Molecular Biomarkers in Multiple Sclerosis and Its Related Disorders: A Critical Review
Abstract
:1. Multiple Sclerosis (MS)
1.1. Biomarkers in Pathophysiology of MS
1.2. Biomarkers in Diagnosis of MS
1.3. Biomarkers in Treatment and Prognosis of MS
1.4. Systemic Lupus Erythematosus: Neuropsychiatric SLE
1.5. Antiphospholipid Syndrome
1.6. Neuro-Behçet’s Disease
1.7. Primary Angiitis of the CNS
1.8. Polyarteritis Nodosa
1.9. Antineutrophil Cytoplasmic Antibodies (ANCA)-Associated CNS Vasculitis (AAV)
1.10. Acute Disseminated Encephalomyelitis (ADEM)
1.11. Neuromyelitis Optica (NMO)
1.12. Optic Neuritis
1.13. Vitamin B12 Deficiency
1.14. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL)
1.15. Leber’s Hereditary Optic Neuropathy (LHON)
1.16. Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like Episodes (MELAS)
1.17. Metachromatic Leukodystrophy (MLD)
1.18. Krabbe’s Leukoencephalopathy (KL)
1.19. Multiple Sulfatase Deficiency (MSD)
1.20. Alexander Disease (AxD)
1.21. Adrenoleukodystrophy (ALD)
1.22. Pelizaeus-Merzbacher Disease (PMD)
1.23. Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS)
1.24. HIV-Related Disorders of the CNS
1.25. HTLV-1-Associated Myelopathy
1.26. Lyme Borreliosis
1.27. Myelin Oligodendrocyte Glycoprotein IgG-associated Encephalomyelitis (MOG)
1.28. Neurosyphilis
1.29. Progressive Multifocal Leukoencephalopathy
2. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MS | Multiple sclerosis |
CNS | central nervous system |
PBMCs | peripheral blood mononuclear cells |
Nox2 | nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 |
BDNF | brain-derived neurotrophic factor |
IFN-β | interferon-β |
sIFNAR2 | soluble isoform of the IFN-β receptor |
IFNγ-DC-Exos | interferon gamma-stimulated dendritic cell exosomes |
GSH | glutathione |
DMF | dimethyl fumarate |
Cp:Tf | hydroperoxides ceruloplasmin transferrin ratio |
H3K9me2 | histone H3 lysine 9 dimethylation |
RGC-32 | response gene to complement-32 |
SIRT1 | a NAD-dependent deacetylase sirtuin-1 |
NF-L | neurofilament light |
NF-H | neurofilament heavy |
CHI3L1 | chitinase 3-like-1 |
IgM | immunoglobulin M |
LPA | lysophosphatidic acid |
TAS | total antioxidant status |
NPSLE | neuropsychiatric systemic lupus erythematosus |
Ab | antibody |
ECA | anti-endothelial cell antibodies |
anti-U1RNP | anti-U1 ribonucleoprotein (RNP) |
BDNF | brain-derived neurotrophic factor |
CSF-1R | colony-stimulating factor-1 receptor |
APS | antiphospholipid syndrome |
APL | antiphospholipid |
b2GPI | beta-2-glycoprotein I |
ACL | anti-cardiolipin |
LAC | lupus anticoagulant |
NBD | neuro-Behçet’s disease |
IFN-α | interferon alpha |
TNF | tumor necrosis factor |
MEFV | Mediterranean fever |
DEFA1B | defensin alpha 1B |
NLRP3 | NOD-like receptor protein 3 |
PACNS | primary angiitis of the CNS |
MMF | mycophenolate mofetil |
PAN | polyarteritis nodosa |
ESR | erythrocyte sedimentation rate |
MMP-3 | matrix metalloproteinase-3 |
LAMP-2 | lysosomal-associated membrane protein-2 |
AAV | anti-neutrophil cytoplasmic antibody associated vasculitis |
ANCA | anti-neutrophil cytoplasmic antibody |
ADEM | acute disseminated encephalomyelitis |
CSF | cerebrospinal fluid |
MOG | myelin oligodendrocyte glycoprotein |
MBP | myelin basic protein |
MOBP | myelin-associated oligodendrocyte basic protein |
NMO | neuromyelitis optica |
anti-AQP4 | anti-aquaporin 4 |
IL-6 | interleukin-6 |
CLIPPERS | chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids |
MOG-EM | myelin oligodendrocyte glycoprotein IgG-associated encephalomyelitis |
HAM | HTLV-1 associated myelopathy |
TSP | tropical spastic paraparesis |
FTA-ABS | fluorescent treponemal antibody study |
CGRP | calcitonin gene-related peptide |
CADASIL | cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy |
vWF | Von Willebrand factor |
EPCs | endothelial progenitor cells |
CPCs | circulating progenitor cells |
LHON | Leber’s hereditary optic neuropathy |
MELAS | mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes |
LA | lactic acid |
CK | creatine kinase |
NO | nitric oxide |
NAA | N-acetyl-L-aspartate |
t-Cho | total choline |
anti-MOG | anti-myelin oligodendrocyte glycoprotein |
MLD | metachromatic leukodystrophy |
KL | Krabbe’s leukoencephalopathy |
MSD | multiple sulfatase deficiency |
SUMF1 | sulfatase modifying factor 1 |
FGE | formylglycine-generating enzyme |
GAG | glycosaminoglycan |
AxD | Alexander disease |
GFAP | glial fibrillary acidic protein |
ALD | adrenoleukodystrophy |
VLCFAs | very-long-chain fatty acids |
C26:0-lyso-PC | C26:0 lysophosphatidylcholine |
PMD | Pelizaeus–Merzbacher disease |
PLP1 | Proteolipid protein 1 |
tNAA | total N-acetyl-L-aspartate |
Cr | creatine |
Min | myo-inositol |
Cho | choline |
AIFA | anti-intrinsic factor antibodies |
APCA | anti-parietal cell antibodies |
References
- Kamm, C.P.; Uitdehaag, B.M.; Polman, C.H. Multiple sclerosis: Current knowledge and future outlook. Eur. Neurol. 2014, 72, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Munger, K.L. Epidemiology of multiple sclerosis: From risk factors to prevention—An update. In Seminars in Neurology; Thieme Medical Publishers: New York, NY, USA, 2016; pp. 103–114. [Google Scholar]
- Bishop, M.; Rumrill, P.D. Multiple sclerosis: Etiology, symptoms, incidence and prevalence, and implications for community living and employment. Work 2015, 52, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Jewells, V.L.; Latchaw, R.E. What can mimic multiple sclerosis? Semin. Ultrasound CT MR 2020, 41, 284–295. [Google Scholar] [CrossRef]
- McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 2001, 50, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Weinshenker, B.G.; Solomon, A.J. A clinical approach to the differential diagnosis of multiple sclerosis. Curr. Neurol. Neurosci. Rep. 2015, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- Palace, J. Guidelines for differential diagnosis of suspected multiple sclerosis. Nat. Clin. Pract. Neurol. 2009, 5, 134–135. [Google Scholar] [CrossRef]
