Oxidative Stress and Analysis of Selected SNPs of ACHE (rs 2571598), BCHE (rs 3495), CAT (rs 7943316), SIRT1 (rs 10823108), GSTP1 (rs 1695), and Gene GSTM1, GSTT1 in Chronic Organophosphates Exposed Groups from Cameroon and Pakistan
Abstract
:1. Introduction
2. Result
2.1. Sociodemographic and Clinical Profile of Subjects Exposed to Ops
2.2. Pesticide Exposure and Effects on Oxidative Stress
2.3. Genetic Association Analysis
3. Discussion
4. Methodology
4.1. Study Design and Recruitment of Study Subjects
4.2. Biochemical Analysis
4.2.1. Exposure Measures
4.2.2. Measurement of Oxidative Stress Parameters
4.3. Primer Designing and Chemicals
4.4. Genomic DNA Extraction and SNP Genotyping
- -
- For SIRT1(rs10823108), RE Hpy188I (Catalog # ER0761, Thermo Fisher Scientific) cleaves the PCR product into 2 fragments of 261 bp and 134 bp in presence of major A allele while those PCR products having minor G allele remains intact (band size of 395 bp).
- -
- For GSTP1 (rs1695), RE BsmAI (Catalog # ER0761, Thermo Fisher Scientific) cleaves the PCR product into 2 fragments of 201 bp and 148 bp in presence of major G allele while those PCR products having minor A allele remains intact (band size of 349 bp).
- -
- For CAT (rs7943316), RE MlyI (Catalog # ER0761, Thermo Fisher Scientific) cleaves the PCR product into 2 fragments of 209 bp and 158bp in presence of major A allele while those PCR products having minor T allele remains intact (band size of 367 bp).
- -
- For ACHE (rs2571598), RE Bsu36I (Catalog # ER0761, Thermo Fisher Scientific) cleaves the PCR product in 2 fragments of 210 bp and 125 bp in presence of major C allele while those PCR products having minor T allele remains intact (band size of 335 bp). RE BanII (Catalog # ER0761, Thermo Fisher Scientific) cleaves the PCR product into 2 fragments of 209 bp and 126 bp in presence of major G allele while those PCR products having minor T allele with band size of 335 bp remains intact.
- -
- For BCHE (rs3495), RE NSP1(XceI) (Thermo Fisher Scientific Catalog# ER1471). The product bearing A allele at rs3495 gave two fragments of 225 bp and 144 bp length, while the G allele bearing products remain intact and observed band length was 369 bp.
- -
- For performed analyses of GSTM1 and GSTT1 genes deletion, we used co-amplification of the gene HBB as an internal non-OP-exposed.
4.5. Statistical Analysis
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bettiche, F. Contamination of Water by Pesticides under Intensive Production System. 2017. Available online: http://revues.univ-biskra.dz/index.php/cds/article/view/2189 (accessed on 27 October 2019).
- Suratman, S.; Edwards, J.W.; Babina, K. Organophosphate pesticides exposure among farmworkers: Pathways and risk of adverse health effects. Rev. Environ. Health 2015, 30, 65–79. [Google Scholar] [PubMed]
- Li, J.; Ren, F.; Li, Y.; Luo, J.; Pang, G. Chlorpyrifos Induces Metabolic Disruption by Altering Levels of Reproductive Hormones. J. Agric. Food Chem. 2019, 67, 10553–10562. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2016, 91, 549–599. [Google Scholar] [CrossRef] [PubMed]
- Wang-Cahill, F.A. Draft Human Health and Ecological Risk Assessment for Diazinon in Exotic Fruit Fly Applications. Available online: https://www.aphis.usda.gov/plant_health/ea/downloads/2018/fruit-fly-draft-diazinon-hhera.pdf (accessed on 27 April 2018).
