Epigenetic Silencing of LMX1A Contributes to Cancer Progression in Lung Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Promoter Methylation of LMX1A in Non-Small Cell Lung Cancer
2.2. Correlation between Methylation Status and Gene Expression Level of LMX1A in NSCLC Cell Lines
2.3. Overexpression of LMX1A Inhibits the Colony Formation and Invasion of NSCLC Cells in a Constitutive Expression System
2.4. LMX1A Represses the Colony Formation and Invasion of NSCLC Cells in an Inducible Expression System
2.5. LMX1A Inhibits NSCLC Cell Invasion Partly through Modulation of Epithelial Mesenchymal Transition (EMT)
3. Discussion
4. Materials and Methods
4.1. SMART (Shiny Methylation Analysis Resource Tool) App
4.2. Cell Lines
4.3. DNA Methylation and Gene Expression Analysis
4.4. Plasmids Construction
4.5. Generation of Cells Overexpressing Stable Clones or Inducible Expression Stable Clones
4.6. Assays for Western Blot, Cell Viability, Anchorage-Independent Growth, and Invasion
4.7. NanoString Gene Expression Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LMX1A | LIM homeobox transcription factor 1α |
RT-PCR | reverse transcription-polymerase chain reaction |
MSP | methylation-specific PCR |
EMT | epithelial mesenchymal transition |
NSCLC | non-small cell lung cancer |
CDH1 | E-cadherin |
FN1 | fibronectin |
CDH2 | N-cadherin |
ID | DNA-binding gene 2 |
ANGPL4 | angiopoietin-like 4 |
ECM | extracellular matrix |
EGFR | epidermal growth factor receptor |
LIM-HD | LIM-homeodomain |
LUAD | lung adenocarcinoma |
LUSC | lung squamous cell carcinoma |
qRT-PCR | quantitative reverse transcription polymerase chain reaction |
Q-MSP | quantitative methylation-specific PCR |
DAC | 5-aza-2ʹ-deoxycytidine |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.; Krapcho, M.; Miller, D.; Bishop, K.; Altekruse, S.; Kosary, C.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. SEER Cancer Statistics Review, 1975–2013; National Cancer Institute: Bethesda, MD, USA, 2016. Available online: https://seer.cancer.gov/archive/csr/1975_2013/ (accessed on 24 May 2020).
- Aravanis, A.M.; Lee, M.; Klausner, R.D. Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection. Cell 2017, 168, 571–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belinsky, S.A.; Klinge, D.M.; Dekker, J.D.; Smith, M.W.; Bocklage, T.J.; Gilliland, F.D.; Crowell, R.E.; Karp, D.D.; Stidley, C.A.; Picchi, M.A. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin. Cancer Res. 2005, 11, 6505–6511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.; Wang, T.; Reilly, A.A.; Keller, S.M.; Spivack, S.D. Gene promoter methylation assayed in exhaled breath, with differences in smokers and lung cancer patients. Respir. Res. 2009, 10, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.J.; Hayward, C.; Fong, P.Y.; Dominguez, M.; Hunsucker, S.W.; Lee, L.W.; McLean, M.; Law, S.; Butler, H.; Schirm, M.; et al. A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci. Transl. Med. 2013, 5, 207ra142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topaloglu, O.; Hoque, M.O.; Tokumaru, Y.; Lee, J.; Ratovitski, E.; Sidransky, D.; Moon, C.S. Detection of promoter hypermethylation of multiple genes in the tumor and bronchoalveolar lavage of patients with lung cancer. Clin. Cancer Res. 2004, 10, 2284–2288. [Google Scholar] [CrossRef] [Green Version]