- Kaisey, M.; Solomon, A.J.; Luu, M.; Giesser, B.S.; Sicotte, N.L. Incidence of multiple sclerosis misdiagnosis in referrals to two academic centers. Mult. Scler. Relat. Disord. 2019, 30, 51–56. [Google Scholar] [CrossRef]
- Piket, E.; Zheleznyakova, G.Y.; Kular, L.; Jagodic, M. Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: A comprehensive overview. J. Autoimmun. 2019, 101, 17–25. [Google Scholar] [CrossRef]
- Tripathi, A.; Volsko, C.; Datta, U.; Regev, K.; Dutta, R. Expression of disease-related mi RNA s in white-matter lesions of progressive multiple sclerosis brains. Ann. Clin. Transl. Neurol. 2019, 6, 854–862. [Google Scholar] [CrossRef] [Green Version]
- Talebi, F.; Ghorbani, S.; Chan, W.F.; Boghozian, R.; Masoumi, F.; Ghasemi, S.; Vojgani, M.; Power, C.; Noorbakhsh, F. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J. Neuroinflamm. 2017, 14, 55. [Google Scholar] [CrossRef] [Green Version]
- Rahban, D.; Mohammadi, F.; Alidadi, M.; Ghantabpour, T.; Kheyli, P.A.G.; Ahmadi, M. Genetic polymorphisms and epigenetic regulation of survivin encoding gene, BIRC5, in multiple sclerosis patients. BMC Immunol. 2019, 20, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liguori, M.; Nuzziello, N.; Simone, M.; Amoroso, N.; Viterbo, R.G.; Tangaro, S.; Consiglio, A.; Giordano, P.; Bellotti, R.; Trojano, M. Association between miRNAs expression and cognitive performances of Pediatric Multiple Sclerosis patients: A pilot study. Brain Behav. 2019, 9, e01199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusic, K.M.; Pusic, A.D.; Kraig, R.P. Environmental enrichment stimulates immune cell secretion of exosomes that promote CNS myelination and may regulate inflammation. Cell. Mol. Neurobiol. 2016, 36, 313–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravelli, K.G.; Santos, G.D.; dos Santos, N.B.; Munhoz, C.D.; Azzi-Nogueira, D.; Campos, A.C.; Pagano, R.L.; Britto, L.R.; Hernandes, M.S. Nox2-dependent neuroinflammation in an EAE model of multiple sclerosis. Transl. Neurosci. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Lodygin, D.; Hermann, M.; Schweingruber, N.; Flügel-Koch, C.; Watanabe, T.; Schlosser, C.; Merlini, A.; Körner, H.; Chang, H.F.; Fischer, H.J.; et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 2019, 566, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Tatomir, A.; Talpos-Caia, A.; Anselmo, F.; Kruszewski, A.M.; Boodhoo, D.; Rus, V.; Rus, H. The complement system as a biomarker of disease activity and response to treatment in multiple sclerosis. Immunol. Res. 2017, 65, 1103–1109. [Google Scholar] [CrossRef]
- Bergman, P.; Piket, E.; Khademi, M.; James, T.; Brundin, L.; Olsson, T.; Piehl, F.; Jagodic, M. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e219. [Google Scholar] [CrossRef] [Green Version]
- Bruinsma, I.B.; van Dijk, M.; Bridel, C.; van de Lisdonk, T.; Haverkort, S.Q.; Runia, T.F.; Steinman, L.; Hintzen, R.Q.; Killestein, J.; Verbeek, M.M. Regulator of oligodendrocyte maturation, miR-219, a potential biomarker for MS. J. Neuroinflamm. 2017, 14, 235. [Google Scholar] [CrossRef]
- Órpez-Zafra, T.; Pavía, J.; Hurtado-Guerrero, I.; Pinto-Medel, M.J.; Rodriguez Bada, J.L.; Urbaneja, P.; Suardíaz, M.; Villar, L.M.; Comabella, M.; Montalban, X. Decreased soluble IFN-β receptor (sIFNAR2) in multiple sclerosis patients: A potential serum diagnostic biomarker. Mult. Scler. J. 2017, 23, 937–945. [Google Scholar] [CrossRef]
- Islas-Hernandez, A.; Aguilar-Talamantes, H.S.; Bertado-Cortes, B.; Mejia-delCastillo, G.D.; Carrera-Pineda, R.; Cuevas-Garcia, C.F.; Garcia-delaTorre, P. BDNF and Tau as biomarkers of severity in Multiple Sclerosis. Biomark. Med. 2018, 12, 717–726. [Google Scholar] [CrossRef]
- Shapoori, S.; Ganjalikhani-Hakemi, M.; Rezaeepoor, M.; Alsahebfosoul, F.; Khosravi, S.; Etemadifar, M.; Mansourian, M. Negative regulation of semaphorin-3a expression in peripheral blood mononuclear cells using microRNA-497-5p. Iran. J. Med. Sci. 2019, 44, 325. [Google Scholar] [PubMed]
- Diaz, G.M.; Hupperts, R.; Fraussen, J.; Somers, V. Dimethyl fumarate treatment in multiple sclerosis: Recent advances in clinical and immunological studies. Autoimmun. Rev. 2018, 17, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Moccia, M.; Capacchione, A.; Lanzillo, R.; Carbone, F.; Micillo, T.; Perna, F.; De Rosa, A.; Carotenuto, A.; Albero, R.; Matarese, G. Coenzyme Q10 supplementation reduces peripheral oxidative stress and inflammation in interferon-β1a-treated multiple sclerosis. Ther. Adv. Neurol. Disord. 2019, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusic, A.D.; Pusic, K.M.; Clayton, B.L.; Kraig, R.P. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J. Neuroimmunol. 2014, 266, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.N.; Lim, J.L.; Nijland, P.G.; Witte, M.E.; Van Horssen, J. Glutathione in multiple sclerosis: More than just an antioxidant? Mult. Scler. J. 2014, 20, 1425–1431. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Yang, W.; Parkitny, L.; Gibson, S.A.; Lee, K.S.; Collins, F.; Deshane, J.S.; Cheng, W.; Weinmann, A.S.; Wei, H. Deficiency of Socs3 leads to brain-targeted EAE via enhanced neutrophil activation and ROS production. JCI Insight 2019, 5, 126520. [Google Scholar] [CrossRef] [Green Version]
- Siotto, M.; Filippi, M.M.; Simonelli, I.; Landi, D.; Ghazaryan, A.; Vollaro, S.; Ventriglia, M.; Pasqualetti, P.; Rongioletti, M.C.A.; Squitti, R. Oxidative stress related to iron metabolism in relapsing remitting multiple sclerosis patients with low disability. Front. Neurosci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Kruszewski, A.M.; Rao, G.; Tatomir, A.; Hewes, D.; Tegla, C.A.; Cudrici, C.D.; Nguyen, V.; Royal, W., III; Bever, C.T., Jr.; Rus, V. RGC-32 as a potential biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Exp. Mol. Pathol. 2015, 99, 498–505. [Google Scholar] [CrossRef]
