [Google Scholar] [CrossRef]
- Vanderstraeten, J.; Derradji, H.; Craps, J.; Sonveaux, P.; Colin, I.M.; Many, M.C.; Gérard, A.-C. Iodine deficiency induces a VEGF-dependent microvascular response in salivary glands and in the stomach. Histol. Histopathol. 2016, 31, 897–909. [Google Scholar]
- Vanderstraeten, J.; Derradji, H.; Sonveaux, P.; Colin, I.M.; Many, M.C.; Gerard, A.C. Acute iodine deficiency induces a transient VEGF-dependent microvascular response in mammary glands involving HIF-1, ROS, and mTOR. Am. J. Physiol. Cell Physiol. 2018, 315, C544–C557. [Google Scholar] [CrossRef] [Green Version]
- Iodine Global Network. Global Scorecard 2014: Number of iodine deficient countries more than halved in past decade. IDD Newsl. 2015, 43, 5–7. [Google Scholar]
- Boltze, C.; Brabant, G.; Dralle, H.; Gerlach, R.; Roessner, A.; Hoang-Vu, C. Radiation-induced thyroid carcinogenesis as a function of time and dietary iodine supply: An in vivo model of tumorigenesis in the rat. Endocrinology 2002, 143, 2584–2592. [Google Scholar] [CrossRef] [PubMed]
- Woolard, J.; Bevan, H.S.; Harper, S.J.; Bates, D.O. Molecular diversity of VEGF-A as a regulator of its biological activity. Microcirculation 2009, 16, 572–592. [Google Scholar] [CrossRef] [PubMed]
- Houck, K.A.; Ferrara, N.; Winer, J.; Cachianes, G.; Li, B.; Leung, D.W. The vascular endothelial growth factor family: Identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 1991, 5, 1806–1814. [Google Scholar] [CrossRef] [PubMed]
- Woolard, J.; Wang, W.-Y.; Bevan, H.S.; Qiu, Y.; Morbidelli, L.; Pritchard-Jones, R.O.; Cui, T.-G.; Sugiono, M.; Waine, E.; Perrin, R.; et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: Mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004, 64, 7822–7835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Fu, G.B.; Zheng, J.T.; He, J.; Niu, X.-B.; Chen, Q.-D.; Yin, Y.; Qian, X.; Xu, Q.; Wang, M.; et al. NADPH oxidase subunit p22(phox)-mediated reactive oxygen species contribute to angiogenesis and tumor growth through AKT and ERK1/2 signaling pathways in prostate cancer. Biochim. Biophys. Acta 2013, 1833, 3375–3385. [Google Scholar] [CrossRef] [Green Version]
- Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417. [Google Scholar] [CrossRef] [Green Version]
- Hovinga, K.E.; Stalpers, L.J.A.; Van Bree, C.; Donker, M.; Verhoeff, J.; Rodermond, H.M.; Bosch, D.A.; Van Furth, W.R. Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines—A clue to radioresistance? J. Neurooncol. 2005, 74, 99–103. [Google Scholar] [CrossRef]
- Tazebay, U.H.; Wapnir, I.L.; Levy, O.; Dohán, O.; Zuckier, L.S.; Zhao, Q.H.; Deng, H.F.; Amenta, P.S.; Fineberg, S.; Pestell, R.G.; et al. The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat. Med. 2000, 6, 871–878. [Google Scholar] [CrossRef]
- Rillema, J.A.; Hill, M.A. Pendrin transporter carries out iodide uptake into MCF-7 human mammary cancer cells. Exp. Biol. Med. (Maywood) 2003, 228, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.H.; Lee, S.-J.; Park, K.Y.; Park, K.K.; Ahn, S.H.; Pai, M.S.; Chang, H.; Lee, H.K.; Ahn, I.-M. Correlation between 99mTc-pertechnetate uptakes and expressions of human sodium iodide symporter gene in breast tumor tissues. Nucl. Med. Biol. 2001, 28, 829–834. [Google Scholar] [CrossRef]