- Czajka, M.; Matysiak-Kucharek, M.; Jodłowska-Jędrych, B.; Sawicki, K.; Fal, B.; Drop, B.; Kruszewski, M.; Kapka-Skrzypczak, L. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. Environ. Res. 2019, 178, 108685. [Google Scholar] [CrossRef]
- Nurulain, S.M.; Shafiullah, M.; Yasin, J.; Adem, A.; Al Kaabi, J.; Tariq, S.; Adeghate, E.; Ojha, S. Terbufos-sulfone exacerbates cardiac lesions in diabetic rats: A sub-acute toxicity study. Arch. Ind. Hyg. Toxicol. 2016, 67, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Malik, S.; Nurulain, S.M.; Musilek, K.; Kuca, K.; Kalasz, H.; Fatmi, M.Q. Reactivation potency of two novel oximes (K456 and K733) against paraoxon-inhibited acetyl and butyrylcholinesterase: In silico and in vitro models. Chem. Biol. Interact. 2019, 310, 108735. [Google Scholar] [CrossRef]
- Nurulain, S.M.; Szegi, P.; Tekes, K.; Naqvi, S.N. Antioxidants in Organophosphorus Compounds Poisoning. Arch. Ind. Hyg. Toxicol. 2013, 64, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Miladinović, D.Ć.; Borozan, S.; Ivanović, S. Involvement of cholinesterases in oxidative stress induced by chlorpyrifos in the brain of Japanese quail. Poult. Sci. 2018, 97, 1564–1571. [Google Scholar] [CrossRef]
- Kori, R.K.; Hasan, W.; Jain, A.K.; Yadav, R. Cholinesterase inhibition and its association with hematological, biochemical and oxidative stress markers in chronic pesticide exposed agriculture workers. J. Biochem. Mol. Toxicol. 2019, 33, e22367. [Google Scholar] [CrossRef]
- Peeples, E.S.; Schopfer, L.M.; Duysen, E.G.; Spaulding, R.; Voelker, T.; Thompson, C.M.; Lockridge, O. Albumin, a New Biomarker of Organophosphorus Toxicant Exposure, Identified by Mass Spectrometry. Toxicol. Sci. 2005, 83, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Yu, C.J.; Du, J.C.; Chiou, H.C.; Chen, H.C.; Yang, W.; Chung, M.Y.; Chen, Y.S.; Hwang, B.; Mao, I.F.; et al. The interactions among organophosphate pesticide exposure, oxidative stress, and genetic polymorphisms of dopamine receptor D4 increase the risk of attention deficit/hyperactivity disorder in children. Environ. Res. 2018, 160, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Karami-Mohajeri, S.; Ahmadipour, A.; Rahimi, H.R.; Abdollahi, M. Adverse effects of organophosphorus pesticides on the liver: A brief summary of four decades of research. Arhiv Higijenu Rada Toksikol. 2017, 68, 261–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Sui, Y.; Wang, X.; Luo, Y.; Ji, L. Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 140, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Lukaszewicz-Hussain, A. Role of oxidative stress in organophosphate insecticide toxicity—Short review. Pestic. Biochem. Physiol. 2010, 98, 145–150. [Google Scholar] [CrossRef]
- Nanda, M.; Kumar, V.; Fatima, N.; Pruthi, V.; Verma, M.; Chauhan, P.; Vlaskin, M.S.; Grigorenko, A.V. Detoxification mechanism of organophosphorus pesticide via carboxylestrase pathway that triggers de novo TAG biosynthesis in oleaginous microalgae. Aquat. Toxicol. 2019, 209, 49–55. [Google Scholar] [CrossRef]
- Park, J.H.; Ko, J.; Park, Y.S.; Park, J.; Hwang, J.; Koh, H.C. Clearance of Damaged Mitochondria Through PINK1 Stabilization by JNK and ERK MAPK Signaling in Chlorpyrifos-Treated Neuroblastoma Cells. Mol. Neurobiol. 2017, 54, 1844–1857. [Google Scholar] [CrossRef]