- Hewes, D.; Tatomir, A.; Kruszewski, A.M.; Rao, G.; Tegla, C.A.; Ciriello, J.; Nguyen, V.; Royal, W., III; Bever, C.; Rus, V. SIRT1 as a potential biomarker of response to treatment with glatiramer acetate in multiple sclerosis. Exp. Mol. Pathol. 2017, 102, 191–197. [Google Scholar] [CrossRef]
- Vistbakka, J.; Elovaara, I.; Lehtimäki, T.; Hagman, S. Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult. Scler. J. 2017, 23, 403–412. [Google Scholar] [CrossRef]
- Mulero, P.; Córdova, C.; Hernández, M.; Martín, R.; Gutiérrez, B.; Muñoz, J.C.; Redondo, N.; Gallardo, I.; Téllez, N.; Nieto, M.L. Netrin-1 and multiple sclerosis: A new biomarker for neuroinflammation? Eur. J. Neurol. 2017, 24, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Harris, V.K.; Tuddenham, J.F.; Sadiq, S.A. Biomarkers of multiple sclerosis: Current findings. Degener. Neurol. Neuromuscul. Dis. 2017, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Pietroboni, A.M.; di Cola, F.S.; Scarioni, M.; Fenoglio, C.; Spanò, B.; Arighi, A.; Cioffi, S.M.; Oldoni, E.; De Riz, M.A.; Basilico, P. CSF β-amyloid as a putative biomarker of disease progression in multiple sclerosis. Mult. Scler. J. 2017, 23, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Ju, W.; Wu, X.; Zhan, X. Elevated lysophosphatidic acid levels in the serum and cerebrospinal fluid in patients with multiple sclerosis: Therapeutic response and clinical implication. Neurol. Res. 2018, 40, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, N.; Stock, A.D.; Putterman, C. Neuropsychiatric lupus: New mechanistic insights and future treatment directions. Nat. Rev. Rheumatol. 2019, 15, 137–152. [Google Scholar] [CrossRef]
- Ebert, T.; Chapman, J.; Shoenfeld, Y. Anti-ribosomal P-protein and its role in psychiatric manifestations of systemic lupus erythematosus: Myth or reality? Lupus 2005, 14, 571–575. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, C.; Shen, S.-Q.; Wang, X.-E.; Mei, Q.-H.; Jiang, W.-Q.; Huang, Q. Autoantibodies to NR2A peptide of the glutamate/NMDA receptor in patients with seizure disorders in neuropsychiatric systemic lupus erythematosus. Mediat. Inflamm. 2017. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Yang, C.; Wang, J.; Hou, X.; Zhao, S.; Li, Y.; Yang, P. Peripheral blood brain-derived neurotrophic factor level and tyrosine kinase B expression on T lymphocytes in systemic lupus erythematosus: Implications for systemic involvement. Cytokine 2019, 123, 154764. [Google Scholar] [CrossRef]
- Sato, T.; Fujii, T.; Yokoyama, T.; Fujita, Y.; Imura, Y.; Yukawa, N.; Kawabata, D.; Nojima, T.; Ohmura, K.; Usui, T. Anti–U1 RNP antibodies in cerebrospinal fluid are associated with central neuropsychiatric manifestations in systemic lupus erythematosus and mixed connective tissue disease. Arthritis Rheum. 2010, 62, 3730–3740. [Google Scholar] [CrossRef] [Green Version]
- Shimojima, Y.; Matsuda, M.; Gono, T.; Ishii, W.; Ikeda, S.-i. Relationship between clinical factors and neuropsychiatric manifestations in systemic lupus erythematosus. Clin. Rheumatol. 2005, 24, 469–475. [Google Scholar] [CrossRef]
- Chalmers, S.A.; Wen, J.; Shum, J.; Doerner, J.; Herlitz, L.; Putterman, C. CSF-1R inhibition attenuates renal and neuropsychiatric disease in murine lupus. Clin. Immunol. 2017, 185, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.; de Groot, P.G.; Koike, T.; Meroni, P.L. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Noureldine, M.; Uthman, I. Antiphospholipid (Hughes) Syndrome: Insights for Orthopedics; SAGE Publications Sage UK: London, UK, 2018. [Google Scholar]
- Noureldine, M.H.A.; Nour-Eldine, W.; Khamashta, M.A.; Uthman, I. Insights into the diagnosis and pathogenesis of the antiphospholipid syndrome. In Seminars in Arthritis and Rheumatism; Elsevier: Amsterdam, The Netherlands, 2019; pp. 860–866. [Google Scholar]
- Cervera, R. Antiphospholipid syndrome. Thromb. Res. 2017, 151 (Suppl. 1), S43–S47. [Google Scholar] [CrossRef]
- Uthman, I.; Noureldine, M.; Berjawi, A.; Skaf, M.; Haydar, A.; Merashli, M.; Hughes, G. Hughes syndrome and multiple sclerosis. Lupus 2015, 24, 115–121. [Google Scholar] [CrossRef]
- Linnemann, B. Antiphospholipid syndrome—An update. Vasa 2018, 47, 451–464. [Google Scholar] [CrossRef]
- Uthman, I.; Noureldine, M.H.A.; Ruiz-Irastorza, G.; Khamashta, M. Management of antiphospholipid syndrome. Ann. Rheum. Dis. 2019, 78, 155–161. [Google Scholar] [CrossRef]
- Bolek, E.C.; Sari, A.; Kilic, L.; Kalyoncu, U.; Kurne, A.; Oguz, K.K.; Topcuoglu, M.A.; Ertenli, I.; Karadag, O. Clinical features and disease course of neurological involvement in Behcet’s disease: HUVAC experience. Mult. Scler. Relat. Disord. 2020, 38, 101512. [Google Scholar] [CrossRef]
- Bolek, E.C.; Sari, A.; Kilic, L.; Karadag, O. Interferon alpha might be an alternative therapeutic choice for refractory Neuro-Behçet’s disease. Mult. Scler. Relat. Disord. 2019, 29, 153. [Google Scholar] [CrossRef]
- Ishikawa, H.; Shindo, A.; Ii, Y.; Kishida, D.; Niwa, A.; Nishiguchi, Y.; Matsuura, K.; Kato, N.; Mizutani, A.; Tachibana, K. MEFV gene mutations in neuro-Behçet’s disease and neuro-Sweet disease. Ann. Clin. Transl. Neurol. 2019, 6, 2595–2600. [Google Scholar] [CrossRef] [Green Version]
- Ugurel, E.; Erdag, E.; Kucukali, C.I.; Olcay, A.; Sanli, E.; Akbayir, E.; Kurtuncu, M.; Gunduz, T.; Yilmaz, V.; Tuzun, E. Enhanced NLRP3 and DEFA1B Expression during the active stage of parenchymal neuro-behçet’s disease. In Vivo 2019, 33, 1493–1497. [Google Scholar] [CrossRef] [Green Version]
