Evaluation of Different Adiposity Indices and Association with Metabolic Syndrome Risk in Obese Children: Is there a Winner?
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Anthropometric Measurements
4.3. Adiposity Index
4.4. Clinical Assessment
4.5. Laboratory Assessment
4.6. Metabolic Syndrome
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization Childhood Overweight and Obesity. Available online: http://www.who.int/dietphysicalactivity/childhood/en/ (accessed on 8 June 2020).
- Arroyo-Johnson, C.; Mincey, K.D. Obesity Epidemiology Worldwide. Gastroenterol. Clin. North Am. 2016, 45, 571–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremmel, M.; Gerdtham, U.-G.; Nilsson, P.; Saha, S. Economic Burden of Obesity: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2017, 14, 435. [Google Scholar] [CrossRef] [PubMed]
- Health, T.L.P. Tackling obesity seriously: The time has come. Lancet Public Health 2018, 3, e153. [Google Scholar] [CrossRef]
- Rito, A.I.; Buoncristiano, M.; Spinelli, A.; Salanave, B.; Kunešová, M.; Hejgaard, T.; García Solano, M.; Fijałkowska, A.; Sturua, L.; Hyska, J.; et al. Association between Characteristics at Birth, Breastfeeding and Obesity in 22 Countries: The WHO European Childhood Obesity Surveillance Initiative—COSI 2015/2017. Obes. Facts 2019, 12, 226–243. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The metabolic syndrome in children and adolescents? An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome; Springer: Cham, Switzerland, 2017; pp. 1–17. [Google Scholar]
- Wells, J.C.; Sawaya, A.L.; Wibaek, R.; Mwangome, M.; Poullas, M.S.; Yajnik, C.S.; Demaio, A. The double burden of malnutrition: Aetiological pathways and consequences for health. Lancet (London, UK) 2020, 395, 75–88. [Google Scholar] [CrossRef]
- Styne, D. Pediatric Obesity—Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017. [Google Scholar] [CrossRef]
- Valerio, G.; Maffeis, C.; Saggese, G.; Ambruzzi, M.A.; Balsamo, A.; Bellone, S.; Bergamini, M.; Bernasconi, S.; Bona, G.; Calcaterra, V.; et al. Diagnosis, treatment and prevention of pediatric obesity: Consensus position statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics. Ital. J. Pediatr. 2018, 44, 88. [Google Scholar] [CrossRef] [Green Version]
- Katzmarzyk, P.T.; Barlow, S.; Bouchard, C.; Catalano, P.M.; Hsia, D.S.; Inge, T.H.; Lovelady, C.; Raynor, H.; Redman, L.M.; Staiano, A.E.; et al. An evolving scientific basis for the prevention and treatment of pediatric obesity. Int. J. Obes. 2014, 38, 887–905. [Google Scholar] [CrossRef] [Green Version]
- Al-Khudairy, L.; Loveman, E.; Colquitt, J.L.; Mead, E.; Johnson, R.E.; Fraser, H.; Olajide, J.; Murphy, M.; Velho, R.M.; O’Malley, C.; et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents aged 12 to 17 years. Cochrane Database Syst. Rev. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- August, G.P.; Caprio, S.; Fennoy, I.; Freemark, M.; Kaufman, F.R.; Lustig, R.H.; Silverstein, J.H.; Speiser, P.W.; Styne, D.M.; Montori, V.M.; et al. Prevention and Treatment of Pediatric Obesity: An Endocrine Society Clinical Practice Guideline Based on Expert Opinion. J. Clin. Endocrinol. Metab. 2008, 93, 4576–4599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flegal, K.M.; Ogden, C.L. Childhood Obesity: Are We All Speaking the Same Language? Adv. Nutr. 2011, 2, 159S. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011; ISBN 9789241501491. [Google Scholar]