- Dai, H.; Deng, Y.; Zhang, J.; Han, H.; Zhao, M.; Li, Y.; Zhang, C.; Tian, J.; Bing, G.; Zhao, L. PINK1/Parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicology 2015, 334, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Das, G.P.; Shaik, A.P.; Jamil, K. Cytotoxicity and Genotoxicity Induced by the Pesticide Profenofos on Cultured Human Peripheral Blood Lymphocytes. Drug Chem. Toxicol. 2006, 29, 313–322. [Google Scholar]
- Prakasam, A.; Sethupathy, S.; Lalitha, S. Plasma and RBCs antioxidant status in occupational male pesticide sprayers. Clin. Chim. Acta 2001, 310, 107–112. [Google Scholar] [CrossRef]
- Rastogi, S.K.; Satyanarayan, P.V.V.; Ravishankar, D.; Tripathi, S. A study on oxidative stress and antioxidant status of agricultural workers exposed to organophosphorus insecticides during spraying. Indian J. Occup. Environ. Med. 2009, 13, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Alves, J.S.; Silva, F.R.; Silva, G.F.; Salvador, M.; Kvitko, K.; Rohr, P.; Santos, C.E.D.; Dias, J.F.; Henriques, J.A.; Silva, J.D. Investigation of potential biomarkers for the early diagnosis of cellular stability after the exposure of agricultural workers to pesticides. Anais Acad. Brasileira Ciências 2016, 88, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Ogut, S.; Gultekin, F.; Kisioglu, A.N.; Kucukoner, E. Oxidative stress in the blood of farm workers following intensive pesticide exposure. Toxicol. Ind. Health 2011, 27, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Wafa, T.; Nadia, K.; Amel, N.; Ikbal, C.; Insaf, T.; Asma, K.; Hedi, M.A.; Mohamed, H. Oxidative stress, hematological and biochemical alterations in farmers exposed to pesticides. J. Environ. Sci. Health Part B 2013, 48, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Liu, S.; Cui, J.; Liu, X.; Zhao, C.; Fan, L.; Yin, S.; Hu, H. Combination of Patulin and Chlorpyrifos Synergistically Induces Hepatotoxicity via Inhibition of Catalase Activity and Generation of Reactive Oxygen Species. J. Agric. Food Chem. 2019, 67, 11474–11480. [Google Scholar] [CrossRef]
- Ahmad, I.; Shukla, S.; Kumar, A.; Singh, C.; Patel, D.K.; Pandey, H.P.; Singh, C. Maneb and paraquat-induced modulation of toxicant responsive genes in the rat liver: Comparison with polymorphonuclear leukocytes. Chem. Biol. Interact. 2010, 188, 566–579. [Google Scholar] [CrossRef]
- Hernández, A.F.; López, O.; Pena, G.; Serrano, J.L.; Parrón, T.; Rodrigo, L.; Gil, F.; Pla, A. Implications of Paraoxonase-1 (PON1) Activity and Polymorphisms on Biochemical and Clinical Outcomes in Workers Exposed to Pesticides. In The Paraoxonases: Their Role in Disease Development and Xenobiotic Metabolism; Mackness, B., Mackness, M., Aviram, M., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 221–237. Available online: https://doi.org/10.1007/978-1-4020-6561-3_15 (accessed on 29 December 2019).
- Amir, A.; Haleem, F.; Mahesar, G.; Sattar, R.A.; Qureshi, T.; Syed, J.G.; Khan, M.A. Epidemiological, Poisoning Characteristics and Treatment Outcomes of Patients Admitted to the National Poisoning Control Centre at Karachi, Pakistan: A Six Month Analysis. Cureus 2019, 11, e6229. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929263/ (accessed on 31 January 2020). [CrossRef] [Green Version]
- Chuang, C.S.; Yang, K.W.; Yen, C.M.; Lin, C.L.; Lin, C.L. Risk of Seizures in Patients with Organophosphate Poisoning: A Nationwide Population-Based Study. Int. J. Environ. Res. Public Health 2019, 16, 3147. [Google Scholar] [CrossRef] [Green Version]