- Breuer, R.H.; Pasic, A.; Smit, E.F.; van Vliet, E.; Vonk Noordegraaf, A.; Risse, E.J.; Postmus, P.E.; Sutedja, T.G. The natural course of preneoplastic lesions in bronchial epithelium. Clin. Cancer Res. 2005, 11, 537–543. [Google Scholar]
- Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 2007, 8, 286–298. [Google Scholar] [CrossRef]
- Risch, A.; Plass, C. Lung cancer epigenetics and genetics. Int. J. Cancer 2008, 123, 1–7. [Google Scholar] [CrossRef]
- Noor, Z.S.; Cummings, A.L.; Johnson, M.M.; Spiegel, M.L.; Goldman, J.W. Targeted Therapy for Non-Small Cell Lung Cancer. Semin. Respir. Crit. Care Med. 2020, 41, 409–434. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, Y.; Zhang, M.; Ding, R. Prognostic value of RASSF1A methylation status in non-small cell lung cancer (NSCLC) patients: A meta-analysis of prospective studies. Biomarkers 2019, 24, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Tuo, L.; Sha, S.; Huayu, Z.; Du, K. P16(INK4a) gene promoter methylation as a biomarker for the diagnosis of non-small cell lung cancer: An updated meta-analysis. Thorac. Cancer 2018, 9, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhang, Z.; Qing, X.; Wang, X.; Liang, C.; Liu, D. Promoter methylation of APC and RAR-β genes as prognostic markers in non-small cell lung cancer (NSCLC). Exp. Mol. Pathol. 2016, 100, 109–113. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.L.; Zheng, G.F.; Zhao, F. DAPK promoter methylation status correlates with tumor metastasis and poor prognosis in patients with non-small cell lung cancer. Cancer Biomark. 2015, 15, 609–617. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, Q.; Siegfried, J.M.; Luketich, J.D.; Keohavong, P. Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia 2006, 8, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Kim, H.; Shim, Y.M.; Han, J.; Park, J.; Kim, D.H. Aberrant methylation of the FHIT gene in chronic smokers with early stage squamous cell carcinoma of the lung. Carcinogenesis 2004, 25, 2165–2171. [Google Scholar] [CrossRef] [Green Version]
- Duruisseaux, M.; Esteller, M. Lung cancer epigenetics: From knowledge to applications. Semin. Cancer Biol. 2018, 51, 116–128. [Google Scholar] [CrossRef]
- Mehta, A.; Dobersch, S.; Romero-Olmedo, A.J.; Barreto, G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev. 2015, 34, 229–241. [Google Scholar] [CrossRef]
- Langevin, S.M.; Kratzke, R.A.; Kelsey, K.T. Epigenetics of lung cancer. Transl. Res. 2015, 165, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Qian, P.; Li, J.; Zhang, X.; Li, F.; Bei, S.; Li, H.; Sun, Q.; Feng, L. LMX1A inhibits C-Myc expression through ANGPTL4 to exert tumor suppressive role in gastric cancer. PLoS ONE 2019, 14, e0221640. [Google Scholar] [CrossRef]
