CG Demethylation Leads to Sequence Mutations in an Anther Culture of Barley Due to the Presence of Cu, Ag Ions in the Medium and Culture Time
Abstract
:1. Introduction
2. Results
Moderated Mediation
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2,4-D | 2,4-dichlorophenoxyacetic acid |
AMOVA | Analysis of Molecular Variance |
ASS | 1-aminocyclopropane-1-carboxylic acid |
BAP | 6-benzylaminopurine |
BER | base excision repair |
D | donor plants |
DH | doubled haploid |
DMT2&3 | DEMETER LIKE 2&3, |
DMV | demethylation |
DNMV | de novo methylation |
ETR1 | ethylene receptor 1 |
metAFLP | methylation sensitive Amplified Fragment Length Polymorphism |
MMR | mismatch repair |
MSAP | Methylation Sensitive Amplification Polymorphism |
NAA | napthaleneacetic acid |
NER | nucleotide excision |
PCA | Principal Component Analysis |
SAM | S-adenosyl-L-methionine, |
References
- Ausin, I.; Greenberg, M.V.C.; Simanshu, D.K.; Hale, C.J.; Vashisht, A.A.; Simon, S.A.; Lee, T.-F.; Feng, S.; Española, S.D.; Meyers, B.C.; et al. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2012, 109, 8374–8381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orłowska, R.; Bednarek, P.T. Precise evaluation of tissue culture-induced variation during optimisation of in vitro regeneration regime in barley. Plant Mol. Biol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López Sánchez, A.; Stassen, J.H.M.; Furci, L.; Smith, L.M.; Ton, J. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant J. 2016, 88, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Grimanelli, D.; Ingouff, M. DNA Methylation Readers in Plants. J. Mol. Biol. 2020, 432, 1706–1717. [Google Scholar] [CrossRef]
- Bednarek, P.T.; Orłowska, R.; Koebner, R.M.D.; Zimny, J. Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biol. 2007, 7. [Google Scholar] [CrossRef] [Green Version]
- Machczyńska, J.; Orłowska, R.; Mańkowski, D.R.; Zimny, J.; Bednarek, P.T. DNA methylation changes in triticale due to in vitro culture plant regeneration and consecutive reproduction. Plant Cell Tissue Organ Cult. 2014, 119, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Přibylová, A.; Čermák, V.; Tyč, D.; Fischer, L. Detailed insight into the dynamics of the initial phases of de novo RNA-directed DNA methylation in plant cells. Epigenetics Chromatin 2019, 12, 54. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.L.-C.; Li, H.; Ecker, J.R. Ethylene Biosynthesis and Signaling Networks. Plant Cell 2002, 14, S131–S151. [Google Scholar] [CrossRef] [Green Version]
- Moffatt, B.A.; Weretilnyk, E.A. Sustaining S-adenosyl-l-methionine-dependent methyltransferase activity in plant cells. Physiol. Plant. 2001, 113, 435–442. [Google Scholar] [CrossRef]
- Kumar, S.; Cheng, X.; Klimasauskas, S.; Sha, M.; Posfai, J.; Roberts, R.J.; Wilson, G.G. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Giovanelli, J.; Mudd, S.H.; Datko, A.H. Quantitative Analysis of Pathways of Methionine Metabolism and Their Regulation in Lemna. Plant Physiol. 1985, 78, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, F.M.; Fisher, A.G. Getting rid of DNA methylation. Trends Cell Biol. 2014, 24, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Lang, Z. The mechanism and function of active DNA demethylation in plants. J. Integr. Plant Biol. 2020, 62, 148–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhu, J.K. Active DNA demethylation in plants and animals. Cold Spring Harb. Symp. Quant. Biol. 2012, 77, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Ooi, S.K.; Bestor, T.H. The colorful history of active DNA demethylation. Cell 2008, 133, 1145–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.-J.; Chen, T.; Zhu, J.-K. Regulation and function of DNA methylation in plants and animals. Cell Res. 2011, 21, 442–465. [Google Scholar] [CrossRef]