- Kwesiga, B.; Ario, A.R.; Bulage, L.; Harris, J.R.; Zhu, B.P. Fatal cases associated with eating chapatti contaminated with organophosphate in Tororo District, Eastern Uganda, 2015: Case series. BMC Public Health 2019, 19, 767. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.C.; Ling, C.; Lee, A.; To, T.M.; Cockburn, M.; Haan, M.; Ritz, B. Cognitive decline, mortality, and organophosphorus exposure in aging Mexican Americans. Environ. Res. 2018, 160, 132–139. [Google Scholar] [CrossRef]
- Eyasu, M.; Dida, T.; Worku, Y.; Shafie, M. Acute poisonings during pregnancy and in other non-pregnant women in emergency departments of four government hospitals, Addis Ababa, Ethiopia: 2010–2015. Trop. Med. Int. Health 2017, 22, 1350–1360. [Google Scholar] [CrossRef] [Green Version]
- Frawley, J.P.; Fuyat, H.N.; Hagan, E.C.; Blake, J.R.; Fitzhugh, O.G. Marked Potentiation in Mammalian Toxicity from Simultaneous Administration of Twoanticholinesterase Compounds. J. Pharmacol. Exp. Ther. 1957, 121, 96–106. [Google Scholar] [PubMed]
- Casida, J.E.; Baron, R.L.; Eto, M.; Engel, J.L. Potentiation and neurotoxicity induced by certain organophosphates. Biochem. Pharmacol. 1963, 12, 73–83. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Lucero, B.A.; Iglesias, V.P.; Muñoz, M.P.; Cornejo, C.A.; Achu, E.; Baumert, B.; Hanchey, A.; Concha, C.; Brito, A.M.; et al. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: A review. Int. J. Occup. Environ. Health 2016, 22, 68–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidyasagar, J.; Karunakar, N.; Reddy, M.S.; Rajnarayana, K.; Surender, T.; Krishna, D.R. Oxidative stress and antioxidant status in acute organophosphorous insecticide poisoning. Indian J. Pharmacol. 2004, 36, 76–79. [Google Scholar]
- Hamza, R.Z.M.M. Hyperglycemic effect of Chlorpyrifos, Profenofos and possible ameliorative role of Propolis and ginseng. Sci. Agric. 2014, 1, 9–14. [Google Scholar]
- Jamshidi, H.R.; Ghahremani, M.H.; Ostad, S.N.; Sharifzadeh, M.; Dehpour, A.R.; Abdollahi, M. Effects of diazinon on the activity and gene expression of mitochondrial glutamate dehydrogenase from rat pancreatic Langerhans islets. Pestic. Biochem. Physiol. 2009, 93, 23–27. [Google Scholar] [CrossRef]
- Lasram, M.M.; Bouzid, K.; Douib, I.B.; Annabi, A.; El Elj, N.; El Fazaa, S.; Abdelmoula, J.; Gharbi, N. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat. Drug Chem. Toxicol. 2015, 38, 227–234. [Google Scholar] [CrossRef]
- Pourkhalili, N.; Pournourmohammadi, S.; Rahimi, F.; Vosough-Ghanbari, S.; Baeeri, M.; Ostad, S.N.; Abdollahi, M. Comparative Effects of Calcium Channel Blockers, Autonomic Nervous System Blockers, and Free Radical Scavengers on Diazinon-Induced Hyposecretion of Insulin from Isolated Islets of Langerhans in Rats. Arch. Ind. Hyg. Toxicol. 2009, 60, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Covarrubias, J.; Aguilar-Juárez, M.; Voltolina, D.; Navarro-Nava, R.; Aranda-Morales, S.; Arreola-Hernández, J.; Soto-Jiménez, M.; Frías-Espericueta, M.G. Immunological response of white shrimp (Litopenaeus vannamei) to sublethal concentrations of malathion and endosulfan, and their mixture. Ecotoxicol. Environ. Saf. 2020, 188, 109893. [Google Scholar] [CrossRef]