- Wang, X.; He, C.; Hu, X. LIM homeobox transcription factors, a novel subfamily which plays an important role in cancer (review). Oncol. Rep. 2014, 31, 1975–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, W.C.; Lin, C.K.; Yang, Y.S.; Chan, D.C.; Gao, H.W.; Chang, F.N.; Jin, J.S. The correlations of LMX1A and osteopontin expression to the clinicopathologic stages in pancreatic adenocarcinoma. Appl. Immunohistochem. Mol. Morphol. 2013, 21, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Yan, M.D.; Yu, P.N.; Li, H.J.; Kuo, C.C.; Hsu, C.L.; Lin, Y.W. The role of Sp1 and EZH2 in the regulation of LMX1A in cervical cancer cells. Biochim. Biophys. Acta 2013, 1833, 3206–3217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, T.K.; Yo, Y.T.; Liao, Y.P.; Wang, Y.C.; Su, P.H.; Huang, T.S.; Lai, H.C. LIM-homeobox transcription factor 1, alpha (LMX1A) inhibits tumourigenesis, epithelial-mesenchymal transition and stem-like properties of epithelial ovarian cancer. Gynecol. Oncol. 2013, 128, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, S.; Sun, J.; Huang, Z.; Zhu, T.; Zhang, H.; Gu, J.; He, Y.; Wang, W.; Ma, K.; et al. Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population. PLoS ONE 2012, 7, e35175. [Google Scholar] [CrossRef]
- Tsai, W.C.; Lee, H.S.; Lin, C.K.; Chen, A.; Nieh, S.; Ma, H.I. The association of osteopontin and LMX1A expression with World Health Organization grade in meningiomas and gliomas. Histopathology 2012, 61, 844–856. [Google Scholar] [CrossRef]
- Dong, W.; Feng, L.; Xie, Y.; Zhang, H.; Wu, Y. Hypermethylation-mediated reduction of LMX1A expression in gastric cancer. Cancer Sci. 2011, 102, 361–366. [Google Scholar] [CrossRef]
- Liu, C.Y.; Chao, T.K.; Su, P.H.; Lee, H.Y.; Shih, Y.L.; Su, H.Y.; Chu, T.Y.; Yu, M.H.; Lin, Y.W.; Lai, H.C. Characterization of LMX-1A as a metastasis suppressor in cervical cancer. J. Pathol. 2009, 219, 222–231. [Google Scholar] [CrossRef]
- Hobert, O.; Westphal, H. Functions of LIM-homeobox genes. Trends Genet. 2000, 16, 75–83. [Google Scholar] [CrossRef]
- Cai, J.; Donaldson, A.; Yang, M.; German, M.S.; Enikolopov, G.; Iacovitti, L. The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson’s disease model. Stem Cells 2009, 27, 220–229. [Google Scholar] [CrossRef]
- Chizhikov, V.V.; Lindgren, A.G.; Mishima, Y.; Roberts, R.W.; Aldinger, K.A.; Miesegaes, G.R.; Currle, D.S.; Monuki, E.S.; Millen, K.J. Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc. Natl. Acad. Sci. USA 2010, 107, 10725–10730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, H.H.; Kuo, C.C.; Hsiao, C.W.; Chen, C.Y.; Hu, J.M.; Hsu, C.H.; Chou, Y.C.; Lin, Y.W.; Shih, Y.L. A Novel Prognostic DNA Methylation Panel for Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 4672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Ge, D.; Lu, C. The SMART App: An interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics Chromatin 2019, 12, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [Green Version]
- Lantuéjoul, S.; Salameire, D.; Salon, C.; Brambilla, E. Pulmonary preneoplasia--sequential molecular carcinogenetic events. Histopathology 2009, 54, 43–54. [Google Scholar] [CrossRef]
- Belinsky, S.A. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat. Rev. Cancer 2004, 4, 707–717. [Google Scholar] [CrossRef]
- Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 2008, 358, 1148–1159. [Google Scholar] [CrossRef]
- Belinsky, S.A.; Nikula, K.J.; Palmisano, W.A.; Michels, R.; Saccomanno, G.; Gabrielson, E.; Baylin, S.B.; Herman, J.G. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA 1998, 95, 11891–11896. [Google Scholar] [CrossRef] [Green Version]
