Cationic Porphyrins as Effective Agents in Photodynamic Inactivation of Opportunistic Plumbing Pathogen Legionella pneumophila
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Porphyrins
2.2. Photophysical Properties of Synthetized Porphyrins
2.3. Physicochemical Properties of the Used Tap Water
2.4. Minimal Effective Concentration (MEC) and Porphyrin Uptake
2.5. Photodynamic inactivation of Legionella pneumophila
2.6. Viability of Legionella pneumophila after Treatment with PSs
3. Materials and Methods
3.1. General
3.2. Synthesis of Porphyrins
3.3. Light Source
3.4. Bacteria Strain and Growth Condition
3.5. Tap Water Samples
3.6. Determination of the Minimum Effective Concentrations of PSs
3.7. PDI Assays in STW
3.8. Viability of Acanthamoeba castellanii (XTT Assay)
3.9. Co-Cultivation with Acanthamoeba castellanii
3.10. Photosensitizer Uptake Assay
3.11. Membrane Permeability Assay
3.12. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falkinham, J.O.; Pruden, A.; Edwards, M.A. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water. Pathogens 2015, 4, 373–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkinham, J.O.; Hilborn, E.D.; Arduinob, M.J.; Pruden, A.; Edwards, M.A. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ. Health Perspect. 2015, 123, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchta, J.M.; States, S.J.; McGlaughlin, J.E.; Overmeyer, J.H.; Wadowsky, R.M.; McNamara, A.M.; Wolford, R.S.; Yee, R.B. Enhanced chlorine resistance of tap water-adapted Legionella pneumophila as compared with agar medium-passaged strains. Appl. Environ. Microbiol. 1985, 50, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Cooper, I.; Hanlon, G. Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection. J. Hosp. Infect. 2010, 74, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Mouchtouri, V.; Velonakis, E.; Hadjichristodoulou, C. Thermal disinfection of hotels, hospitals, and athletic venues hot water distribution systems contaminated by Legionella species. Am. J. Infect. Control 2007, 35, 623–627. [Google Scholar] [CrossRef]
- Amos-Tautua, B.M.; Songca, S.P.; Oluwafemi, O.S. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules 2019, 24, 2456. [Google Scholar] [CrossRef] [Green Version]
- Malatesti, N.; Munitic, I.; Jurak, I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys. Rev. 2017, 9, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Marciel, L.S.C.; Mesquita, M.; Ferreira, R.; Moreira, B.; Neves, M.G.P.; Faustino, M.A.F.; Almeida, A. An efficient formulation based on cationic porphyrins to photoinactivate Staphylococcus aureus and Escherichia coli. Future Med. Chem. 2018, 10, 1821–1833. [Google Scholar] [CrossRef]
- Coppellotti, O.; Fabris, C.; Soncin, M.; Magaraggia, M.; Camerin, M.; Jori, G.; Guidolin, L. Porphyrin photosensitised processes in the prevention and treatment of water- and vector-borne diseases. Curr. Med. Chem. 2012, 19, 808–819. [Google Scholar] [CrossRef]
- Hashimoto, M.C.E.; Prates, R.A.; Kato, I.T.; Nunez, S.C.; Courrol, L.C.; Ribeiro, M.S. Antimicrobial Photodynamic Therapy on Drug-resistant Pseudomonas aeruginosa-induced Infection. An In Vivo Study. Photochem. Photobiol. 2012, 88, 590–595. [Google Scholar] [CrossRef]
- O’Riordan, K.; Sharlin, D.S.; Gross, J.; Chang, S.; Errabelli, D.; Akilov, O.E.; Kosaka, S.; Nau, G.J.; Hasan, T. Photoinactivation of Mycobacteria In Vitro and in a New Murine Model of Localized Mycobacterium bovis BCG-Induced Granulomatous Infection. Antimicrob. Agents Chemother. 2006, 50, 1828–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, E.; Costa, L.; Carvalho, C.M.B.; Tome, J.P.C.; Faustino, M.A.F.; Neves, M.G.; Tomé, A.C.; Cavaleiro, J.A.S.; Cunha, A.; Almeida, A. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol. 2009, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchat, M.; Spikes, J.; Bertoloni, G.; Jori, G. Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. J. Photochem. Photobiol. B Biol. 1996, 35, 149–157. [Google Scholar] [CrossRef]
- Magaraggia, M.; Jori, G.; Soncin, M.; Schofield, C.L.; Russell, D. Porphyrin–silica microparticle conjugates as an efficient tool for the photosensitised disinfection of water contaminated by bacterial pathogens. Photochem. Photobiol. Sci. 2013, 12, 2170. [Google Scholar] [CrossRef] [PubMed]