- Ouardi, F.Z.; Anarghou, H.; Malqui, H.; Ouasmi, N.; Chigr, M.; Najimi, M.; Chigr, F. Gestational and Lactational Exposure to Malathion Affects Antioxidant Status and Neurobehavior in Mice Pups and Offspring. J. Mol. Neurosci. 2019, 69, 17–27. [Google Scholar] [CrossRef]
- Aly, N.; El-Gendy, K.; Mahmoud, F.; El-Sebae, A.K. Protective effect of vitamin C against chlorpyrifos oxidative stress in male mice. Pestic. Biochem. Physiol. 2010, 97, 7–12. [Google Scholar] [CrossRef]
- Lopez-Sandoval, J.; Sanchez-Enriquez, S.; Rivera-Leon, E.; Bastidas-Ramirez, B.; Garcia-Garcia, M.; Gonzalez-Hita, M. Cardiovascular Risk Factors in Adolescents: Role of Insulin Resistance and Obesity. Acta Endocrinol. Buchar. 2018, 14, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, D.; La Russa, D.; Marrone, A. Oxidative Imbalance and Kidney Damage: New Study Perspectives from Animal Models to Hospitalized Patients. Antioxidants 2019, 8, 594. [Google Scholar] [CrossRef] [Green Version]
- Sheikhansari, G.; Soltani-Zangbar, M.S.; Pourmoghadam, Z.; Kamrani, A.; Azizi, R.; Aghebati-Maleki, L.; Danaii, S.; Koushaeian, L.; Hojat-Farsangi, M.; Yousefi, M. Oxidative stress, inflammatory settings, and microRNA regulation in the recurrent implantation failure patients with metabolic syndrome. Am. J. Reprod. Immunol. 2019, 82, e13170. [Google Scholar] [CrossRef] [PubMed]
- Akhgari, M.; Abdollahi, M.; Kebryaeezadeh, A.; Hosseini, R.; Sabzevari, O. Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 2003, 22, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Surajudeen, Y.A.; Sheu, R.K.; Ayokulehin, K.M.; Olatunbosun, A.G. Oxidative stress indices in Nigerian pesticide applicators and farmers occupationally exposed to organophosphate pesticides. Int. J. Appl. Basic Med. Res. 2014, 4, S37–S40. [Google Scholar]
- Palmirotta, R.; Carella, C.; Silvestris, E.; Cives, M.; Stucci, S.L.; Tucci, M.; Lovero, D.; Silvestris, F. SNPs in predicting clinical efficacy and toxicity of chemotherapy: Walking through the quicksand. Oncotarget 2018, 9, 25355–25382. [Google Scholar] [CrossRef]
- Lien, M.Y.; Lin, C.W.; Tsai, H.C.; Chen, Y.T.; Tsai, M.H.; Hua, C.H.; Yang, S.F.; Tang, C. Impact of CCL4 gene polymorphisms and environmental factors on oral cancer development and clinical characteristics. Oncotarget 2017, 8, 31424–31434. [Google Scholar] [CrossRef]
- Mikhed, Y.; Görlach, A.; Knaus, U.G.; Daiber, A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Boil. 2015, 5, 275–289. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xie, L.; Zhao, J.; Huang, X.; Song, L.; Luo, J.; Ma, L.; Li, S.; Qin, X. Association Between Catalase Gene Polymorphisms and Risk of Chronic Hepatitis B, Hepatitis B Virus-Related Liver Cirrhosis and Hepatocellular Carcinoma in Guangxi Population. Medicine 2015, 94, e702. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554034/ (accessed on 20 February 2020). [CrossRef]
- Arévalo-Jaramillo, P.; Idrobo, A.; Salcedo, L.; Cabrera, A.; Vintimilla, A.; Carrión, M.; Bailón-Moscoso, N. Biochemical and genotoxic effects in women exposed to pesticides in Southern Ecuador. Environ. Sci. Pollut. Res. 2019, 26, 24911–24921. [Google Scholar] [CrossRef] [PubMed]