- Tsou, J.A.; Galler, J.S.; Siegmund, K.D.; Laird, P.W.; Turla, S.; Cozen, W.; Hagen, J.A.; Koss, M.N.; Laird-Offringa, I.A. Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Mol. Cancer 2007, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Yim, H.W.; Slebos, R.J.; Randell, S.H.; Umbach, D.M.; Parsons, A.M.; Rivera, M.P.; Detterbeck, F.C.; Taylor, J.A. Smoking is associated with increased telomerase activity in short-term cultures of human bronchial epithelial cells. Cancer Lett. 2007, 246, 24–33. [Google Scholar] [CrossRef]
- Licchesi, J.D.; Westra, W.H.; Hooker, C.M.; Herman, J.G. Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clin. Cancer Res. 2008, 14, 2570–2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selamat, S.A.; Galler, J.S.; Joshi, A.D.; Fyfe, M.N.; Campan, M.; Siegmund, K.D.; Kerr, K.M.; Laird-Offringa, I.A. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS ONE 2011, 6, e21443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahrendt, S.A.; Chow, J.T.; Xu, L.H.; Yang, S.C.; Eisenberger, C.F.; Esteller, M.; Herman, J.G.; Wu, L.; Decker, P.A.; Jen, J.; et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J. Natl. Cancer Inst. 1999, 91, 332–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Kwon, Y.M.; Kim, J.S.; Lee, H.; Park, J.H.; Shim, Y.M.; Han, J.; Park, J.; Kim, D.H. Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J. Clin. Oncol. 2004, 22, 2363–2370. [Google Scholar] [CrossRef]
- Belinsky, S.A.; Liechty, K.C.; Gentry, F.D.; Wolf, H.J.; Rogers, J.; Vu, K.; Haney, J.; Kennedy, T.C.; Hirsch, F.R.; Miller, Y.; et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res. 2006, 66, 3338–3344. [Google Scholar] [CrossRef] [Green Version]
- Leng, S.; Do, K.; Yingling, C.M.; Picchi, M.A.; Wolf, H.J.; Kennedy, T.C.; Feser, W.J.; Baron, A.E.; Franklin, W.A.; Brock, M.V.; et al. Defining a gene promoter methylation signature in sputum for lung cancer risk assessment. Clin. Cancer Res. 2012, 18, 3387–3395. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, G.; Raji, O.Y.; Markopoulou, S.; Gosney, J.R.; Bryan, J.; Warburton, C.; Walshaw, M.; Sheard, J.; Field, J.K.; Liloglou, T. DNA methylation biomarkers offer improved diagnostic efficiency in lung cancer. Cancer Res. 2012, 72, 5692–5701. [Google Scholar] [CrossRef] [Green Version]
- Wrangle, J.; Machida, E.O.; Danilova, L.; Hulbert, A.; Franco, N.; Zhang, W.; Glöckner, S.C.; Tessema, M.; Van Neste, L.; Easwaran, H.; et al. Functional identification of cancer-specific methylation of CDO1, HOXA9, and TAC1 for the diagnosis of lung cancer. Clin. Cancer Res. 2014, 20, 1856–1864. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Xu, R.; Won, J.Y.; Kim, C.H.; Kim, D.E.; Yim, H. Roles of the Phosphorylation of Transcriptional Factors in Epithelial-Mesenchymal Transition. J. Oncol. 2019, 2019, 5810465. [Google Scholar] [CrossRef]