- Globisch, D.; Münzel, M.; Müller, M.; Michalakis, S.; Wagner, M.; Koch, S.; Brückl, T.; Biel, M.; Carell, T. Tissue Distribution of 5-Hydroxymethylcytosine and Search for Active Demethylation Intermediates. PLoS ONE 2010, 5, e15367. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333, 1300–1303. [Google Scholar] [CrossRef] [Green Version]
- Nabel, C.S.; Manning, S.A.; Kohli, R.M. The Curious Chemical Biology of Cytosine: Deamination, Methylation, and Oxidation as Modulators of Genomic Potential. ACS Chem. Biol. 2012, 7, 20–30. [Google Scholar] [CrossRef]
- Machczyńska, J.; Orłowska, R.; Zimny, J.; Bednarek, P.T. Extended metAFLP approach in studies of the tissue culture induced variation (TCIV) in case of triticale. Mol. Breed. 2014, 34, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Orłowska, R.; Pachota, K.A.; Machczyńska, J.; Niedziela, A.; Makowska, K.; Zimny, J.; Bednarek, P.T. Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron. J. Biotechnol. 2020, 43, 8–15. [Google Scholar] [CrossRef]
- Bednarek, P.T.; Orłowska, R.; Niedziela, A. A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress. BMC Plant Biol. 2017, 17, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Lv, J.; Zhang, L.; Dou, J.; Sun, Y.; Li, X.; Fu, X.; Dou, H.; Mao, J.; Hu, X.; et al. MethylRAD: A simple and scalable method for genome-wide DNA methylation profiling using methylation-dependent restriction enzymes. Open Biol. 2015, 5, 150130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, A.L.; Johnson, D.S.; Kim, S.W.; Valouev, A.; Reddy, T.E.; Neff, N.F.; Anton, E.; Medina, C.; Nguyen, L.; Chiao, E.; et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 2009, 19, 1044–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machczyńska, J.; Zimny, J.; Bednarek, P. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants. Plant Mol. Biol. 2015, 89, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Songstad, D.D.; Armstrong, C.L.; Petersen, W.L. AgNO3 increases type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep. 1991, 9, 699–702. [Google Scholar] [CrossRef]
- Vain, P.; Yean, H.; Flament, P. Enhancement of production and regeneration of embryogenic type II callus in Zea mays L. by AgNO3. Plant Cell Tissue Organ Cult. 1989, 18, 143–151. [Google Scholar] [CrossRef]
- Jha, A.K.; Dahleen, L.S.; Suttle, J.C. Ethylene influences green plant regeneration from barley callus. Plant Cell Rep. 2007, 26, 285–290. [Google Scholar] [CrossRef]
- Wu, L.M.; Wei, Y.M.; Zheng, Y.L. Effects of silver nitrate on the tissue culture of immature wheat embryos. Russ. J. Plant Physiol. 2006, 53, 530–534. [Google Scholar] [CrossRef]
- Würschum, T.; Tucker, M.R.; Maurer, H.P.; Leiser, W.L. Ethylene inhibitors improve efficiency of microspore embryogenesis in hexaploid triticale. Plant Cell Tissue Organ Cult. 2015, 122, 751–757. [Google Scholar] [CrossRef]
- Paladi, R.K.; Rai, A.N.; Penna, S. Silver nitrate modulates organogenesis in Brassica juncea (L.) through differential antioxidant defense and hormonal gene expression. Sci. Hortic. 2017, 226, 261–267. [Google Scholar] [CrossRef]