- Valeeva, E.T.; Mukhammadiyeva, G.F.; Bakirov, A.B. Polymorphism of Glutathione S-transferase Genes and the Risk of Toxic Liver Damage in Petrochemical Workers. Int. J. Occup. Environ. Med. 2020, 11, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Guerrero, C.; Parra-Carriedo, A.; Ruiz-De-Santiago, D.; Galicia-Castillo, O.; Buenrostro-Jáuregui, M.; Díaz-Gutiérrez, C. Genetic polymorphisms of antioxidant enzymes CAT and SOD affect the outcome of clinical, biochemical, and anthropometric variables in people with obesity under a dietary intervention. Genes Nutr. 2018, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Scacchi, R.; Ruggeri, M.; Corbo, R.M. Variation of the butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) genes in coronary artery disease. Clin. Chim. Acta 2011, 412, 1341–1344. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.G.; Yang, Z.G.; Zhang, Y.; Qin, G.J.; Liu, F. Correlations between SIRT1 gene polymorphisms and diabetic kidney disease. R. Soc. Open Sci. 2018, 5, 171871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, A.F.; López, O.; Rodrigo, L.; Gil, F.; Pena, G.; Serrano, J.L.; Parrón, T.; Alvarez, J.C.; Lorente, J.A.; Pla, A. Changes in erythrocyte enzymes in humans long-term exposed to pesticides: Influence of several markers of individual susceptibility. Toxicol. Lett. 2005, 159, 13–21. [Google Scholar] [CrossRef]
- Worek, F.; Mast, U.; Kiderlen, D.; Diepold, C.; Eyer, P. Improved determination of acetylcholinesterase activity in human whole blood. Clin. Chim. Acta 1999, 288, 73–90. [Google Scholar] [CrossRef]
- Pérez, J.J.; Williams, M.K.; Weerasekera, G.; Smith, K.; Whyatt, R.M.; Needham, L.L.; Barr, D.B. Measurement of pyrethroid, organophosphorus, and carbamate insecticides in human plasma using isotope dilution gas chromatography—High resolution mass spectrometry. J. Chromatogr. B 2010, 878, 2554–2562. [Google Scholar] [CrossRef] [Green Version]
- Wilbur, K.M.; Bernheim, F.; Shapiro, O.W. The thiobarbituric acid reagent as a test for the oxidation of unsaturated fatty acids by various agents. Arch. Biochem. Biophys. 1949, 24, 305–313. [Google Scholar]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. Superoxide dismutase: “Positive” spectrophotometric assays. Anal. Biochem. 1977, 79, 553–560. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutin, J.A.; Kass, G.E.; Moldéus, P. Drug-induced hydrogen peroxide production in isolated rat hepatocytes. Toxicology 1989, 54, 129–137. [Google Scholar] [CrossRef]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Boil. Chem. 1949, 177, 751–766. [Google Scholar]
- Lahiri, D.K.; Numberger, J.I. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef]
Groups | Cameroon | Pakistan | ||||
---|---|---|---|---|---|---|
Unexposed n (%) | Exposed n (%) | p-Value | Unexposed n (%) | Exposed n (%) | p-Value | |
Age-frequency | ||||||
16–30 | 80 (64) | 109 (54.5) | 0.158 | 38 (33.9) | 115 (57.5) | 0.146 |
31–45 | 25 (20) | 71 (35.5) | 49 (43.8) | 60 (30) | ||
46–61 | 20 (16) | 20 (10) | 25 (22.3) | 25 (12.5) | ||
Gender-frequency | ||||||
Female | 63 (50.4) | 100 (50) | 0.602 | 46 (41.1) | 52 (26) | <0.05 |
Male | 62 (49.6) | 100 (50) | 66 (58.9) | 148 (74) | ||
BMI-frequency | ||||||
Underweight | 8 (6.4) | 9 (4.5) | <0.001 | 4 (3.6) | 11 (5.5) | <0.001 |
Normal range | 81 (64.8) | 32 (16) | 63 (56.2) | 50 (25) | ||
Overweight | 13 (10.4) | 91 (45.5) | 38 (33.9) | 89 (44.5) | ||
Obese | 23 (18.4) | 68 (34) | 7 (6.2) | 50 (25) | ||
SBP-frequency | ||||||
Hypotension | 15 (12) | 3 (1.5) | <0.001 | 8 (7.1) | 11 (5.5) | <0.001 |
Normal range | 90 (72) | 80 (40) | 88 (78.6) | 77 (38.5) | ||
Hypertension | 20 (16) | 117 (58.5) | 16 (14.3) | 112 (56) | ||