- Lentferink, Y.E.; Elst, M.A.J.; Knibbe, C.A.J.; van der Vorst, M.M.J. Predictors of Insulin Resistance in Children versus Adolescents with Obesity. J. Obes. 2017, 2017, 3793868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodea-Montero, E.R.; Evia-Viscarra, M.L.; Apolinar-Jiménez, E. Waist-to-Height Ratio Is a Better Anthropometric Index than Waist Circumference and BMI in Predicting Metabolic Syndrome among Obese Mexican Adolescents. Int. J. Endocrinol. 2014, 2014, 195407. [Google Scholar] [CrossRef] [PubMed]
- Perona, J.S.; Schmidt Rio-Valle, J.; Ramírez-Vélez, R.; Correa-Rodríguez, M.; Fernández-Aparicio, Á.; González-Jiménez, E. Waist circumference and abdominal volume index are the strongest anthropometric discriminators of metabolic syndrome in Spanish adolescents. Eur. J. Clin. Investig. 2018, 49, e13060. [Google Scholar] [CrossRef] [PubMed]
- Ochoa Sangrador, C.; Ochoa-Brezmes, J. Waist-to-height ratio as a risk marker for metabolic syndrome in childhood. A meta-analysis. Pediatr. Obes. 2018, 13, 421–432. [Google Scholar] [CrossRef]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of ‘early health risk’: Simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [Green Version]
- Tee, J.Y.H.; Gan, W.Y.; Lim, P.Y. Comparisons of body mass index, waist circumference, waist-to-height ratio and a body shape index (ABSI) in predicting high blood pressure among Malaysian adolescents: A cross-sectional study. BMJ Open 2020, 10, e032874. [Google Scholar] [CrossRef] [Green Version]
- Freedman, D.S.; Kahn, H.S.; Mei, Z.; Grummer-Strawn, L.M.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. Relation of body mass index and waist-to-height ratio to cardiovascular disease risk factors in children and adolescents: The Bogalusa Heart Study. Am. J. Clin. Nutr. 2007, 86, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Wormser, D.; Kaptoge, S.; Di Angelantonio, E.; Wood, A.M.; Pennells, L.; Thompson, A.; Sarwar, N.; Kizer, J.R.; Lawlor, D.A.; Nordestgaard, B.G.; et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: Collaborative analysis of 58 prospective studies. Lancet 2011, 377, 1085–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brambilla, P.; Bedogni, G.; Heo, M.; Pietrobelli, A. Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int. J. Obes. 2013, 37, 943–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoli, S.; Leone, A.; Krakauer, N.Y.; Bedogni, G.; Vanzulli, A.; Redaelli, V.I.; De Amicis, R.; Vignati, L.; Krakauer, J.C.; Battezzati, A. Association of Body Shape Index (ABSI) with cardio-metabolic risk factors: A cross-sectional study of 6081 Caucasian adults. PLoS ONE 2017, 12, e0185013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Chen, Y.; Chang, Y.; Sun, G.; Sun, Y. New anthropometric indices or old ones: Which perform better in estimating cardiovascular risks in Chinese adults. BMC Cardiovasc. Disord. 2018, 18, 14. [Google Scholar] [CrossRef] [Green Version]
- Bozorgmanesh, M.; Sardarinia, M.; Hajsheikholeslami, F.; Azizi, F.; Hadaegh, F. CVD-predictive performances of “a body shape index” versus simple anthropometric measures: Tehran lipid and glucose study. Eur. J. Nutr. 2016, 55, 147–157. [Google Scholar] [CrossRef]
- Dhana, K.; Ikram, M.A.; Hofman, A.; Franco, O.H.; Kavousi, M. Anthropometric measures in cardiovascular disease prediction: Comparison of laboratory-based versus non-laboratory-based model. Heart 2015, 101, 377–383. [Google Scholar] [CrossRef]