- Hajj-Ali, R.A.; Singhal, A.B.; Benseler, S.; Molloy, E.; Calabrese, L.H. Primary angiitis of the CNS. Lancet Neurol. 2011, 10, 561–572. [Google Scholar] [CrossRef]
- Mandal, J.; Chung, S.A. Primary angiitis of the central nervous system. Rheum. Dis. Clin. N. Am. 2017, 43, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Rosati, A.; Cosi, A.; Basile, M.; Brambilla, A.; Guerrini, R.; Cimaz, R.; Simonini, G. Mycophenolate mofetil as induction and long-term maintaining treatment in childhood: Primary angiitis of the central nervous system. Joint Bone Spine 2017, 84, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Pawlitzki, M.; Butryn, M.; Kirchner, F.; Färber, J.; Beuing, O.; Minnerup, J.; Meuth, S.G.; Neumann, J. CSF Neurofilament light chain level predicts axonal damage in cerebral vasculitis. Ann. Clin. Transl. Neurol. 2019, 6, 1134–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boysson, H.; Guillevin, L. Polyarteritis nodosa neurologic manifestations. Neurol. Clin. 2019, 37, 345–357. [Google Scholar] [CrossRef]
- Rodriguez-Pla, A.; Warner, R.L.; Cuthbertson, D.; Carette, S.; Khalidi, N.A.; Koening, C.L.; Langford, C.A.; McAlear, C.A.; Moreland, L.W.; Pagnoux, C. Evaluation of potential serum biomarkers of disease activity in diverse forms of vasculitis. J. Rheumatol. 2019. [Google Scholar] [CrossRef]
- Li, N.; Zhu, B.; Zhu, Q.; Heizati, M.; Wu, T.; Wang, G.; Yao, X.; Luo, Q.; Liu, S.; Liu, S. Serum lysosomal-associated membrane protein-2 levels are increased in small and medium vessel vasculitis, especially in polyarteritis nodosa. Clin. Exp. Rheumatol. 2019, 37, S79–S85. [Google Scholar]
- Zheng, Y.; Zhang, Y.; Cai, M.; Lai, N.; Chen, Z.; Ding, M. Central nervous system involvement in ANCA-associated vasculitis: What neurologists need to know. Front. Neurol. 2019, 9, 1166. [Google Scholar] [CrossRef]
- Weiner, M.; Segelmark, M. The clinical presentation and therapy of diseases related to anti-neutrophil cytoplasmic antibodies (ANCA). Autoimmun. Rev. 2016, 15, 978–982. [Google Scholar] [CrossRef] [Green Version]
- Radice, A.; Sinico, R.A. Antineutrophil cytoplasmic antibodies (ANCA). Autoimmunity 2005, 38, 93–103. [Google Scholar] [CrossRef]
- Sinico, R.; Radice, A. Antineutrophil cytoplasmic antibodies (ANCA) testing: Detection methods and clinical application. Clin. Exp. Rheumatol. 2014, 32, S112–S117. [Google Scholar] [PubMed]
- Graf, J. Central nervous system disease in antineutrophil cytoplasmic antibodies—Associated vasculitis. Rheum. Dis. Clin. 2017, 43, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.; Evans, E.; Mwangi, M.; Mar, S. Acute disseminated encephalomyelitis in children: An updated review based on current diagnostic criteria. Pediatr. Neurol. 2019. [Google Scholar] [CrossRef]
- Aung, W.Y.; Massoumzadeh, P.; Najmi, S.; Salter, A.; Heaps, J.; Benzinger, T.L.; Mar, S. Diffusion tensor imaging as a biomarker to differentiate acute disseminated encephalomyelitis from multiple sclerosis at first demyelination. Pediatr. Neurol. 2018, 78, 70–74. [Google Scholar] [CrossRef]
- Pohl, D.; Alper, G.; Van Haren, K.; Kornberg, A.J.; Lucchinetti, C.F.; Tenembaum, S.; Belman, A.L. Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome. Neurology 2016, 87, S38–S45. [Google Scholar] [CrossRef] [PubMed]
- Santoro, J.D.; Chitnis, T. Diagnostic considerations in acute disseminated encephalomyelitis and the interface with MOG antibody. Neuropediatrics 2019. [Google Scholar] [CrossRef]
- Brenton, J.N.; Banwell, B.L. Therapeutic approach to the management of pediatric demyelinating disease: Multiple sclerosis and acute disseminated encephalomyelitis. Neurotherapeutics 2016, 13, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, S.; Dale, R.C.; Brilot, F. Anti-MOG antibody: The history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun. Rev. 2016, 15, 307–324. [Google Scholar] [CrossRef]
- Van Haren, K.; Tomooka, B.H.; Kidd, B.A.; Banwell, B.; Bar-Or, A.; Chitnis, T.; Tenembaum, S.N.; Pohl, D.; Rostasy, K.; Dale, R.C. Serum autoantibodies to myelin peptides distinguish acute disseminated encephalomyelitis from relapsing–remitting multiple sclerosis. Mult. Scler. J. 2013, 19, 1726–1733. [Google Scholar] [CrossRef]
- Uzawa, A.; Mori, M.; Kuwabara, S. Neuromyelitis optica: Concept, immunology and treatment. J. Clin. Neurosci. 2014, 21, 12–21. [Google Scholar] [CrossRef]
- Beigneux, Y.; Arnulf, I.; Guillaume-Jugnot, P.; Leu-Semenescu, S.; Maillart, E.; Lubetzki, C.; Benveniste, O.; Papeix, C. Secondary hypersomnia as an initial manifestation of neuromyelitis optica spectrum disorders. Mult. Scler. Relat. Disord. 2020, 38, 101869. [Google Scholar] [CrossRef] [PubMed]
- Içöz, S.; Tüzün, E.; Kürtüncü, M.; Durmuş, H.; Mutlu, M.; Eraksoy, M.; Akman-Demir, G. Enhanced IL-6 production in aquaporin-4 antibody positive neuromyelitis optica patients. Int. J. Neurosci. 2010, 120, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Bruscolini, A.; Sacchetti, M.; La Cava, M.; Gharbiya, M.; Ralli, M.; Lambiase, A.; De Virgilio, A.; Greco, A. Diagnosis and management of neuromyelitis optica spectrum disorders-An update. Autoimmun. Rev. 2018, 17, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Carreón, E.G.; Hernández, R.C.; Castillo, T.T.; Meca, V.L.; Arocas, V.C.; Iniesta, F.M.; Olascoaga, J.U.; Meca, J.L. Experience with tocilizumab in patients with neuromyelitis optica spectrum disorders. Neurol. (Barc. Spain) 2019. [Google Scholar] [CrossRef]
- Lotan, I.; Charlson, R.W.; Ryerson, L.Z.; Levy, M.; Kister, I. Effectiveness of subcutaneous tocilizumab in neuromyelitis optica spectrum disorders. Mult. Scler. Relat. Disord. 2020, 39, 101920. [Google Scholar] [CrossRef]
- Balcer, L.J. Clinical practice. Optic neuritis. N. Engl. J. Med. 2006, 354, 1273–1280. [Google Scholar] [CrossRef]