- Beyer, S.J.; Jimenez, R.E.; Shapiro, C.L.; Cho, J.Y.; Jhiang, S.M. Do cell surface trafficking impairments account for variable cell surface sodium iodide symporter levels in breast cancer? Breast Cancer Res. Treat 2009, 115, 205–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The role of oxidative stress on breast cancer development and therapy. Tumour Biol. 2016, 37, 4281–4291. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Salinas, F.L.; Delgado-Magallón, A.; Montes-Alvarado, J.B.; Ramírez-Ramírez, D.; Flores-Alonso, J.C.; Cortés-Hernández, P.; Reyes-Leyva, J.; Herrera-Camacho, I.; Anaya-Ruiz, M.; Pelayo, R.; et al. Breast Cancer Subtypes Present a Differential Production of Reactive Oxygen Species (ROS) and Susceptibility to Antioxidant Treatment. Front. Oncol. 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Elliyanti, A.; Putra, A.E.; Sribudiani, Y.; Noormartany, N.; Masjhur, J.S.; Achmad, T.H.; Dachriyanus, D. Epidermal Growth Factor and Adenosine Triphosphate Induce Natrium Iodide Symporter Expression in Breast Cancer Cell Lines. Open Access Maced J. Med. Sci. 2019, 7, 2088–2092. [Google Scholar] [CrossRef]
- Lukianova, N.Y.; Andriiv, A.V.; Chekhun, V.F. Correlation of iodine symporter expression in highly and low malignant cell lines of human breast cancer differed in their sensitivity to doxorubicin. Exp. Oncol. 2016, 38, 169–171. [Google Scholar] [CrossRef]
- Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J. Cancer 2017, 8, 3131–3141. [Google Scholar] [CrossRef] [Green Version]
- Kogai, T.; Schultz, J.J.; Johnson, L.S.; Huang, M.; Brent, G.A. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line. Proc. Natl. Acad. Sci. USA 2000, 97, 8519–8524. [Google Scholar] [CrossRef] [Green Version]
- Macaeva, E.; Saeys, Y.; Tabury, K.; Janssen, A.; Michaux, A.; Benotmane, M.A.; De Vos, W.H.; Baatout, S.; Quintens, R. Radiation-induced alternative transcription and splicing events and their applicability to practical biodosimetry. Sci. Rep. 2016, 6, 19251. [Google Scholar] [CrossRef]
- Wahba, A.; Ryan, M.C.; Shankavaram, U.T.; Camphausen, K.; Tofilon, P.J. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA. Oncotarget 2018, 9, 691–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, D.O.; Cui, T.-G.; Doughty, J.M.; Winkler, M.; Sugiono, M.; Shields, J.D.; Peat, D.; Gillatt, D.; Harper, S.J. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 2002, 62, 4123–4131. [Google Scholar] [PubMed]
- Lambert, A.J.; Buckingham, J.A.; Boysen, H.M.; Brand, M.D. Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochim. Biophys. Acta 2008, 1777, 397–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, K.A.; Kulawiec, M.; Owens, K.M.; Li, X.; Desouki, M.M.; Chandra, D.; Singh, K.K. NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol. Ther. 2010, 10, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith-Bindman, R.; Lipson, J.; Marcus, R.; Kim, K.-P.; Mahesh, M.; Gould, R.; De González, A.B.; Miglioretti, D.L. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern. Med. 2009, 169, 2078–2086. [Google Scholar] [CrossRef]
- Adams, J.; Carder, P.J.; Downey, S.; A Forbes, M.; MacLennan, K.; Allgar, V.; Kaufman, S.; Hallam, S.; Bicknell, R.; Walker, J.J.; et al. Vascular endothelial growth factor (VEGF) in breast cancer: Comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res. 2000, 60, 2898–2905. [Google Scholar]
- Islam, M.S.; Matsumoto, M.; Hidaka, R.; Miyoshi, N.; Yasuda, N. Expression of NOS and VEGF in feline mammary tumours and their correlation with angiogenesis. Vet. J. 2012, 192, 338–344. [Google Scholar] [CrossRef]
- Dore-Savard, L.; Lee, E.; Kakkad, S.; Popel, A.S.; Bhujwalla, Z.M. The Angiogenic Secretome in VEGF overexpressing Breast Cancer Xenografts. Sci. Rep. 2016, 6, 39460. [Google Scholar] [CrossRef] [Green Version]