- Mameli, C.; Krakauer, N.Y.; Krakauer, J.C.; Bosetti, A.; Ferrari, C.M.; Moiana, N.; Schneider, L.; Borsani, B.; Genoni, T.; Zuccotti, G. The association between a body shape index and cardiovascular risk in overweight and obese children and adolescents. PLoS ONE 2018, 13, e0190426. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.M.; Su, H.; Thomas, D.M.; Heo, M.; Golnabi, A.H.; Pietrobelli, A.; Heymsfield, S.B. Tri-Ponderal Mass Index vs. Body Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatr. 2017, 171, 629. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Correa-Bautista, J.; Carrillo, H.; González-Jiménez, E.; Schmidt-RioValle, J.; Correa-Rodríguez, M.; García-Hermoso, A.; González-Ruíz, K. Tri-Ponderal Mass Index vs. Fat Mass/Height3 as a Screening Tool for Metabolic Syndrome Prediction in Colombian Children and Young People. Nutrients 2018, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, R.G.; Guedes, D.P. Performance of anthropometric indicators as predictors of metabolic syndrome in Brazilian adolescents. BMC Pediatr. 2018, 18, 33. [Google Scholar] [CrossRef] [Green Version]
- Wrzosek, M.; Sawicka, A.; Wrzosek, M.; Piątkiewicz, P.; Tałałaj, M.; Nowicka, G. Age at onset of obesity, transcription factor 7-like 2 (TCF7L2) rs7903146 polymorphism, adiponectin levels and the risk of type 2 diabetes in obese patients. Arch. Med. Sci. 2019, 15, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Wrzosek, M.; Wiśniewska, K.; Sawicka, A.; Tałałaj, M.; Nowicka, G. Early Onset of Obesity and Adult Onset of Obesity as Factors Affecting Patient Characteristics Prior to Bariatric Surgery. Obes. Surg. 2018, 28, 3902–3909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Hodge, A.; Hendryx, M.; Byles, J.E. Age of obesity onset, cumulative obesity exposure over early adulthood and risk of type 2 diabetes. Diabetologia 2020, 63, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, L.S.; Blanco, E.; Burrows, R.; Reyes, M.; Lozoff, B.; Gahagan, S. Early Onset Obesity and Risk of Metabolic Syndrome Among Chilean Adolescents. Prev. Chronic Dis. 2017, 14, E93. [Google Scholar] [CrossRef] [Green Version]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, S.A.; Connell, J.M.C. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 319–326. [Google Scholar] [CrossRef]
- Ribeiro-Filho, F.F.; Faria, A.N.; Azjen, S.; Zanella, M.-T.; Ferreira, S.R.G. Methods of estimation of visceral fat: Advantages of ultrasonography. Obes. Res. 2003, 11, 1488–1494. [Google Scholar] [CrossRef]
- Bouchi, R.; Asakawa, M.; Ohara, N.; Nakano, Y.; Takeuchi, T.; Murakami, M.; Sasahara, Y.; Numasawa, M.; Minami, I.; Izumiyama, H.; et al. Indirect measure of visceral adiposity “A Body Shape Index” (ABSI) is associated with arterial stiffness in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2016, 4, e000188. [Google Scholar] [CrossRef] [Green Version]
- Shoji, K.; Maeda, K.; Nakamura, T.; Funahashi, T.; Matsuzawa, Y.; Shimomura, I. Measurement of visceral fat by abdominal bioelectrical impedance analysis is beneficial in medical checkup. Obes. Res. Clin. Pract. 2008, 2, I–II. [Google Scholar] [CrossRef]
- Després, J.-P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; Larose, E.; Rodés-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal Obesity and the Metabolic Syndrome: Contribution to Global Cardiometabolic Risk. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1039–1049. [Google Scholar] [CrossRef]
- Kelishadi, R.; Mirmoghtadaee, P.; Najafi, H.; Keikha, M. Systematic review on the association of abdominal obesity in children and adolescents with cardio-metabolic risk factors. J. Res. Med. Sci. 2015, 20, 294. [Google Scholar] [PubMed]
- Pouliot, M.-C.; Després, J.-P.; Lemieux, S.; Moorjani, S.; Bouchard, C.; Tremblay, A.; Nadeau, A.; Lupien, P.J. Waist circumference and abdominal sagittal diameter: Best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am. J. Cardiol. 1994, 73, 460–468. [Google Scholar] [CrossRef]
- Growth Charts—2000 CDC Growth Charts—United States. Available online: http://www.cdc.gov/growthcharts/cdc_charts.htm (accessed on 30 April 2020).