- Liao, T.T.; Yang, M.H. Hybrid Epithelial/Mesenchymal State in Cancer Metastasis: Clinical Significance and Regulatory Mechanisms. Cells 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.J.; Ong, C.K.; Cao, Y.; Xiang, Y.Q.; Shao, J.Y.; Ooi, A.; Peng, L.X.; Lu, W.H.; Zhang, Z.; Petillo, D.; et al. Serglycin is a theranostic target in nasopharyngeal carcinoma that promotes metastasis. Cancer Res. 2011, 71, 3162–3172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.Y.; Hsu, H.S.; Tyan, S.W.; Li, F.Y.; Shew, J.Y.; Lee, W.H.; Chen, J.Y. Serglycin in tumor microenvironment promotes non-small cell lung cancer aggressiveness in a CD44-dependent manner. Oncogene 2017, 36, 2457–2471. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Deng, Y.; Zheng, G.; Jia, X.; Xiong, Y.; Luo, K.; Qiu, Q.; Qiu, N.; Yin, J.; Lu, M.; et al. SRGN-TGFβ2 regulatory loop confers invasion and metastasis in triple-negative breast cancer. Oncogenesis 2017, 6, e360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Xu, J.; Yang, Y.; Zhu, L.; Li, X.; Zhao, W. SRGN Promotes Colorectal Cancer Metastasis as a Critical Downstream Target of HIF-1α. Cell Physiol. Biochem. 2018, 48, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- Fajardo-Puerta, A.B.; Mato Prado, M.; Frampton, A.E.; Jiao, L.R. Gene of the month: HGF. J. Clin. Pathol. 2016, 69, 575–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, H.; Lv, P.; Mu, T.; Zhao, X.; Liu, Y.; Feng, Y.; Lv, J.; Liu, M.; Tang, H. LncRNA n335586/miR-924/CKMT1A axis contributes to cell migration and invasion in hepatocellular carcinoma cells. Cancer Lett. 2018, 429, 89–99. [Google Scholar] [CrossRef]
- Han, J.Y.; Kim, H.S.; Lee, S.H.; Park, W.S.; Lee, J.Y.; Yoo, N.J. Immunohistochemical expression of integrins and extracellular matrix proteins in non-small cell lung cancer: Correlation with lymph node metastasis. Lung Cancer 2003, 41, 65–70. [Google Scholar] [CrossRef]
- Han, S.; Khuri, F.R.; Roman, J. Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res. 2006, 66, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Jakowlew, S.B.; Mariano, J.M.; You, L.; Mathias, A. Differential regulation of protease and extracellular matrix protein expression by transforming growth factor-beta 1 in non-small cell lung cancer cells and normal human bronchial epithelial cells. Biochim. Biophys. Acta 1997, 1353, 157–170. [Google Scholar] [CrossRef]
- Liu, F.; Song, S.; Yi, Z.; Zhang, M.; Li, J.; Yang, F.; Yin, H.; Yu, X.; Guan, C.; Liu, Y.; et al. HGF induces EMT in non-small-cell lung cancer through the hBVR pathway. Eur. J. Pharm. 2017, 811, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Morgillo, F.; Della Corte, C.M.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open 2016, 1, e000060. [Google Scholar] [CrossRef] [PubMed]
- Pankov, R.; Yamada, K.M. Fibronectin at a glance. J. Cell Sci. 2002, 115, 3861–3863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rintoul, R.C.; Sethi, T. Extracellular matrix regulation of drug resistance in small-cell lung cancer. Clin. Sci. (Lond.) 2002, 102, 417–424. [Google Scholar] [CrossRef]
- Yin, H.; Wang, Y.; Chen, W.; Zhong, S.; Liu, Z.; Zhao, J. Drug-resistant CXCR4-positive cells have the molecular characteristics of EMT in NSCLC. Gene 2016, 594, 23–29. [Google Scholar] [CrossRef]
- Jäger, B.; Klatt, D.; Plappert, L.; Golpon, H.; Lienenklaus, S.; Barbosa, P.D.; Schambach, A.; Prasse, A. CXCR4/MIF axis amplifies tumor growth and epithelial-mesenchymal interaction in non-small cell lung cancer. Cell Signal. 2020, 73, 109672. [Google Scholar] [CrossRef]