- Purnhauser, L.; Medgyesy, P.; Czakó, M.; Dix, P.J.; Márton, L. Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginifolia Viv. tissue cultures using the ethylene inhibitor AgNO3. Plant Cell Rep. 1987, 6, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawrot-Chorabik, K. Response of the callus cells of fir (Abies nordmanniana) to in vitro heavy metal stress. Folia For. Pol. Ser. A 2017, 59, 25. [Google Scholar] [CrossRef] [Green Version]
- Speranza, A.; Crinelli, R.; Scoccianti, V.; Taddei, A.R.; Iacobucci, M.; Bhattacharya, P.; Ke, P.C. In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ. Pollut. 2013, 179, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Ravet, K.; Pilon, M. Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxid Redox Signal 2013, 19, 919–932. [Google Scholar] [CrossRef] [Green Version]
- Printz, B.; Lutts, S.; Hausman, J.-F.; Sergeant, K. Copper Trafficking in Plants and Its Implication on Cell Wall Dynamics. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Pádua, M.; Cavaco, A.M.; Aubert, S.; Bligny, R.; Casimiro, A. Effects of copper on the photosynthesis of intact chloroplasts: Interaction with manganese. Physiol. Plant. 2010, 138, 301–311. [Google Scholar] [CrossRef]
- Tan, Y.-F.; O′Toole, N.; Taylor, N.L.; Millar, A.H. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol. 2010, 152, 747–761. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, T.; Alonso, J.M. Ethylene Captures a Metal! Metal Ions Are Involved in Ethylene Perception and Signal Transduction. Plant Cell Physiol. 2000, 41, 548–555. [Google Scholar] [CrossRef]
- Bowler, C.; Montagu, M.V.; Inze, D. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Biol. 1992, 43, 83–116. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [Green Version]
- Lauer, M.M.; de Oliveira, C.B.; Yano, N.L.I.; Bianchini, A. Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2012, 156, 140–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyer, E.M. Silver ion: A potent anti-ethylene agent in cucumber and tomato. HortScience 1976, 11, 175–196. [Google Scholar]
- Costa, C.S.; Ronconi, J.V.V.; Daufenbach, J.F.; Gonçalves, C.L.; Rezin, G.T.; Streck, E.L.; da Silva Paula, M.M. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol. Cell. Biochem. 2010, 342, 51–56. [Google Scholar] [CrossRef]
- McDaniel, B.K.; Binder, B.M. Ethylene Receptor 1 (ETR1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana. J. Biol. Chem. 2012, 287, 26094–26103. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, F.I.; Esch, J.J.; Hall, A.E.; Binder, B.M.; Schaller, G.E.; Bleecker, A.B. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 1999, 283, 996–998. [Google Scholar] [CrossRef]
- Mertens, J.; Vangronsveld, J.; Van Der Straeten, D.; Van Poucke, M. Effects of Copper and Zinc on the Ethylene Production of Arabidopsis Thaliana. In Biology and Biotechnology of the Plant Hormone Ethylene II; Kanellis, A.K., Chang, C., Klee, H., Bleecker, A.B., Pech, J.C., Grierson, D., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 333–338. [Google Scholar] [CrossRef]
- Zuo, J.; Wang, Y.; Zhu, B.; Luo, Y.; Wang, Q.; Gao, L. Comparative Analysis of DNA Methylation Reveals Specific Regulations on Ethylene Pathway in Tomato Fruit. Genes 2018, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Romani, R.J. DNA methylation levels and ethylene production in senescent, suspension-cultured pear fruit cells: Implications for epigenetic control? Physiol. Plant. 1998, 103, 534–540. [Google Scholar] [CrossRef]