- Khoury, M.; Manlhiot, C.; McCrindle, B.W. Role of the Waist/Height Ratio in the Cardiometabolic Risk Assessment of Children Classified by Body Mass Index. J. Am. Coll. Cardiol. 2013, 62, 742–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, N.; Amato, A.; Grandone, A.; Brienza, C.; Savarese, P.; Tartaglione, N.; Marzuillo, P.; Perrone, L.; Miraglia Del Giudice, E. Predicting metabolic syndrome in obese children and adolescents: Look, measure and ask. Obes. Facts 2013, 6, 48–56. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988; ISBN 9780873221214. [Google Scholar]
- NHLBI Obesity Education Initiative Expert Panel on the Identification Evaluation and Treatment of Obesity in Adults. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults; National Heart, Lung, and Blood Institute, Ed.; NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, and Treatment of Obesity in Adults (US): Bethesda, MD, USA, 1998. [Google Scholar]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. An Anthropometric Risk Index Based on Combining Height, Weight, Waist, and Hip Measurements. J. Obes. 2016, 2016, 8094275. [Google Scholar] [CrossRef] [Green Version]
- Mangla, A.G.; Dhamija, N.; Gupta, U.; Dhall, M.; Mangla, A.G.; Dhamija, N.; Gupta, U.; Dhall, M. Anthropometric Markers as a Paradigm for Obesity Risk Assessment. J. Biosci. Med. 2020, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function From Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, W.; Moreno, L.A.; Mårild, S.; Molnár, D.; Siani, A.; De Henauw, S.; Böhmann, J.; Günther, K.; Hadjigeorgiou, C.; Iacoviello, L.; et al. Metabolic syndrome in young children: Definitions and results of the IDEFICS study. Int. J. Obes. 2014, 38, S4–S14. [Google Scholar] [CrossRef] [Green Version]
- Nagy, P.; Kovacs, E.; Moreno, L.A.; Veidebaum, T.; Tornaritis, M.; Kourides, Y.; Siani, A.; Lauria, F.; Sioen, I.; Claessens, M.; et al. Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study. Int. J. Obes. 2014, 38, S15–S25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barba, G.; Buck, C.; Bammann, K.; Hadjigeorgiou, C.; Hebestreit, A.; Mårild, S.; Molnár, D.; Russo, P.; Veidebaum, T.; Vyncke, K.; et al. Blood pressure reference values for European non-overweight school children: The IDEFICS study. Int. J. Obes. 2014, 38, S48–S56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Henauw, S.; Michels, N.; Vyncke, K.; Hebestreit, A.; Russo, P.; Intemann, T.; Peplies, J.; Fraterman, A.; Eiben, G.; de Lorgeril, M.; et al. Blood lipids among young children in Europe: Results from the European IDEFICS study. Int. J. Obes. 2014, 38, S67–S75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peplies, J.; Jiménez-Pavón, D.; Savva, S.C.; Buck, C.; Günther, K.; Fraterman, A.; Russo, P.; Iacoviello, L.; Veidebaum, T.; Tornaritis, M.; et al. Percentiles of fasting serum insulin, glucose, HbA1c and HOMA-IR in pre-pubertal normal weight European children from the IDEFICS cohort. Int. J. Obes. 2014, 38, S39–S47. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Ford, E.S.; Mokdad, A.H.; Cook, S. Recent Trends in Waist Circumference and Waist-Height Ratio Among US Children and Adolescents. Pediatrics 2006, 118, e1390–e1398. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