DBP-frequency | ||||||
Hypotension | 9 (7.2) | 8 (4) | <0.001 | 9 (8.0) | 15 (7.5) | <0.001 |
Normal range | 86 (68.8) | 60 (30) | 91 (81.2) | 72 (36) | ||
Hypertension | 30 (24) | 132 (66) | 12 (10.7) | 113 (56.5) |
Groups | Cameroon | Pakistan | ||
---|---|---|---|---|
Unexposed (n = 125) Mean ± SD | Exposed (n = 200) Mean ± SD | Unexposed (n = 112) Mean ± SD | Exposed (n = 200) Mean ± SD | |
AChE mU/µmol Hb | 0.21 ± 0.09 c | 0.12 ± 0.05 *,a | 0.33 ± 0.07 d | 0.19 ± 0.06 *,b |
BChE µmol/l/min | 0.021 ± 0.009 b,c | 0.019 ± 0.010 *,a | 0.032 ± 0.006 c | 0.022 ± 0.009 *,b |
Groups | Cameroon | Pakistan | ||
---|---|---|---|---|
Unexposed (n = 125) Mean ± SD | Exposed (n = 200) Mean ± SD | Unexposed (n = 112) Mean ± SD | Exposed (n = 200) Mean ± SD | |
Catalase U/mg protein | 0.714 ± 0.607 d | 0.301 ± 0.201 *,b | 0.513 ± 0.240 c | 0.223 ± 0.110 *,a |
SOD U/mg protein | 51.88 ± 32.78 b | 41.07 ± 13.09 *,a | 42.62 ± 19.35 a,b | 33.54 ± 16.33 *,a |
MDA nmol MDA/mg protein | 0.89 ± 0.41 a | 1.95 ± 0.85 *c | 0.99 ± 0.31 a | 1.22 ± 0.37 *,b |
GSH μg/mL | 21.81 ± 4.43 a | 21.26 ± 6.61 a | 29.55 ± 5.18 b | 21.77 ± 4.10 *,a |
FRAP μM | 122.31 ± 104.85 a | 419.50 ± 238.81 *,d | 252.54 ± 56.07 b | 351.65 ± 97.70 *,c |
Genotype | Cameroon | Pakistan | |||||||
---|---|---|---|---|---|---|---|---|---|
Unexposed n (%) | Exposed n (%) | OR (95% CI) | χ2 (p-Value) | Unexposed n (%) | Exposed n (%) | OR (95% CI) | χ2 (p-Value) | ||
GSTP1 | AA | 70 (56) | 84 (42) | 6.167 (0.045) | 34 (30.36) | 47 (23.5%) | 1.810 (0.404) | ||
AG | 34 (27.2) | 75 (37.5) | 57 (50.89) | 114 (57) | |||||
GG | 21 (16.8) | 41 (20.5) | 21 (18.75) | 39 (19.5) | |||||
DM AG + GG vs. AA | 0.569(0.362–0.893) | 6.047 (0.013) | 0.704 (0.419–1.184) | 1.756 (0.185) | |||||
RM AG + AA vs. GG | 1.240 (0.692–2.220) | 0.526 (0.468) | 1.050 (0.582–1.893) | 0.026 (0.871) | |||||
A | 174 (69.6) | 242 (60.5) | 0.666 (0.476–0.932) | 5.641 (0.017) | 125 (55.80) | 208 (52) | 0.858 (0.617–1.192) | 0.834 (0.360) | |
G | 76 (30.4) | 158 (39.5) | 99 (44.20 | 192 (48) | |||||
CAT | AA | 68 (54.4) | 67 (33.5) | 14.05 (0.009) | 67 (59.82) | 74 (37) | 15.80 (0.001) | ||
AT | 48 (38.4 | 115 (57.5) | 30 (26.78) | 93 (46.5) | |||||
TT | 9 (7.2) | 18 (9) | 15 (13.40) | 33 (16.5) | |||||
DM AT + TT vs. AA | 0.422 (0.267–0.667) | 13.84 (0.002) | 0.394 (0.245–0.634) | 15.10 (0.001) | |||||
RM AT + AA vs. TT | 1.275 (0.553–2.934) | 0.327 (0.567) | 1.278 (0.660–2.472) | (0.532) 0.465 | |||||
A | 184 (73.6) | 249 (62.25) | 0.554 (0.388–0.792) | 8.912 (0.002) | 164 (73.21) | 241 (60.25) | 0.591 (0.418–0.836) | 10.59 (0.001) | |
T | 66 (26.4) | 151 (37.75) | 60 (26.79) | 159 (39.5) | |||||
BCHE | GG | 26 (20.8) | 33 (16.5) | 34.97 (0.000) | 56 (50) | 70 (35) | 8.695 (0.01) | ||
GA | 70 (56) | 56 (28) | 35 (31.25) | 66 (33) | |||||
AA | 29 (23.2) | 111 (55.5) | 21 (18.75) | 64 (32) | |||||
DM GA + AA vs. GG | 1.329 (0.750–2.353) | 0.957 (0.327) | 1.857 (1.160–2.974) | 6.710 (0.01) | |||||
RM GA + GG vs. AA | 0.247 (0.149–0.408) | 31.61 (0.000) | 0.490 (1.979–16.58) | 12.73 (0.001) | |||||
G | 122 (48.8) | 122 (30.5) | 0.460 (0.332–0.638) | 21.97 0.000 | 147 (65.63) | 206 (51.5) | 0.556 (0.280–0.858) | 6.359 (0.01) | |
A | 128 (51.2) | 278 (69.5) | 77 (34.37) | 194 (48.4) | |||||
ACHE | GG | 85 (68) | 110 (55) | 9.843 (0.007) | 70 (62.5) | 78 (39) | 21.14 (0.001) | ||
GT | 23 (18.4) | 69 (34.5) | 38 (33.93) | 87 (43.5) | |||||