- Cong, W.; Miao, Y.; Xu, L.; Zhang, Y.; Yuan, C.; Wang, J.; Zhuang, T.; Lin, X.; Jiang, L.; Wang, N.; et al. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biol. 2019, 19, 282. [Google Scholar] [CrossRef] [Green Version]
- Puchkova, L.V.; Broggini, M.; Polishchuk, E.V.; Ilyechova, E.Y.; Polishchuk, R.S. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Nutrients 2019, 11, 1364. [Google Scholar] [CrossRef] [Green Version]
- Fiuk, A.; Bednarek, P.T.; Rybczyński, J.J. Flow Cytometry, HPLC-RP, and metAFLP Analyses to Assess Genetic Variability in Somatic Embryo-Derived Plantlets of Gentiana pannonica Scop. Plant Mol. Biol. Report. 2010, 28, 413–420. [Google Scholar] [CrossRef]
- Chiou, S.H. DNA- and protein-scission activities of ascorbate in the presence of copper ion and a copper-peptide complex. J. Biochem. 1983, 94, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Iwase, J.; Furukawa, H.; Hiramatsu, T.; Bouteau, F.; Mancuso, S.; Tanaka, K.; Okazaki, T.; Kawano, T. Protection of tobacco cells from oxidative copper toxicity by catalytically active metal-binding DNA oligomers. J. Exp. Bot. 2014, 65, 1391–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebhard, S.; Ronimus, R.S.; Morgan, H.W. Inhibition of phosphofructokinases by copper(II). FEMS Microbiol. Lett. 2001, 197, 105–109. [Google Scholar] [CrossRef]
- Félix, R.; Valentão, P.; Andrade, P.B.; Félix, C.; Novais, S.C.; Lemos, M.F.L. Evaluating the In Vitro Potential of Natural Extracts to Protect Lipids from Oxidative Damage. Antioxidants 2020, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Hung, K.T.; Kao, C.H. Lipid peroxidation in relation to senescence of maize leaves. J. Plant Physiol. 1997, 150, 283–286. [Google Scholar] [CrossRef]
- Oleszczuk, S.; Tyrka, M.; Zimny, J. The origin of clones among androgenic regenerants of hexaploid triticale. Euphytica 2014, 198, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Shrout, P.E.; Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol Methods 2002, 7, 422–445. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Liu, S.; Miao, D.; Yuan, Y. Sample size determination for mediation analysis of longitudinal data. BMC Med Res. Methodol. 2018, 18, 32. [Google Scholar] [CrossRef]
- Manova, V.; Gruszka, D. DNA damage and repair in plants—from models to crops. Front. Plant Sci. 2015, 6, 885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.C. The N6 medium and its applications to anther culture of cereal crops. In Proceedings of Symposium on Plant Tissue Culture; Science Press: Beijing, China, 1978; pp. 43–50. [Google Scholar]
- Kumlehn, J.; Serazetdinova, L.; Hensel, G.; Becker, D.; Loerz, H. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol. J. 2006, 4, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis. In A Regression Bases Approach; Little, S.E., Ed.; A Division of Guilford Publications, Inc.: New York, NY, USA, 2018. [Google Scholar]
- Addinsoft. XLSTAT Statistical and Data Analysis Solution, New York, NY, USA. Available online: https://www.xlstat.com (accessed on 10 May 2020).
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
R | Trial | Cu2+ (µM) | Ag+ (µM) | Independent Variable | Mediator | Dependent Variable | Moderator | ||
---|---|---|---|---|---|---|---|---|---|
CG_DMV (%) | CHG_DMV (%) | CHG_DNMV (%) | Cu*Ag | SV (%) | Time (Days) | ||||
1 | M1 | 0.1 | 0 | 0.46 | 1.16 | 0.69 | 0 | 3.71 | 21 |