7–9.9 Years n = 84 | 10–15.9 Years n = 229 | 16–19.9 Years n = 90 | Total n = 403 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P25 | P50 | P75 | P25 | P50 | P75 | P25 | P50 | P75 | P25 | P50 | P75 | |
Age (years) | 8 | 9 | 9 | 12 | 13 | 14 | 17 | 17 | 19 | 10 | 13 | 16 |
Weight (kg) | 43.0 | 48.5 | 53.8 | 63.5 | 74.0 | 85.3 | 87.3 | 93.5 | 104.4 | 56.6 | 74.8 | 90.3 |
Weight z-score | 1.900 | 2.244 | 2.499 | 1.827 | 2.077 | 2.392 | 1.770 | 2.037 | 2.294 | 1.827 | 2.089 | 2.403 |
Height (cm) | 133.1 | 139.3 | 143.6 | 151.2 | 157.4 | 165.4 | 163.3 | 169.9 | 175.7 | 145.5 | 156.7 | 167.5 |
Height z-score | 0.240 | 0.948 | 1.803 | −0.158 | 0.460 | 1.088 | −0.414 | 0.051 | 0.546 | −0.117 | 0.457 | 1.169 |
BMI (kg/m2) | 23.7 | 24.8 | 27.1 | 27.0 | 29.1 | 31.4 | 30.5 | 32.6 | 36.1 | 26.6 | 29.4 | 32.3 |
BMI z-score | 1.998 | 2.129 | 2.315 | 1.891 | 2.030 | 2.227 | 1.768 | 1.985 | 2.182 | 1.877 | 2.055 | 2.255 |
WC (cm) | 78.0 | 81.5 | 86.2 | 86.0 | 92.5 | 98.8 | 96.6 | 101.8 | 109.4 | 84.8 | 92.0 | 100.7 |
ABSI | 0.078 | 0.081 | 0.084 | 0.074 | 0.078 | 0.081 | 0.073 | 0.077 | 0.079 | 0.075 | 0.078 | 0.081 |
ABSI z-score | −0.029 | 0.705 | 1.214 | −0.544 | 0.116 | 0.798 | −0.395 | 0.389 | 0.849 | −0.401 | 0.255 | 0.949 |
Total mass index | 16.9 | 17.9 | 19.4 | 17.2 | 18.1 | 19.8 | 17.7 | 19.1 | 21.4 | 17.2 | 18.3 | 20.1 |
C-index | 1.2 | 1.3 | 1.3 | 1.2 | 1.3 | 1.3 | 1.2 | 1.3 | 1.3 | 1.2 | 1.3 | 1.3 |
WHtR | 0.56 | 0.59 | 0.62 | 0.55 | 0.58 | 0.62 | 0.56 | 0.60 | 0.65 | 0.56 | 0.59 | 0.62 |
Glucose (mg/dL) | 79 | 83 | 89 | 82 | 88 | 93 | 84 | 90 | 96 | 81 | 87 | 93 |
Insulin | 8.5 | 11.9 | 15.4 | 12.0 | 16.7 | 23.3 | 13.0 | 18.2 | 23.8 | 11.4 | 15.8 | 22.6 |
HOMA index | 1.7 | 2.3 | 3.4 | 2.5 | 3.6 | 5.2 | 2.9 | 4.3 | 5.6 | 2.4 | 3.5 | 5.1 |
HDL (mg/dL) | 41 | 48 | 54 | 39 | 47 | 55 | 42 | 49 | 54 | 40 | 47 | 55 |
TG (mg/dL) | 61 | 79 | 109 | 64 | 84 | 121 | 58 | 85 | 117 | 61 | 83 | 119 |
SBP (mm Hg) | 103 | 107 | 114 | 110 | 116 | 120 | 115 | 120 | 130 | 109 | 116 | 120 |
DBP (mm Hg) | 56 | 60 | 66 | 60 | 65 | 70 | 70 | 70 | 80 | 60 | 66 | 71 |
7–10 Years | 10–16 Years | 16–20 Years | Total | |||||
---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | |
Sex | ||||||||
Female | 55 | 65.5 | 122 | 53.3 | 47 | 52.2 | 224 | 55.6 |
Male | 29 | 34.5 | 107 | 46.7 | 43 | 47.8 | 179 | 44.4 |
Total | 84 | 100 | 229 | 100 | 90 | 100 | 403 | 100 |
High waist circumference | ||||||||
No | 0 | 0 | 47 | 20.5 | 6 | 6.7 | 53 | 13.2 |
Yes | 84 | 100 | 182 | 79.5 | 84 | 93.3 | 350 | 86.8 |
Total | 84 | 100 | 229 | 100 | 90 | 100 | 403 | 100 |
High glucose | ||||||||
No | 80 | 95.2 | 213 | 93 | 77 | 85.6 | 370 | 91.8 |
Yes | 4 | 4.8 | 16 | 7 | 13 | 14.4 | 33 | 8.2 |
Total | 84 | 100 | 229 | 100 | 90 | 100 | 403 | 100 |
High HOMA index | ||||||||
No | 35 | 41.7 | ||||||
Yes | 49 | 58.3 | ||||||
Total | 84 | 100 | ||||||