TT | 17 (13.6) | 21 (10.5) | 4 (3.57) | 35 (17.5) | |||||
DM GT + TT vs. GG | 0.575 (0.360–0.918) | 5.417 (0.019) | 0.383 (0.238–0.617) | 15.90 (0.001) | |||||
RM GT + GG vs. TT | 0.745 (0.376–1.475) | 0.715 (0.397) | 5.72 (1.979–16.58) | 12.73 (0.001) | |||||
G | 193 (77.2) | 289 (72.25) | 0.768 (0.532–1.111) | 1.967 0.160 | 178 (79.46) | 243 (60.75) | 0.400 (0.273–0.585) | 22.91 (0.001) | |
T | 57 (22.8) | 111 (27.75) | 46 (20.54) | 157 (39.25) | |||||
SIRT1 | GG | 28 (22.4) | 39 (19.5) | 2.5 (0.286) | 45 (40.18) | 81 (40.5) | 0.23 (0.891) | ||
GA | 82 (65.6) | 124 (62) | 44 (39.29) | 74 (37) | |||||
AA | 15 (12) | 37 (18.5) | 23 (20.53) | 45 (22.5) | |||||
DM GA + AA.Vs GG | 0.839 (0.485–1.45) | 0.395 (0.529) | 1.013 0.632–1.624 | 0.003 (0.957) | |||||
RM GA + GG vs. AA | 1.665 (0.871–3.179) | 2.41 (0.119) | 1.123 (0.637–1.979) | 0.162 (0.686) | |||||
G | 138 (55.2) | 202 (50.5) | 0.828 (0.602–1.137) | 1.362 (0.243) | 134 (59.82) | 236 (59) | 0.966 (0.692–1.349) | 0.040 (0.841) | |
A | 112 (44.8) | 198 (49.5) | 90 (40.18) | 164 (41) | |||||
GSTM1 | Present (+) | 106 (84.8) | 143 (71.5) | 0.449 (0.252–0.800) | 7.595 (0.005) | 96 (85.71 | 175 (87.5) | 1.167 (0.593–2.29)2 | 0.200 (0.654) |
Absent (−) | 19 (15.2) | 57 (28.5) | 16 (14.29) | 25 (12.5) | |||||
GSTT1 | Present (+) | 108 (86.4) | 149 (74.5) | 0.459 (0.251–0.839) | 6.584 0.010 | 94 (83.93) | 172 (86) | 1.176 (0.618–2.239) | 0.245 (0.620) |
Absent (−) | 17 (13.6) | 51 (25.5) | 18 (16.07) | 28 (14) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbah Ntepe, L.J.; Habib, R.; Judith Laure, N.; Raza, S.; Nepovimova, E.; Kuca, K.; Batool, S.; Muhammad Nurulain, S. Oxidative Stress and Analysis of Selected SNPs of ACHE (rs 2571598), BCHE (rs 3495), CAT (rs 7943316), SIRT1 (rs 10823108), GSTP1 (rs 1695), and Gene GSTM1, GSTT1 in Chronic Organophosphates Exposed Groups from Cameroon and Pakistan. Int. J. Mol. Sci. 2020, 21, 6432. https://doi.org/10.3390/ijms21176432
Mbah Ntepe LJ, Habib R, Judith Laure N, Raza S, Nepovimova E, Kuca K, Batool S, Muhammad Nurulain S. Oxidative Stress and Analysis of Selected SNPs of ACHE (rs 2571598), BCHE (rs 3495), CAT (rs 7943316), SIRT1 (rs 10823108), GSTP1 (rs 1695), and Gene GSTM1, GSTT1 in Chronic Organophosphates Exposed Groups from Cameroon and Pakistan. International Journal of Molecular Sciences. 2020; 21(17):6432. https://doi.org/10.3390/ijms21176432
Chicago/Turabian StyleMbah Ntepe, Leonel Javeres, Rabia Habib, Ngondi Judith Laure, Saqlain Raza, Eugenie Nepovimova, Kamil Kuca, Sajida Batool, and Syed Muhammad Nurulain. 2020. "Oxidative Stress and Analysis of Selected SNPs of ACHE (rs 2571598), BCHE (rs 3495), CAT (rs 7943316), SIRT1 (rs 10823108), GSTP1 (rs 1695), and Gene GSTM1, GSTT1 in Chronic Organophosphates Exposed Groups from Cameroon and Pakistan" International Journal of Molecular Sciences 21, no. 17: 6432. https://doi.org/10.3390/ijms21176432
APA StyleMbah Ntepe, L. J., Habib, R., Judith Laure, N., Raza, S., Nepovimova, E., Kuca, K., Batool, S., & Muhammad Nurulain, S. (2020). Oxidative Stress and Analysis of Selected SNPs of ACHE (rs 2571598), BCHE (rs 3495), CAT (rs 7943316), SIRT1 (rs 10823108), GSTP1 (rs 1695), and Gene GSTM1, GSTT1 in Chronic Organophosphates Exposed Groups from Cameroon and Pakistan. International Journal of Molecular Sciences, 21(17), 6432. https://doi.org/10.3390/ijms21176432