2 | M1 | 0.1 | 0 | 0.23 | 1.16 | 0.7 | 0 | 2.55 | 21 |
3 | M1 | 0.1 | 0 | 0.23 | 1.16 | 0.7 | 0 | 2.55 | 21 |
4 | M1 | 0.1 | 0 | 0.23 | 1.16 | 0.7 | 0 | 2.78 | 21 |
5 | M1 | 0.1 | 0 | 0.46 | 1.16 | 0.93 | 0 | 3.24 | 21 |
6 | M2 | 0.1 | 10 | 0.46 | 1.16 | 0.7 | 0 | 2.55 | 28 |
7 | M2 | 0.1 | 10 | 0.47 | 1.16 | 0.7 | 0 | 2.32 | 28 |
8 | M2 | 0.1 | 10 | 0.46 | 0.93 | 0.7 | 0 | 2.55 | 28 |
9 | M3 | 0.1 | 60 | 0.46 | 0.93 | 0.7 | 0 | 2.55 | 35 |
10 | M3 | 0.1 | 60 | 0.46 | 1.16 | 0.69 | 0 | 3.71 | 35 |
11 | M3 | 0.1 | 60 | 0.46 | 1.16 | 0.7 | 0 | 3.94 | 35 |
12 | M3 | 0.1 | 60 | 0.46 | 0.93 | 0.7 | 0 | 2.55 | 35 |
13 | M3 | 0.1 | 60 | 0.46 | 0.92 | 0.69 | 0 | 4.38 | 35 |
14 | M4 | 5 | 60 | 0.46 | 0.93 | 0.7 | 300 | 2.55 | 28 |
15 | M4 | 5 | 60 | 0.46 | 0.93 | 0.7 | 300 | 2.32 | 28 |
16 | M5 | 5 | 0 | 0.46 | 0.93 | 0.7 | 0.01 | 2.55 | 35 |
17 | M5 | 5 | 0 | 0.46 | 0.93 | 0.69 | 0.01 | 3.71 | 35 |
18 | M5 | 5 | 0 | 0.7 | 0.93 | 0.93 | 0.01 | 3.47 | 35 |
19 | M5 | 5 | 0 | 0.7 | 1.16 | 0.69 | 0.01 | 3.71 | 35 |
20 | M6 | 5 | 10 | 0 | 0.93 | 0.7 | 50 | 2.55 | 21 |
21 | M6 | 5 | 10 | 0.46 | 0.93 | 0.7 | 50 | 2.55 | 21 |
22 | M6 | 5 | 10 | 0 | 0.93 | 0.7 | 50 | 2.55 | 21 |
23 | M6 | 5 | 10 | 0.23 | 0.93 | 0.7 | 50 | 2.55 | 21 |
24 | M6 | 5 | 10 | 0.23 | 0.93 | 0.7 | 50 | 2.32 | 21 |
25 | M7 | 10 | 10 | 0.69 | 1.16 | 0.69 | 100 | 4.63 | 35 |
26 | M7 | 10 | 10 | 0.46 | 1.16 | 0.7 | 100 | 2.55 | 35 |
27 | M7 | 10 | 10 | 0.46 | 0.93 | 0.69 | 100 | 3.94 | 35 |
28 | M8 | 10 | 60 | 0 | 0 | 0.98 | 600 | 13.52 | 21 |
29 | M8 | 10 | 60 | 0 | 0 | 0.74 | 600 | 13.52 | 21 |
30 | M8 | 10 | 60 | 0 | 0 | 0.74 | 600 | 14.01 | 21 |
31 | M9 | 10 | 0 | 0.93 | 1.16 | 0.69 | 0.01 | 4.4 | 28 |
32 | M9 | 10 | 0 | 0.23 | 0.93 | 0.7 | 0.01 | 2.78 | 28 |
33 | M9 | 10 | 0 | 0.23 | 0.93 | 0.7 | 0.01 | 2.78 | 28 |
34 | M9 | 10 | 0 | 0.23 | 0.93 | 0.7 | 0.01 | 2.55 | 28 |
35 | M9 | 10 | 0 | 0.93 | 1.17 | 0.7 | 0.01 | 3.49 | 28 |
M | 4.75 | 20.29 | 0.39 | 0.94 | 0.72 | 84.29 | 3.95 | 27.8 | |
SD | 4.15 | 25.84 | 0.24 | 0.31 | 0.07 | 176.05 | 3.09 | 5.99 |
F1 | F2 | |
---|---|---|
Eigenvalue | 33.322 | 0.755 |
Variability (%) | 95.204 | 2.158 |
Cumulative (%) | 95.204 | 97.362 |
ΦPT | 21-M | 28-M | 35-M |
---|---|---|---|
21-M | 0.000 | 0.105 | 0.345 |
28-M | 0.072 | 0.000 | 0.016 |
35-M | 0.000 | 0.164 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarek, P.T.; Orłowska, R. CG Demethylation Leads to Sequence Mutations in an Anther Culture of Barley Due to the Presence of Cu, Ag Ions in the Medium and Culture Time. Int. J. Mol. Sci. 2020, 21, 4401. https://doi.org/10.3390/ijms21124401
Bednarek PT, Orłowska R. CG Demethylation Leads to Sequence Mutations in an Anther Culture of Barley Due to the Presence of Cu, Ag Ions in the Medium and Culture Time. International Journal of Molecular Sciences. 2020; 21(12):4401. https://doi.org/10.3390/ijms21124401
Chicago/Turabian StyleBednarek, Piotr T., and Renata Orłowska. 2020. "CG Demethylation Leads to Sequence Mutations in an Anther Culture of Barley Due to the Presence of Cu, Ag Ions in the Medium and Culture Time" International Journal of Molecular Sciences 21, no. 12: 4401. https://doi.org/10.3390/ijms21124401
APA StyleBednarek, P. T., & Orłowska, R. (2020). CG Demethylation Leads to Sequence Mutations in an Anther Culture of Barley Due to the Presence of Cu, Ag Ions in the Medium and Culture Time. International Journal of Molecular Sciences, 21(12), 4401. https://doi.org/10.3390/ijms21124401