High glucose or High HOMA | ||||||||
No | 35 | 41.7 | ||||||
Yes | 49 | 58.3 | ||||||
Total | 84 | 100 | ||||||
High triglycerides | ||||||||
No | 53 | 63.1 | 198 | 86.5 | 76 | 84.4 | 327 | 81.1 |
Yes | 31 | 36.9 | 31 | 13.5 | 14 | 15.6 | 76 | 18.9 |
Total | 84 | 100 | 229 | 100 | 90 | 100 | 403 | 100 |
Low HDL | ||||||||
No | 66 | 78.6 | 170 | 74.2 | 59 | 65.6 | 295 | 73.2 |
Yes | 18 | 21.4 | 59 | 25.8 | 31 | 34.4 | 108 | 26.8 |
Total | 84 | 100 | 229 | 100 | 90 | 100 | 403 | 100 |
High triglycerides or Low HDL | ||||||||
No | 48 | 57.1 | ||||||
Yes | 36 | 42.9 | ||||||
Total | 84 | 100 | ||||||
High systolic blood pressure | ||||||||
No | 65 | 77.4 | 203 | 88.6 | 62 | 68.9 | 330 | 81.9 |
Yes | 19 | 22.6 | 26 | 11.4 | 28 | 31.1 | 73 | 18.1 |
Total | 84 | 100 | 229 | 100 | 90 | 100 | 403 | 100 |
High diastolic blood pressure | ||||||||
No | 77 | 91.7 | 225 | 98.3 | 80 | 88.9 | 382 | 94.8 |
Yes | 7 | 8.3 | 4 | 1.7 | 10 | 11.1 | 21 | 5.2 |
Total | 84 | 100 | 229 | 100 | 90 | 100 | 403 | 100 |
Metabolic syndrome | ||||||||
No | 47 | 56 | 203 | 88.6 | 73 | 81.1 | 323 | 80.1 |
Yes | 37 | 44 | 26 | 11.4 | 17 | 18.9 | 80 | 19.9 |
Total | 84 | 100 | 229 | 100 | 90 | 100 | 403 | 100 |
Children < 10 Years | Children ≥ 10 Years | |||||||||
BMIz | ABSIz | TMI | C-Index | WHR | BMIz | ABSIz | TMI | C-Index | WHR | |
Sex (Male) | −0.51 | −0.17 | −0.32 | −0.20 | −0.28 | −0.11 | −0.02 | 0.52 | −0.21 | 0.23 |
[−1.55, 0.52] | [−1.11, 0.77] | [−1.29, 0.65] | [−1.14, 0.75] | [−1.24, 0.67] | [−0.77, 0.55] | [−0.72, 0.68] | [−0.21, 1.26] | [−0.89, 0.48] | [−0.45, 0.92] | |
Age (years) | 0.44 | 0.30 | 0.30 | 0.27 | 0.26 | 0.18 * | 0.15 * | 0.11 | 0.15 * | 0.12 |
[−0.16, 1.05] | [−0.36, 0.95] | [−0.30, 0.90] | [−0.39, 0.94] | [−0.37, 0.89] | [0.04, 0.31] | [0.02, 0.27] | [−0.01, 0.24] | [0.03, 0.28] | [−0.01, 0.25] | |
BMI z-score (CDC) | 2.21 * | 2.67 *** | ||||||||
[0.31, 4.12] | [1.44, 3.90] | |||||||||
ABSI z-score | −0.10 | 0.37 | ||||||||
[−0.58, 0.38] | [−0.01, 0.75] | |||||||||
Total mass index | 0.19 | 0.19 ** | ||||||||
[−0.07, 0.46] | [0.07, 0.32] | |||||||||
C-index | 1.23 | 9.02 *** | ||||||||
[−5.61, 8.06] | [3.79, 14.25] | |||||||||
Waist-to-Height ratio | 5.39 | 12.32 *** | ||||||||
[−4.64, 15.41] | [6.63, 18.01] | |||||||||
Constant | −8.82 * | −2.77 | −6.37 | −4.19 | −5.68 | −10.00 *** | −4.10 *** | −7.57 *** | −15.40 *** | −11.17 *** |
[−16.23, −1.41] | [−8.63, 3.08] | [−13.61, 0.87] | [−14.06, 5.67] | [−13.34, 1.98] | [−13.52, −6.47] | [−6.06, −2.14] | [−10.76, −4.37] | [−22.06, −8.74] | [−15.02, −7.31] | |
Observations | 84 | 84 | 84 | 84 | 84 | 319 | 319 | 319 | 319 | 319 |
Pseudo R2 | 0.051 | 0.009 | 0.027 | 0.009 | 0.018 | 0.094 | 0.040 | 0.060 | 0.072 | 0.091 |
AIC | 117 | 122 | 120 | 122 | 121 | 237 | 250 | 245 | 242 | 237 |
Female ≥ 10 Years | Male ≥ 10 Years | |||||||||
BMIz | ABSIz | TMI | C-Index | WHR | BMIz | ABSIz | TMI | C-Index | WHR | |
Age (years) | 0.13 | 0.11 | 0.07 | 0.11 | 0.06 | 0.20 * | 0.19 * | 0.22 * | 0.21 * | 0.21 * |