- Tu, Z.; Xie, S.; Xiong, M.; Liu, Y.; Yang, X.; Tembo, K.M.; Huang, J.; Hu, W.; Huang, X.; Pan, S.; et al. CXCR4 is involved in CD133-induced EMT in non-small cell lung cancer. Int. J. Oncol. 2017, 50, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Cao, L.; Zhang, Y.; Lian, H.; Sun, Z.; Cui, Y. MicroRNA-1246 inhibits cell invasion and epithelial mesenchymal transition process by targeting CXCR4 in lung cancer cells. Cancer Biomark. 2018, 21, 251–260. [Google Scholar] [CrossRef]
- Zheng, C.H.; Chen, X.M.; Zhang, F.B.; Zhao, C.; Tu, S.S. Inhibition of CXCR4 regulates epithelial mesenchymal transition of NSCLC via the Hippo-YAP signaling pathway. Cell Biol. Int. 2018, 42, 1386–1394. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Z.; Lu, C.; Xu, F.; Mao, W.; Zhang, K.; Shou, H.; Liu, Z.; Gu, J.; Ge, D. Gefitinib promotes CXCR4-dependent epithelial to mesenchymal transition via TGF-β1 signaling pathway in lung cancer cells harboring EGFR mutation. Clin. Transl. Oncol. 2020, 22, 1355–1363. [Google Scholar] [CrossRef]
- Chanvorachote, P.; Sriratanasak, N.; Nonpanya, N. C-myc Contributes to Malignancy of Lung Cancer: A Potential Anticancer Drug Target. Anticancer Res. 2020, 40, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Kim, A.; Kim, S.K.; Chang, Y.S. MYC expression correlates with PD-L1 expression in non-small cell lung cancer. Lung Cancer 2017, 110, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Cubillo, E.; Tobiume, K.; Shirakihara, T.; Fukuda, N.; Suzuki, H.; Shimizu, K.; Takehara, K.; Cano, A.; Saitoh, M.; et al. A role for Id in the regulation of TGF-beta-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ. 2004, 11, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Agapova, O.A.; Person, E.; Harbour, J.W. Id2 deficiency promotes metastasis in a mouse model of ocular cancer. Clin. Exp. Metastasis 2010, 27, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Tsunedomi, R.; Iizuka, N.; Tamesa, T.; Sakamoto, K.; Hamaguchi, T.; Somura, H.; Yamada, M.; Oka, M. Decreased ID2 promotes metastatic potentials of hepatocellular carcinoma by altering secretion of vascular endothelial growth factor. Clin. Cancer Res. 2008, 14, 1025–1031. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.H.; Chang, S.Y.; Shih, Y.L.; Huang, T.W.; Chang, H.; Lin, Y.W. Emetine Synergizes with Cisplatin to Enhance Anti-Cancer Efficacy against Lung Cancer Cells. Int. J. Mol. Sci. 2019, 20, 5914. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.Y.; Kuo, C.C.; Wu, C.C.; Hsiao, C.W.; Hu, J.M.; Hsu, C.H.; Chou, Y.C.; Shih, Y.L.; Lin, Y.W. NKX6.1 hypermethylation predicts the outcome of stage II colorectal cancer patients undergoing chemotherapy. Genes Chromosomes Cancer 2018, 57, 268–277. [Google Scholar] [CrossRef]
- Tsao, C.M.; Yan, M.D.; Shih, Y.L.; Yu, P.N.; Kuo, C.C.; Lin, W.C.; Li, H.J.; Lin, Y.W. SOX1 functions as a tumor suppressor by antagonizing the WNT/beta-catenin signaling pathway in hepatocellular carcinoma. Hepatol. (Baltim. Md.) 2012, 56, 2277–2287. [Google Scholar] [CrossRef]
- Kulkarni, M.M. Digital multiplexed gene expression analysis using the NanoString nCounter system. Curr. Protoc. Mol. Biol. 2011, 25, Unit25B.10. [Google Scholar] [CrossRef]