- Rychtáriková, R.; Šabata, S.; Hetflejš, J.; Kuncová, G. Photodynamic efficiency of porphyrins encapsulated in polysilsesquioxanes. Chem. Pap. 2012, 66, 269–277. [Google Scholar] [CrossRef]
- Fields, B.S.; Benson, R.F.; Besser, R.E. Legionella and Legionnaires’ Disease: 25 Years of Investigation. Clin. Microbiol. Rev. 2002, 15, 506–526. [Google Scholar] [CrossRef] [Green Version]
- Fueda, Y.; Hashimoto, M.; Nobuhara, K.; Yokoi, H.; Komiya, Y.; Shiragami, T.; Matsumoto, J.; Kawano, K.; Suzuki, S.; Yasuda, M. Visible-Light Bactericidal Effect of Silica Gel-supported Porphyrinatoantimony (V) Catalyst on Legionella Species Occurring in the Living Environmental Fields. Biocontrol. Sci. 2005, 10, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Lesar, A.; Begić, G.; Malatesti, N.; Gobin, I. Innovative approach in Legionella water treatment with photodynamic cationic amphiphilic porphyrin. Water Supply 2019, 19, 1473–1479. [Google Scholar] [CrossRef]
- Malatesti, N.; Harej, A.; Pavelić, S.K.; Lončarić, M.; Zorc, H.; Wittine, K.; Andjelkovic, U.; Josić, D. Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4-octadecanamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride on HeLa cells using low light fluence rate. Photodiagnosis Photodyn. Ther. 2016, 15, 115–126. [Google Scholar] [CrossRef]
- Jelovica, M.; Grbčić, P.; Mušković, M.; Sedić, M.; Pavelić, S.K.; Lončarić, M.; Malatesti, N. In Vitro Photodynamic Activity of N-Methylated and N-Oxidised Tripyridyl Porphyrins with Long Alkyl Chains and Their Inhibitory Activity in Sphingolipid Metabolism. Chem. Med. Chem. 2018, 13, 360–372. [Google Scholar] [CrossRef]
- Ezzeddine, R.; Al-Banaw, A.; Tovmasyan, A.; Craik, J.D.; Batinic-Haberle, I.; Benov, L. Effect of Molecular Characteristics on Cellular Uptake, Subcellular Localization, and Phototoxicity of Zn(II)N-Alkylpyridylporphyrins. J. Biol. Chem. 2013, 288, 36579–36588. [Google Scholar] [CrossRef] [Green Version]
- Spagnul, C.; Turner, L.C.; Boyle, R.W. Immobilized photosensitizers for antimicrobial applications. J. Photochem. Photobiol. B Biol. 2015, 150, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M. The development of phenothiazinium photosensitisers. Photodiagnosis Photodyn. Ther. 2005, 2, 263–272. [Google Scholar] [CrossRef]
- Usacheva, M.N.; Teichert, M.C.; Biel, M.A. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg. Med. 2001, 29, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Hurst, A.N.; Scarbrough, B.; Saleh, R.; Hovey, J.; Ari, F.; Goyal, S.; Chi, R.J.; Troutman, J.M.; Vivero-Escoto, J.L. Influence of Cationic meso-Substituted Porphyrins on the Antimicrobial Photodynamic Efficacy and Cell Membrane Interaction in Escherichia coli. Int. J. Mol. Sci. 2019, 20, 134. [Google Scholar] [CrossRef] [Green Version]
- Skwor, T.A.; Klemm, S.; Zhang, H.; Schardt, B.; Blaszczyk, S.A.; Bork, M.A. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: A metalloporphyrin comparison. J. Photochem. Photobiol. B Biol. 2016, 165, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchat, M.; Bertolini, G.; Giacomini, P.; Villaneuva, A.; Jori, G. Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J. Photochem. Photobiol. B Biol. 1996, 32, 153–157. [Google Scholar] [CrossRef]
- Jiang, L.; Gan, C.R.R.; Gao, J.; Loh, X.J. A Perspective on the Trends and Challenges Facing Porphyrin-Based Anti-Microbial Materials. Small 2016, 12, 3609–3644. [Google Scholar] [CrossRef] [PubMed]
- Sonesson, A.; Jantzen, E.; Bryn, K.; Larsson, L.; Eng, J. Chemical composition of a lipopolysaccharide from Legionella pneumophila. Arch. Microbiol. 1989, 153, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.J.; Faustino, M.A.F.; Tome, J.P.C.; Neves, M.G.P.M.S.; Tomé, A.C.; Cavaleiro, J.A.S.; Cunha, A.; Almeida, A. Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem. Photobiol. Sci. 2014, 13, 680–690. [Google Scholar] [CrossRef]
- Lambrechts, S.A.G.; Aalders, M.C.G.; van Marle, J. Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob. Agents Chemother. 2005, 49, 2026–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzeri, D.; Rovera, M.; Pascual, L.; Durantini, E. Photodynamic studies and photoinactivation of Escherichia coli using meso-substituted cationic porphyrin derivatives with asymmetric charge distribution. Photochem. Photobiol. 2004, 80, 286–293. [Google Scholar] [CrossRef]