- Beck, R.W.; Cleary, P.A.; Trobe, J.D.; Kaufman, D.I.; Kupersmith, M.J.; Paty, D.W.; Brown, C.H.; Group, O.N.S. The effect of corticosteroids for acute optic neuritis on the subsequent development of multiple sclerosis. N. Engl. J. Med. 1993, 329, 1764–1769. [Google Scholar] [CrossRef]
- Jenkins, T.M.; Toosy, A.T. Optic neuritis: The eye as a window to the brain. Curr. Opin. Neurol. 2017, 30, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.J.; Pittock, S.J.; Flanagan, E.P.; Lennon, V.A.; Bhatti, M.T. Optic neuritis in the era of biomarkers. Surv. Ophthalmol. 2020, 65, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Beck, R.W.; Cleary, P.A.; Anderson, M.M., Jr.; Keltner, J.L.; Shults, W.T.; Kaufman, D.I.; Buckley, E.G.; Corbett, J.J.; Kupersmith, M.J.; Miller, N.R. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N. Engl. J. Med. 1992, 326, 581–588. [Google Scholar] [CrossRef]
- Meltzer, E.; Prasad, S. Updates and controversies in the management of acute optic neuritis. Asia-Pac. J. Ophthalmol. 2018, 7, 251–256. [Google Scholar]
- Salinas, M.; Flores, E.; López-Garrigós, M.; Leiva-Salinas, C. Vitamin B12 deficiency and clinical laboratory: Lessons revisited and clarified in seven questions. Int. J. Lab. Hematol. 2018, 40, 83–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C. Vitamin B12 deficiency in the elderly: Is it worth screening. Hong Kong Med. J. 2015, 21, 155–164. [Google Scholar] [CrossRef]
- Metz, J. Cobalamin deficiency and the pathogenesis of nervous system disease. Annu. Rev. Nutr. 1992, 12, 59–79. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R. B12 trafficking in mammals: A for coenzyme escort service. ACS Chem. Biol. 2006, 1, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Hannibal, L.; Lysne, V.; Bjørke-Monsen, A.-L.; Behringer, S.; Grünert, S.C.; Spiekerkoetter, U.; Jacobsen, D.W.; Blom, H.J. Biomarkers and algorithms for the diagnosis of vitamin B12 deficiency. Front. Mol. Biosci. 2016, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Shipton, M.J.; Thachil, J. Vitamin B12 deficiency–A 21st century perspective. Clin. Med. 2015, 15, 145. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, E.A.; Cudrici, C.D.; Boehm, M. CADASIL: New advances in basic science and clinical perspectives. Curr. Opin. Hematol. 2019, 26, 193–198. [Google Scholar] [CrossRef]
- Pescini, F.; Donnini, I.; Cesari, F.; Nannucci, S.; Valenti, R.; Rinnoci, V.; Poggesi, A.; Gori, A.M.; Giusti, B.; Rogolino, A. Circulating biomarkers in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy patients. J. Stroke Cerebrovasc. Dis. 2017, 26, 823–833. [Google Scholar] [CrossRef]
- Poggesi, A.; Pasi, M.; Pescini, F.; Pantoni, L.; Inzitari, D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: A review. J. Cereb. Blood Flow Metab. 2016, 36, 72–94. [Google Scholar] [CrossRef] [Green Version]
- Bersano, A.; Bedini, G.; Oskam, J.; Mariotti, C.; Taroni, F.; Baratta, S.; Parati, E.A. CADASIL: Treatment and management options. Curr. Treat. Options Neurol. 2017, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Guy, J.; Shaw, G.; Ross-Cisneros, F.N.; Quiros, P.; Salomao, S.R.; Berezovsky, A.; Carelli, V.; Feuer, W.J.; Sadun, A.A. Phosphorylated neurofilament heavy chain is a marker of neurodegeneration in Leber hereditary optic neuropathy (LHON). Mol. Vis. 2008, 14, 2443. [Google Scholar] [PubMed]
- Theodorou-Kanakari, A.; Karampitianis, S.; Karageorgou, V.; Kampourelli, E.; Kapasakis, E.; Theodossiadis, P.; Chatziralli, I. Current and emerging treatment modalities for leber’s hereditary optic neuropathy: A review of the literature. Adv. Ther. 2018, 35, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Balducci, N.; Cascavilla, M.L.; Ciardella, A.; La Morgia, C.; Triolo, G.; Parisi, V.; Bandello, F.; Sadun, A.A.; Carelli, V.; Barboni, P. Peripapillary vessel density changes in Leber’s hereditary optic neuropathy: A new biomarker. Clin. Exp. Ophthalmol. 2018, 46, 1055–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, M.-Y.; Kao, S.-H.; Wang, A.-G.; Wei, Y.-H. Increased 8-hydroxy-2′-deoxyguanosine in leukocyte DNA in Leber’s hereditary optic neuropathy. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1688–1691. [Google Scholar] [CrossRef] [PubMed]
- Asanad, S.; Frousiakis, S.; Wang, M.Y.; Fantini, M.; Sultan, W.; Wood, T.; Nwako, F.U.; Karanjia, R.; Sadun, A.A. Improving the visual outcome in Leber’s hereditary optic neuropathy: Framework for the future. J. Curr. Ophthalmol. 2019, 31, 251. [Google Scholar] [CrossRef]
- Manners, D.; Rizzo, G.; La Morgia, C.; Tonon, C.; Testa, C.; Barboni, P.; Malucelli, E.; Valentino, M.; Caporali, L.; Strobbe, D. Diffusion tensor imaging mapping of brain white matter pathology in mitochondrial optic neuropathies. Am. J. Neuroradiol. 2015, 36, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Kirkman, M.A.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; Ireneaus, F.; Klopstock, T.; Griffiths, P.G.; Hudson, G.; Chinnery, P.F.; Yu-Wai-Man, P. Quality of life in patients with Leber hereditary optic neuropathy. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3112–3115. [Google Scholar] [CrossRef] [Green Version]
- Yu-Wai-Man, P. Therapeutic approaches to inherited optic neuropathies. In Seminars in Neurology; Thieme Medical Publishers 333 Seventh Avenue: New York, NY, USA, 2015; pp. 578–586. [Google Scholar]
- Berbel-Garcia, A.; Barbera-Farre, J.R.; Etessam, J.P.; Salio, A.M.; Cabello, A.; Gutierrez-Rivas, E.; Campos, Y. Coenzyme Q 10 improves lactic acidosis, strokelike episodes, and epilepsy in a patient with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes). Clin. Neuropharmacol. 2004, 27, 187–191. [Google Scholar] [CrossRef]
- Lorenzoni, P.J.; Werneck, L.C.; Kay, C.S.K.; Silvado, C.E.S.; Scola, R.H. Quando o diagnóstico deveria ser MELAS (Miopatia mitocondrial, encefalopatia, acidose lática, e episódios semelhantes a acidente vascular cerebral)? Arq. Neuro-Psiquiatr. 2015, 73, 959–967. [Google Scholar] [CrossRef]