- Plataniotis, G. Hypofractionated radiotherapy in the treatment of early breast cancer. World J. Radiol. 2010, 2, 197–202. [Google Scholar] [CrossRef]
- Luis, A.M.; Sanz, X.; Hernanz, R.; Cabrera, D.; Arenas, M.; Bayo, E.; Moreno, F.; Algara, M.; Algara, M. Accelerated hypofractionated breast radiotherapy: FAQs (frequently asked questions) and facts. Breast 2014, 23, 299–309. [Google Scholar]
- Craps, J.; Wilvers, C.; Joris, V.; De Jongh, B.; Vanderstraeten, J.; Lobysheva, I.; Balligand, J.-L.; Sonveaux, P.; Gilon, P.; Many, M.-C.; et al. Involvement of nitric oxide in iodine deficiency-induced microvascular remodeling in the thyroid gland: Role of nitric oxide synthase 3 and ryanodine receptors. Endocrinology 2015, 156, 707–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gérard, A.-C.; Humblet, K.; Wilvers, C.; Poncin, S.; Derradji, H.; Goyet, C.D.V.D.; Abou-El-Ardat, K.; Baatout, S.; Sonveaux, P.; Denef, J.-F.; et al. Iodine-deficiency-induced long lasting angiogenic reaction in thyroid cancers occurs via a vascular endothelial growth factor-hypoxia inducible factor-1-dependent, but not a reactive oxygen species-dependent, pathway. Thyroid 2012, 22, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Rappole, C.A.; Mitra, K.; Wen, H. Dynamic fluorescence imaging of the free radical products of X-ray absorption in live cells. Opt. Nanoscopy 2012, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
RNA | Forward Primer | Reverse Primer | Annealing Temp. |
---|---|---|---|
β-actin | 5′CATCCTGCGTCTGGACCT3′ | 5′AGGAGGAGCAATGATCTTGAT3′ | 62 °C |
VEGF-A | 5′GCAGATGTCCCGGCGAAGAGAAGA3′ | 5′CGGGGAGGGCAGAGCTGAGTGTTA3′ | 62 °C |
VEGF165 | 5′GAGCAAGACAAGAAAATCCC3′ | 5′CCTCGGCTTGTCACATCTG3′ | 58.5 °C |
VEGF165b | 5′GAGCAAGACAAGAAAATCCC3′ | 5′GTGAGAGATCTGCAAGTACG3′ | 59 °C |
SOD1 | 5′GCGTGGCCTAGCGAGTTAT3′ | 5′TTTGCCCAAGTCATCTGCT3′ | 56 °C |
SOD2 | 5′GTTGGGGTTGGCTTGGTTTC3′ | 5′ACGATCGTGGTTTACTTTTTG3′ | 52 °C |
Catalase | 5′GCAAACCGCACGCTATGG3′ | 5′ACGAGGGTCCCGAACTGTGT3′ | 55 °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanderstraeten, J.; Baselet, B.; Buset, J.; Ben Said, N.; de Ville de Goyet, C.; Many, M.-C.; Gérard, A.-C.; Derradji, H. Modulation of VEGF Expression and Oxidative Stress Response by Iodine Deficiency in Irradiated Cancerous and Non-Cancerous Breast Cells. Int. J. Mol. Sci. 2020, 21, 3963. https://doi.org/10.3390/ijms21113963
Vanderstraeten J, Baselet B, Buset J, Ben Said N, de Ville de Goyet C, Many M-C, Gérard A-C, Derradji H. Modulation of VEGF Expression and Oxidative Stress Response by Iodine Deficiency in Irradiated Cancerous and Non-Cancerous Breast Cells. International Journal of Molecular Sciences. 2020; 21(11):3963. https://doi.org/10.3390/ijms21113963
Chicago/Turabian StyleVanderstraeten, Jessica, Bjorn Baselet, Jasmine Buset, Naziha Ben Said, Christine de Ville de Goyet, Marie-Christine Many, Anne-Catherine Gérard, and Hanane Derradji. 2020. "Modulation of VEGF Expression and Oxidative Stress Response by Iodine Deficiency in Irradiated Cancerous and Non-Cancerous Breast Cells" International Journal of Molecular Sciences 21, no. 11: 3963. https://doi.org/10.3390/ijms21113963
APA StyleVanderstraeten, J., Baselet, B., Buset, J., Ben Said, N., de Ville de Goyet, C., Many, M.-C., Gérard, A.-C., & Derradji, H. (2020). Modulation of VEGF Expression and Oxidative Stress Response by Iodine Deficiency in Irradiated Cancerous and Non-Cancerous Breast Cells. International Journal of Molecular Sciences, 21(11), 3963. https://doi.org/10.3390/ijms21113963