- Ragàs, X.; Agut, M.; Nonell, S. Singlet oxygen in Escherichia coli: New insights for antimicrobial photodynamic therapy. Free Radic. Biol. Med. 2010, 49, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Caminos, D.A.; Spesia, M.; Durantini, E.N. Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups. Photochem. Photobiol. Sci. 2006, 5, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Sanden, G.N.; Morrill, W.E.; Fields, B.S.; Breiman, R.F.; Barbaree, J.M. Incubation of water samples containing amoebae improves detection of legionellae by the culture method. Appl. Environ. Microbiol. 1992, 58, 2001–2004. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.F.; Tompkins, L.S. A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect. Immun. 1992, 60, 296–301. [Google Scholar] [CrossRef] [Green Version]
- Storey, M.; Winiecka-Krusnell, J.; Ashbolt, N.J.; Stenström, T.-A. The Efficacy of Heat and Chlorine Treatment against Thermotolerant Acanthamoebae and Legionellae. Scand. J. Infect. Dis. 2004, 36, 656–662. [Google Scholar] [CrossRef]
- Nwachuku, N.; Gerba, C.P. Health Effects of Acanthamoeba spp. and Its Potential for Waterborne Transmission. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2004; pp. 93–131. [Google Scholar] [CrossRef]
- Garcia, M.T.; Jones, S.; Pelaz, C.; Millar, R.D.; Kwaik, Y.A. Acanthamoeba polyphaga resuscitates viable non-culturable Legionella pneumophila after disinfection. Environ. Microbiol. 2007, 9, 1267–1277. [Google Scholar] [CrossRef]
- Zakavi, S.; Mojarrad, A.G.; Yazdely, T.M. Facile Purification of meso-Tetra (pyridyl) porphyrins and Detection of Unreacted Porphyrin upon Metallation of meso-Tetra (aryl) porphyrins. Macroheterocycles 2012, 5, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Zakavi, S.; Rahiminezhad, H.; Mojarrad, A.G.; Yazdeli, T.M.; Alizadeh, R. Effects of Core and/or Peripheral Protonation of meso-Tetra (2-, 3-, and 4-pyridyl) Porphyrin and meso-Tetra (3-methylpyridyl) Porphyrin on Their UV-vis Spectra. J. Spectrosc. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Fuzziness | 0.73 NTU |
pH value | 7.9 |
Conductivity | 0.211 mS/cm at 20 °C |
Salinity | 0 |
Hardness | 133 mg/L |
Anions (HCO3−, Cl−, F−, NO3−, SO42−) | 148.9 mg/L |
Cations (Ca2+, Mg2+, Na+, K+) | 50.95 mg/L |
Hydrocarbons | <1.0 mg/L |
Compound | Absorption λmax /nm (ε*103 M−1 cm−1) | Emission λem/nm (λex = 420 nm) | ||||
---|---|---|---|---|---|---|
Soret | Qy (1-0) | Qy (0-0) | Qx (1-0) | Qx (0-0) | ||
TMPyP3 | 420 (180.0) | 517 (3.9) | 546 (10.8) | 592 (1.7) | 643 (0.2) | 608, 657 |
TMPyP3-CH3 | 420 (204.5) | 518 (6.1) | 544 (10.2) | 596 (1.9) | 645 (0.5) | 613, 660 |
TMPyP3-C17H35 | 420 (133.2) | 518 (3.7) | 548 (8.1) | 595 (1.4) | 644 (0.3) | 612, 660 |
Compound | MEC (µM) | MEC (µM)-Dark Toxicity |
---|---|---|
methylene blue (MB) | 25.6 | >25.6 |
toluidine blue (TBO) | 12.8 | >25.6 |
TMPyP3-C17H35 | 0.024 | >1.56 |
TMPyP3-CH3 | 0.39 | >12.5 |
TMPyP3 | 0.195 | >12.5 |
TMPyP3-C17H35 | TMPyP3-CH3 | TMPyP3 | MB | TBO | |
---|---|---|---|---|---|
0.5× MEC | 88.42 | 26.79 | 24.55 | 106.74 | 104.73 |
1× MEC | 28.96 | 8.34 | 9.99 | 91.62 | 62.25 |
2× MEC | 24.96 | 7.36 | 9.22 | 72.2 | 26.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesar, A.; Mušković, M.; Begić, G.; Lončarić, M.; Tomić Linšak, D.; Malatesti, N.; Gobin, I. Cationic Porphyrins as Effective Agents in Photodynamic Inactivation of Opportunistic Plumbing Pathogen Legionella pneumophila. Int. J. Mol. Sci. 2020, 21, 5367. https://doi.org/10.3390/ijms21155367
Lesar A, Mušković M, Begić G, Lončarić M, Tomić Linšak D, Malatesti N, Gobin I. Cationic Porphyrins as Effective Agents in Photodynamic Inactivation of Opportunistic Plumbing Pathogen Legionella pneumophila. International Journal of Molecular Sciences. 2020; 21(15):5367. https://doi.org/10.3390/ijms21155367
Chicago/Turabian StyleLesar, Andrija, Martina Mušković, Gabrijela Begić, Martin Lončarić, Dijana Tomić Linšak, Nela Malatesti, and Ivana Gobin. 2020. "Cationic Porphyrins as Effective Agents in Photodynamic Inactivation of Opportunistic Plumbing Pathogen Legionella pneumophila" International Journal of Molecular Sciences 21, no. 15: 5367. https://doi.org/10.3390/ijms21155367