- Weiduschat, N.; Kaufmann, P.; Mao, X.; Engelstad, K.M.; Hinton, V.; DiMauro, S.; De Vivo, D.; Shungu, D. Cerebral metabolic abnormalities in A3243G mitochondrial DNA mutation carriers. Neurology 2014, 82, 798–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.N.; Yoon, C.-S.; Lee, Y.-M. Correlation of serum biomarkers and magnetic resonance spectroscopy in monitoring disease progression in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes due to mtDNA A3243G mutation. Front. Neurol. 2018, 9, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Zhuang, Q.; Ji, K.; Wen, B.; Lin, P.; Zhao, Y.; Li, W.; Yan, C. Identification of miRNA, lncRNA and mRNA-associated ceRNA networks and potential biomarker for MELAS with mitochondrial DNA A3243G mutation. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Le, W.-D. Progress in diagnosing mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Chin. Med. J. 2015, 128, 1820. [Google Scholar] [CrossRef]
- Steriade, C.; Andrade, D.M.; Faghfoury, H.; Tarnopolsky, M.A.; Tai, P. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) may respond to adjunctive ketogenic diet. Pediatr. Neurol. 2014, 50, 498–502. [Google Scholar] [CrossRef]
- Koenig, M.K.; Emrick, L.; Karaa, A.; Korson, M.; Scaglia, F.; Parikh, S.; Goldstein, A. Recommendations for the management of strokelike episodes in patients with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes. JAMA Neurol. 2016, 73, 591–594. [Google Scholar] [CrossRef]
- Kruse, B.; Hanefeld, F.; Christen, H.-J.; Bruhn, H.; Michaelis, T.; Hänicke, W.; Frahm, J. Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J. Neurol. 1993, 241, 68–74. [Google Scholar] [CrossRef]
- Dali, C.I.; Barton, N.W.; Farah, M.H.; Moldovan, M.; Månsson, J.E.; Nair, N.; Dunø, M.; Risom, L.; Cao, H.; Pan, L. Sulfatide levels correlate with severity of neuropathy in metachromatic leukodystrophy. Ann. Clin. Transl. Neurol. 2015, 2, 518–533. [Google Scholar] [CrossRef]
- Thibert, K.A.; Raymond, G.V.; Tolar, J.; Miller, W.P.; Orchard, P.J.; Lund, T.C. Cerebral spinal fluid levels of cytokines are elevated in patients with metachromatic leukodystrophy. Sci. Rep. 2016, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- í Dali, C.; Hanson, L.G.; Barton, N.; Fogh, J.; Nair, N.; Lund, A. Brain N-acetylaspartate levels correlate with motor function in metachromatic leukodystrophy. Neurology 2010, 75, 1896–1903. [Google Scholar] [CrossRef]
- Kohlschütter, A. Lysosomal leukodystrophies: Krabbe disease and metachromatic leukodystrophy. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 113, pp. 1611–1618. [Google Scholar]
- Batzios, S.P.; Zafeiriou, D.I. Developing treatment options for metachromatic leukodystrophy. Mol. Genet. Metab. 2012, 105, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Matzner, U.; Gieselmann, V. Gene therapy of metachromatic leukodystrophy. Expert Opin. Biol. Ther. 2005, 5, 55–65. [Google Scholar] [CrossRef]
- Rosenberg, J.B.; Kaminsky, S.M.; Aubourg, P.; Crystal, R.G.; Sondhi, D. Gene therapy for metachromatic leukodystrophy. J. Neurosci. Res. 2016, 94, 1169–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rappard, D.F.; Boelens, J.J.; Wolf, N.I. Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Chuang, W.-L.; Pacheco, J.; Zhang, X.K.; Martin, M.M.; Biski, C.K.; Keutzer, J.M.; Wenger, D.A.; Caggana, M.; Orsini, J.J., Jr. Determination of psychosine concentration in dried blood spots from newborns that were identified via newborn screening to be at risk for Krabbe disease. Clin. Chim. Acta 2013, 419, 73–76. [Google Scholar] [CrossRef]
- Spratley, S.J.; Hill, C.H.; Viuff, A.H.; Edgar, J.R.; Skjødt, K.; Deane, J.E. Molecular mechanisms of disease pathogenesis differ in Krabbe disease variants. Traffic 2016, 17, 908–922. [Google Scholar] [CrossRef]
- Turgeon, C.T.; Orsini, J.J.; Sanders, K.A.; Magera, M.J.; Langan, T.J.; Escolar, M.L.; Duffner, P.; Oglesbee, D.; Gavrilov, D.; Tortorelli, S. Measurement of psychosine in dried blood spots—A possible improvement to newborn screening programs for Krabbe disease. J. Inherit. Metab. Dis. Off. J. Soc. Study Inborn Errors Metab. 2015, 38, 923–929. [Google Scholar] [CrossRef]
- Poretti, A.; Meoded, A.; Fatemi, A. Diffusion tensor imaging: A biomarker of outcome in K rabbe’s disease. J. Neurosci. Res. 2016, 94, 1108–1115. [Google Scholar] [CrossRef]
- Escolar, M.L.; Kiely, B.; Shawgo, E.; Hong, X.; Gelb, M.; Orsini, J.; Matern, D.; Poe, M. Psychosine, a marker of Krabbe phenotype and treatment effect. Mol. Genet. Metab. 2017, 121, 271–278. [Google Scholar] [CrossRef]
- Spassieva, S.; Bieberich, E. Lysosphingolipids and sphingolipidoses: Psychosine in Krabbe’s disease. J. Neurosci. Res. 2016, 94, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, L.; Kashgari, A.; Alfadhel, M. Multiple sulfatase deficiency: A case series with a novel mutation. J. Child Neurol. 2018, 33, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Sabourdy, F.; Mourey, L.; Le Trionnaire, E.; Bednarek, N.; Caillaud, C.; Chaix, Y.; Delrue, M.-A.; Dusser, A.; Froissart, R.; Garnotel, R. Natural disease history and characterisation of SUMF1 molecular defects in ten unrelated patients with multiple sulfatase deficiency. Orphanet J. Rare Dis. 2015, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierks, T.; Dickmanns, A.; Preusser-Kunze, A.; Schmidt, B.; Mariappan, M.; von Figura, K.; Ficner, R.; Rudolph, M.G. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell 2005, 121, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burk, R.D.; Valle, D.; Thomas, G.H.; Miller, C.; Moser, A.; Moser, H.; Rosenbaum, K.N. Early manifestations of multiple sulfatase deficiency. J. Pediatr. 1984, 104, 574–578. [Google Scholar] [CrossRef]