- Tsang, H.F.; Xue, V.W.; Koh, S.P.; Chiu, Y.M.; Ng, L.P.; Wong, S.C. NanoString, a novel digital color-coded barcode technology: Current and future applications in molecular diagnostics. Expert Rev. Mol. Diagn. 2017, 17, 95–103. [Google Scholar] [CrossRef]
- Warren, S. Simultaneous, Multiplexed Detection of RNA and Protein on the NanoString® nCounter® Platform. Methods Mol. Biol. 2018, 1783, 105–120. [Google Scholar] [CrossRef] [PubMed]
Probe Name | Accession Number | Fold Change: LMX1A vs. Control | p Value of LMX1A vs. Control | EMT Spectrum | Progression Categories |
---|---|---|---|---|---|
SRGN | NR_036430.1 | −4.32693624 | 0.01084103 | Mes | Angiogenesis, ECM Layers, EMT |
SCG2 | NM_003469.3 | −3.88797712 | 0.01710246 | Angiogenesis, Tumor Growth | |
HGF | NM_000601.4 | −2.82349849 | 0.00009102 | Angiogenesis, ECM Layers, EMT, Tumor Growth, Tumor Invasion | |
AMH | NM_000479.3 | −2.80556583 | 0.04690248 | Transcription Factor, Tumor Growth | |
FN1 | NM_212482.1 | −2.80556583 | 0.04547928 | Mes | Angiogenesis, ECM Layers, ECM Remodeling, EMT, Tumor Invasion |
APOE | NM_000041.2 | −2.73198891 | 0.02757248 | ECM Layers, Tumor Growth | |
CSF2RB | NM_000395.2 | −2.59863329 | 0.0019465 | Mes | ECM Layers, EMT |
MYH11 | NM_001040113.1 | −2.59863329 | 0.0019465 | Metastasis | |
PIK3R6 | NM_001010855.3 | −2.59863329 | 0.0019465 | Angiogenesis | |
CLU | NM_203339.2 | −2.56240726 | 0.02621217 | Angiogenesis, ECM Layers, Tumor Growth | |
CRIP2 | NM_001270837.1 | −2.32546878 | 0.03496239 | ECM Layers, Tumor Growth | |
TIMP1 | NM_003254.2 | −2.28131437 | 0.01276203 | Angiogenesis, ECM Layers, ECM Remodeling, Hypoxia, Metastasis, Tumor Growth | |
CKMT1A | NM_001015001.1 | −2.19464755 | 0.01458759 | EMT | |
CXCR4 | NM_003467.2 | −1.99022377 | 0.04348437 | Mes | ECM Layers, EMT, Hypoxia |
THBS1 | NM_003246.2 | 3.25843048 | 0.0395245 | Angiogenesis, ECM Layers, ECM Remodeling, Hypoxia, Tumor Growth, Tumor Invasion | |
LEFTY1 | NM_020997.2 | 2.91027427 | 0.04374892 | Tumor Growth | |
ID2 | NM_002166.4 | 1.99489844 | 0.00435035 | Transcription Factor, Tumor Growth |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.-H.; Chang, S.-Y.; Shih, Y.-L.; Chian, C.-F.; Chang, H.; Lin, Y.-W. Epigenetic Silencing of LMX1A Contributes to Cancer Progression in Lung Cancer Cells. Int. J. Mol. Sci. 2020, 21, 5425. https://doi.org/10.3390/ijms21155425
Wu T-H, Chang S-Y, Shih Y-L, Chian C-F, Chang H, Lin Y-W. Epigenetic Silencing of LMX1A Contributes to Cancer Progression in Lung Cancer Cells. International Journal of Molecular Sciences. 2020; 21(15):5425. https://doi.org/10.3390/ijms21155425
Chicago/Turabian StyleWu, Ti-Hui, Shan-Yueh Chang, Yu-Lueng Shih, Chih-Feng Chian, Hung Chang, and Ya-Wen Lin. 2020. "Epigenetic Silencing of LMX1A Contributes to Cancer Progression in Lung Cancer Cells" International Journal of Molecular Sciences 21, no. 15: 5425. https://doi.org/10.3390/ijms21155425
APA StyleWu, T. -H., Chang, S. -Y., Shih, Y. -L., Chian, C. -F., Chang, H., & Lin, Y. -W. (2020). Epigenetic Silencing of LMX1A Contributes to Cancer Progression in Lung Cancer Cells. International Journal of Molecular Sciences, 21(15), 5425. https://doi.org/10.3390/ijms21155425