[−0.07, 0.32] | [−0.07, 0.29] | [−0.12, 0.26] | [−0.07, 0.29] | [−0.13, 0.25] | [0.01, 0.39] | [0.02, 0.37] | [0.04, 0.40] | [0.02, 0.39] | [0.03, 0.40] | |
BMI z-score (CDC) | 1.24 | 3.84 *** | ||||||||
[−0.62, 3.10] | [1.99, 5.69] | |||||||||
ABSI z-score | 0.43 | 0.28 | ||||||||
[−0.09, 0.95] | [−0.23, 0.79] | |||||||||
Total mass index | 0.09 | 0.35 *** | ||||||||
[−0.08, 0.26] | [0.17, 0.53] | |||||||||
C-index | 7.37 * | 11.52 ** | ||||||||
[0.70, 14.05] | [3.09, 19.96] | |||||||||
Waist-to-Height ratio | 7.94 * | 18.79 *** | ||||||||
[0.78, 15.10] | [9.87, 27.72] | |||||||||
Constant | −6.29 * | −3.61 ** | −4.74 * | −12.67 ** | −7.62 *** | −13.09 *** | −4.71 *** | −11.66 *** | −19.63 *** | −16.40 *** |
[−11.79, −0.78] | [−6.24, −0.97] | [−8.58, −0.89] | [−20.74, −4.61] | [−11.93, −3.31] | [−17.70, −8.48] | [−7.44, −1.98] | [−16.42, −6.90] | [−31.31, −7.96] | [−22.78, −10.02] | |
Observations | 169 | 169 | 169 | 169 | 169 | 150 | 150 | 150 | 150 | 150 |
Pseudo R2 | 0.023 | 0.035 | 0.018 | 0.050 | 0.040 | 0.193 | 0.048 | 0.148 | 0.101 | 0.177 |
AIC | 130 | 128 | 131 | 127 | 128 | 107 | 125 | 113 | 118 | 109 |
Children < 10 Years | Children ≥ 10 Years | |
---|---|---|
Sex (Male) | −0.51 | −0.38 |
[−1.54, 0.52] | [−1.10, 0.34] | |
Age (years) | 0.45 | 0.17 * |
[−0.16, 1.07] | [0.04, 0.31] | |
BMI z-score (CDC) | 2.20 * | 2.79 ** |
[0.29, 4.12] | [1.56, 4.03] | |
ABSI z-score | −0.07 | 0.45 * |
[−0.57, 0.43] | [0.03, 0.86] | |
Constant | −8.82 * | −10.22 ** |
[−16.29, −1.35] | [−13.58, −6.86] | |
Observations | 84 | 319 |
Pseudo R2 | 0.051 | 0.115 |
AIC | 119 | 233 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, A.; Vizzuso, S.; Brambilla, P.; Mameli, C.; Ravella, S.; De Amicis, R.; Battezzati, A.; Zuccotti, G.; Bertoli, S.; Verduci, E. Evaluation of Different Adiposity Indices and Association with Metabolic Syndrome Risk in Obese Children: Is there a Winner? Int. J. Mol. Sci. 2020, 21, 4083. https://doi.org/10.3390/ijms21114083
Leone A, Vizzuso S, Brambilla P, Mameli C, Ravella S, De Amicis R, Battezzati A, Zuccotti G, Bertoli S, Verduci E. Evaluation of Different Adiposity Indices and Association with Metabolic Syndrome Risk in Obese Children: Is there a Winner? International Journal of Molecular Sciences. 2020; 21(11):4083. https://doi.org/10.3390/ijms21114083
Chicago/Turabian StyleLeone, Alessandro, Sara Vizzuso, Paolo Brambilla, Chiara Mameli, Simone Ravella, Ramona De Amicis, Alberto Battezzati, Gianvincenzo Zuccotti, Simona Bertoli, and Elvira Verduci. 2020. "Evaluation of Different Adiposity Indices and Association with Metabolic Syndrome Risk in Obese Children: Is there a Winner?" International Journal of Molecular Sciences 21, no. 11: 4083. https://doi.org/10.3390/ijms21114083
APA StyleLeone, A., Vizzuso, S., Brambilla, P., Mameli, C., Ravella, S., De Amicis, R., Battezzati, A., Zuccotti, G., Bertoli, S., & Verduci, E. (2020). Evaluation of Different Adiposity Indices and Association with Metabolic Syndrome Risk in Obese Children: Is there a Winner? International Journal of Molecular Sciences, 21(11), 4083. https://doi.org/10.3390/ijms21114083