- Jari, S.D.; Fraer, L.M.; Hogge, W.A. Association of undetectable unconjugated estriol on multiple marker screening with steroid sulfatase deficiency. Fetal Diagn. Ther. 2004, 19, 43–48. [Google Scholar] [CrossRef]
- Mancini, G.M.; Van Diggelen, O.; Huijmans, J.; Stroink, H.; de Coo, R. Pitfalls in the diagnosis of multiple sulfatase deficiency. Neuropediatrics 2001, 32, 38–40. [Google Scholar] [CrossRef]
- Meshach Paul, D.; Chadah, T.; Senthilkumar, B.; Sethumadhavan, R.; Rajasekaran, R. Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency. J. Biomol. Struct. Dyn. 2018, 36, 3575–3585. [Google Scholar] [CrossRef]
- Waheed, A.; HASILIK, A.; Von Figura, K. Enhanced breakdown of arylsulfatase A in multiple sulfatase deficiency. Eur. J. Biochem. 1982, 123, 317–329. [Google Scholar] [CrossRef]
- Steinmann, B.; Mieth, D.; Gitzelmann, R. A A newly recognized cause of low urinary estriol in pregnancy: Multiple sulfatase deficiency of the fetus. Gynecol. Obstet. Invest 1981, 12, 107–109. [Google Scholar] [CrossRef]
- Volpi, N.; Coppa, G.V.; Zampini, L.; Maccari, F.; Galeotti, F.; Garavelli, L.; Galeazzi, T.; Padella, L.; Santoro, L.; Gabrielli, O. Plasmatic and urinary glycosaminoglycan profile in a patient affected by multiple sulfatase deficiency. Clin. Chem. Lab. Med. 2015, 53, e157–e160. [Google Scholar] [CrossRef]
- Schlotawa, L.; Ennemann, E.C.; Radhakrishnan, K.; Schmidt, B.; Chakrapani, A.; Christen, H.-J.; Moser, H.; Steinmann, B.; Dierks, T.; Gärtner, J. SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency. Eur. J. Hum. Genet. 2011, 19, 253–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jany, P.L.; Agosta, G.E.; Benko, W.S.; Eickhoff, J.C.; Keller, S.R.; Köehler, W.; Koeller, D.; Mar, S.; Naidu, S.; Ness, J.M. CSF and blood levels of GFAP in Alexander disease. Eneuro 2015, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messing, A. Alexander disease. Handb. Clin. Neurol. 2018, 148, 693–700. [Google Scholar] [CrossRef]
- Sosunov, A.; Olabarria, M.; Goldman, J.E. Alexander disease: An astrocytopathy that produces a leukodystrophy. Brain Pathol. 2018, 28, 388–398. [Google Scholar] [CrossRef]
- Kyllerman, M.; Rosengren, L.; Wiklund, L.-M.; Holmberg, E. Increased levels of GFAP in the cerebrospinal fluid in three subtypes of genetically confirmed Alexander disease. Neuropediatrics 2005, 36, 319–323. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, K.K. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemp, S.; Huffnagel, I.C.; Linthorst, G.E.; Wanders, R.J.; Engelen, M. Adrenoleukodystrophy–neuroendocrine pathogenesis and redefinition of natural history. Nat. Rev. Endocrinol. 2016, 12, 606–615. [Google Scholar] [CrossRef]
- Turk, B.R.; Moser, A.B.; Fatemi, A. Therapeutic strategies in adrenoleukodystrophy. Wien. Med. Wochenschr. 2017, 167, 219–226. [Google Scholar] [CrossRef]
- Watkins, P.A.; Naidu, S.; Moser, H. Adrenoleukodystrophy: Biochemical procedures in diagnosis, prevention and treatment. J. Inherit. Metab. Dis. 1987, 10, 46–53. [Google Scholar] [CrossRef]
- Huffnagel, I.C.; van de Beek, M.-C.; Showers, A.L.; Orsini, J.J.; Klouwer, F.C.; Dijkstra, I.M.; Schielen, P.C.; van Lenthe, H.; Wanders, R.J.; Vaz, F.M. Comparison of C26: 0-carnitine and C26: 0-lysophosphatidylcholine as diagnostic markers in dried blood spots from newborns and patients with adrenoleukodystrophy. Mol. Genet. Metab. 2017, 122, 209–215. [Google Scholar] [CrossRef]
- Engelen, M.; Kemp, S.; De Visser, M.; van Geel, B.M.; Wanders, R.J.; Aubourg, P. X-linked adrenoleukodystrophy (X-ALD): Clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J. Rare Dis. 2012, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.; Kemp, S. X-linked adrenoleukodystrophy: Pathogenesis and treatment. Curr. Neurol. Neurosci. Rep. 2014, 14, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, W.P.; Rothman, S.M.; Nascene, D.; Kivisto, T.; DeFor, T.E.; Ziegler, R.S.; Eisengart, J.; Leiser, K.; Raymond, G.; Lund, T.C. Outcomes after allogeneic hematopoietic cell transplantation for childhood cerebral adrenoleukodystrophy: The largest single-institution cohort report. Blood J. Am. Soc. Hematol. 2011, 118, 1971–1978. [Google Scholar] [CrossRef]
- Inoue, K. Pelizaeus-merzbacher disease: Molecular and cellular pathologies and associated phenotypes. In Myelin; Springer: Berlin/Heidelberg, Germany, 2019; pp. 201–216. [Google Scholar]
- Mierzewska, H.; Jamroz, E.; Mazurczak, T.; Hoffman-Zacharska, D.; Szczepanik, E. Pelizaeus-Merzbacher disease in patients with molecularly confirmed diagnosis. Folia Neuropathol. 2016, 54, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takanashi, J.-I. Neurochemistry of hypomyelination investigated with MR spectroscopy. Magn. Reson. Med. Sci. 2015, 14, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Torii, T.; Miyamoto, Y.; Yamauchi, J.; Tanoue, A. P elizaeus–M erzbacher disease: Cellular pathogenesis and pharmacologic therapy. Pediatr. Int. 2014, 56, 659–666. [Google Scholar] [CrossRef]
- Osório, M.J.; Goldman, S.A. Neurogenetics of Pelizaeus–Merzbacher disease. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 148, pp. 701–722. [Google Scholar]
- Pittock, S.J.; Debruyne, J.; Krecke, K.N.; Giannini, C.; Van Den Ameele, J.; De Herdt, V.; McKeon, A.; Fealey, R.D.; Weinshenker, B.G.; Aksamit, A.J. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2010, 133, 2626–2634. [Google Scholar] [CrossRef] [Green Version]
- Troxell, R.M.; Christy, A. Atypical pediatric demyelinating diseases of the central nervous system. Curr. Neurol. Neurosci. Rep. 2019, 19, 95. [Google Scholar] [CrossRef]
- Mathey, G.; Michaud, M.; Pittion-Vouyovitch, S.; Debouverie, M. Classification and diagnostic criteria for demyelinating diseases of the central nervous system: Where do we stand today? Rev. Neurol. 2018, 174, 378–390. [Google Scholar] [CrossRef]
- Guerini, F.R.; Delbue, S.; Zanzottera, M.; Agliardi, C.; Saresella, M.; Mancuso, R.; Maserati, R.; Marchioni, E.; Gori, A.; Ferrante, P. Analysis of CCR5, CCR2, SDF1 and RANTES gene polymorphisms in subjects with HIV-related PML and not determined leukoencephalopathy. Biomed. Pharmacother. 2008, 62, 26–30. [Google Scholar] [CrossRef]
- Nozuma, S.; Jacobson, S. Neuroimmunology of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Agosta, F.; Rocca, M.; Benedetti, B.; Capra, R.; Cordioli, C.; Filippi, M. MR imaging assessment of brain and cervical cord damage in patients with neuroborreliosis. Am. J. Neuroradiol. 2006, 27, 892–894. [Google Scholar] [PubMed]
- Batinac, T.; Petranovic, D.; Zamolo, G.; Petranovic, D.; Ruzic, A. Lyme borreliosis and multiple sclerosis are associated with primary effusion lymphoma. Med. Hypotheses 2007, 69, 117–119. [Google Scholar] [CrossRef] [PubMed]
- de Mol, C.; Wong, Y.; van Pelt, E.; Wokke, B.; Siepman, T.; Neuteboom, R.; Hamann, D.; Hintzen, R. The clinical spectrum and incidence of anti-MOG-associated acquired demyelinating syndromes in children and adults. Mult. Scler. J. 2019. [Google Scholar] [CrossRef] [PubMed]
- Hyun, J.-W.; Huh, S.-Y.; Shin, H.-J.; Woodhall, M.; Kim, S.-H.; Irani, S.R.; Lee, S.H.; Waters, P.; Kim, H.J. Evaluation of brain lesion distribution criteria at disease onset in differentiating MS from NMOSD and MOG-IgG-associated encephalomyelitis. Mult. Scler. J. 2019, 25, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Marshall, V. Multiple sclerosis is a chronic central nervous system infection by a spirochetal agent. Med. Hypotheses 1988, 25, 89–92. [Google Scholar] [CrossRef]
- Fadil, H.; Kellesy, R.E.; Gonzalez-Toledo, E. Differential diagnosis of multiple sclerosis. Int. Rev. Neurobiol. 2007, 79, 393–422. [Google Scholar]
Type of Disease | Disease | Biomarkers | References | |||
---|---|---|---|---|---|---|
Pathophysiologic | Diagnostic | Therapeutic | Prognostic | |||
Autoimmune or inflammatory | MS | miR-199a miR-320 miR-155 miR-142-3p miR-142 miR-219 miR-34a miR-103 miR-182-5p miR-124 miR-15a/b Nox2 β-synuclein | complement proteins:C1q, C3d and C5b-9 miR-219 miR-150 BDNF anti-U1RNP Abs sIFNAR2 | miR-497-5p semaphorin-3A coenzyme Q10 IFNγ-DC-Exos GSH DMF | SIRT1 RGC-32 Fasl IL-21 Tau proteins miR-191-5p miR-128-3p serum netrin-1 β-amyloid NF-L NF-H CHI3L1 IgM LPA GSH TAS Cp:Tf | [9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,35] |
NPSLE | anti-NR2A Ab anti-dsDNA Ab SLEDAI Complement levels anti-P Ab ECA | BDNF anti-U1RNP Abs | CSF-1R | BDNF anti-dsDNA Ab | [37,38,39,40,41] | |
APS | APL Abs against b2GPI | anti-b2GPI ACL LAC | – | – | [43,44,45,46,48,49] | |
NBD | MEFV gene mutations | – | IFN-α IL-6 receptor blocker anti-TNF agents MEFV gene mutations | DEFA1B gene NLRP3 gene | [50,51,52,53] | |
PACNS | NF-L | – | MMF | – | [56,57] | |
PAN | – | ESR MMP-3 | ESR MMP-3 | ESR MMP-3 LAMP-2 | [59,60] | |
AAV | ANCA | ANCA | inhibit the ANCA | ANCA | [61,62,63,64,65] | |
ADEM | CSF elevated cytokines and chemokines | MOG Ab IgG targeting MBP MOBP | – | – | [66,67,68,69,71,72] | |
NMO | anti-AQP4 IL-6 | anti-AQP4 | – | – | [73] | |
CLIPPERS | Protein pleocytosis oligoclonal bands | - | – | – | [155] | |
MOG-EM | anti-MOG Abs | - | - | - | [160] | |
Infectious | HIV-related disorders of the CNS | – | CSF HIV viral load | – | – | [157] |
HAM/TSP | HTLV-1 Abs | – | – | – | [158] | |
Neurosyphilis | – | FTA-ABS | – | – | [163] | |
Genetic disorders | CADASIL | NOTCH3 gene mutation | vWF EPCs CPCs | – | – | [92] |
LHON | Arylsulfatase A CSF/urine sulfatide | Arylsulfatase A CSF/urine sulfatide | – | – | [95,97,98] | |
MELAS | MT-TL1 mutation | Lactate CSF lactate/pyruvate ratio Ventricular LA CK NO NAA t-Cho | – | – | [104,105,106,107,108] | |
demyelinating disorders | Optic neuritis | anti-MOG | – | – | – | [81,82] |
MLD | Arylsulfatase A CSF/urine sulfatide | Arylsulfatase A CSF/urine sulfatide | – | – | [112,113,114,115] | |
KL | Galactosphingosine (Psychosine) | Galactosphingosine (Psychosine) | – | Galactosphingosine (Psychosine) | [120,122,123,124,125] | |
MSD | SUMF1 gene mutations FGE deficiency Sulfated lipids Mucopolysaccharides | Urine sulfatides Sulfatase enzyme deficiency Urine/Plasma GAG | – | FGE levels | [126,127,128,129,130,131,132,133,134,135,136] | |
AxD | GFAP | GFAP | – | – | [137] | |
ALD | VLCFAs | VLCFAs C26:0-lyso-PC | – | – | [142,143,144,145,146,147] | |
PMD | PLP1 gene | tNAA Cr min Cho | – | – | [149,151] | |
Other disorders | Vitamin B12 deficiency | – | Methylmalonic acid Homocysteine Holotranscobalamin AIFA APCA | – | – | [85,87,88,89] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, M.; Azari Jafari, A.; Shah, M.; Mirmoeeni, S.; Haider, S.U.; Moinuddin, S.; Chaudhry, A. Molecular Biomarkers in Multiple Sclerosis and Its Related Disorders: A Critical Review. Int. J. Mol. Sci. 2020, 21, 6020. https://doi.org/10.3390/ijms21176020
Gul M, Azari Jafari A, Shah M, Mirmoeeni S, Haider SU, Moinuddin S, Chaudhry A. Molecular Biomarkers in Multiple Sclerosis and Its Related Disorders: A Critical Review. International Journal of Molecular Sciences. 2020; 21(17):6020. https://doi.org/10.3390/ijms21176020
Chicago/Turabian StyleGul, Maryam, Amirhossein Azari Jafari, Muffaqam Shah, Seyyedmohammadsadeq Mirmoeeni, Safee Ullah Haider, Sadia Moinuddin, and Ammar Chaudhry. 2020. "Molecular Biomarkers in Multiple Sclerosis and Its Related Disorders: A Critical Review" International Journal of Molecular Sciences 21, no. 17: 6020. https://doi.org/10.3390/ijms21176020
APA StyleGul, M., Azari Jafari, A., Shah, M., Mirmoeeni, S., Haider, S. U., Moinuddin, S., & Chaudhry, A. (2020). Molecular Biomarkers in Multiple Sclerosis and Its Related Disorders: A Critical Review. International Journal of Molecular Sciences, 21(17), 6020. https://doi.org/10.3390/ijms21176020