Adult Neurogenesis in the Drosophila Brain: The Evidence and the Void
Abstract
:1. Introduction
2. Developmental Neuroblasts Disappear by the End of Pupal Life
3. Experimentally-Induced Persistent Neuroblasts Divide in the Adult Brain
4. There Are Proliferating Cells in the Adult Drosophila Brain
5. Injury, Neuronal Activity and Genetic Manipulations Induce Further Cell Proliferation
6. Gliogenesis and Neurogenesis in the Adult Brain
7. Touching the Void: What Are the Adult Progenitor Cells?
8. Seeing is Believing
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kempermann, G.; Gage, F.H.; Aigner, L.; Song, H.; Curtis, M.A.; Thuret, S.; Kuhn, H.G.; Jessberger, S.; Frankland, P.W.; Cameron, H.A.; et al. Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell 2018, 23, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, K.; Hotta, Y. Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev. Biol. 1992, 149, 134–148. [Google Scholar] [CrossRef]
- Truman, J.W.; Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 1988, 125, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Sorrells, S.F.; Paredes, M.F.; Cebrian-Silla, A.; Sandoval, K.; Qi, D.; Kelley, K.W.; James, D.; Mayer, S.; Chang, J.; Auguste, K.I.; et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 2018, 555, 377–381. [Google Scholar] [CrossRef]
- Boldrini, M.; Fulmore, C.A.; Tartt, A.N.; Simeon, L.R.; Pavlova, I.; Poposka, V.; Rosoklija, G.B.; Stankov, A.; Arango, V.; Dwork, A.J.; et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell 2018, 22, 589–599.e5. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Forero, M.G.; Wentzell, J.S.; Durmus, I.; Wolf, R.; Anthoney, N.C.; Parker, M.; Jiang, R.; Hasenauer, J.; Strausfeld, N.J.; et al. Toll-receptor map underlies structural brain plasticity. eLife 2020, 9, e52743. [Google Scholar] [CrossRef]
- Prokop, A.; Technau, G.M. The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Development 1991, 111, 79–88. [Google Scholar]
- Sousa-Nunes, R.; Cheng, L.Y.; Gould, A.P. Regulating neural proliferation in the Drosophila CNS. Curr. Opin. Neurobiol. 2010, 20, 50–57. [Google Scholar] [CrossRef]
- Doe, C.Q. Temporal Patterning in the Drosophila CNS. Annu. Rev. Cell Dev. Biol. 2017, 33, 219–240. [Google Scholar] [CrossRef] [Green Version]
- Holguera, I.; Desplan, C. Neuronal specification in space and time. Science 2018, 362, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Homem, C.C.; Repic, M.; Knoblich, J.A. Proliferation control in neural stem and progenitor cells. Nat. Rev. Neurosci. 2015, 16, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Arefin, B.; Parvin, F.; Bahrampour, S.; Stadler, C.B.; Thor, S. Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay. Cell Rep. 2019, 29, 3636–3651.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuki, L.; Brand, A.H. Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science 2018, 360, 99–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, K.T.; Doe, C.Q. Drosophila embryonic type II neuroblasts: Origin, temporal patterning, and contribution to the adult central complex. Development 2017, 144, 4552–4562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello, B.C.; Izergina, N.; Caussinus, E.; Reichert, H. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev. 2008, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Apitz, H.; Salecker, I. Erratum: A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system. Nat. Neurosci. 2015, 18, 926. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, V.M.; Chen, Z.; Rossi, A.M.; Zipfel, J.; Desplan, C. Glia relay differentiation cues to coordinate neuronal development in Drosophila. Science 2017, 357, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Kunes, S. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 1996, 86, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Shilo, B.Z.; Kunes, S. A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell 1998, 95, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Erclik, T.; Bertet, C.; Chen, Z.; Voutev, R.; Venkatesh, S.; Morante, J.; Celik, A.; Desplan, C. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 2013, 498, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Mora, N.; Oliva, C.; Fiers, M.; Ejsmont, R.; Soldano, A.; Zhang, T.T.; Yan, J.; Claeys, A.; De Geest, N.; Hassan, B.A. A Temporal Transcriptional Switch Governs Stem Cell Division, Neuronal Numbers, and Maintenance of Differentiation. Dev. Cell 2018, 45, 53–66.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, S.L.; Miller, M.R.; Robinson, K.J.; Doe, C.Q. The Snail family member Worniu is continuously required in neuroblasts to prevent Elav-induced premature differentiation. Dev. Cell 2012, 23, 849–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, S.K.; Rolland, V.; Betschinger, J.; Kinsey, K.A.; Emery, G.; Knoblich, J.A. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell 2008, 14, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homem, C.C.F.; Steinmann, V.; Burkard, T.R.; Jais, A.; Esterbauer, H.; Knoblich, J.A. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 2014, 158, 874–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurange, C.; Cheng, L.; Gould, A.P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 2008, 133, 891–902. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.P.; Samuels, T.J.; Huang, Y.; Yang, L.; Ish-Horowicz, D.; Davis, I.; Lee, T. Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells. Development 2017, 144, 3454–3464. [Google Scholar] [CrossRef] [Green Version]
- Siegrist, S.E.; Haque, N.S.; Chen, C.H.; Hay, B.A.; Hariharan, I.K. Inactivation of both Foxo and reaper promotes long-term adult neurogenesis in Drosophila. Curr. Biol. 2010, 20, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Bello, B.C.; Hirth, F.; Gould, A.P. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 2003, 37, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Cenci, C.; Gould, A.P. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development 2005, 132, 3835–3845. [Google Scholar] [CrossRef] [Green Version]
- Weng, R.; Cohen, S.M. Control of Drosophila Type I and Type II central brain neuroblast proliferation by bantam microRNA. Development 2015, 142, 3713–3720. [Google Scholar] [CrossRef] [Green Version]
- Narbonne-Reveau, K.; Lanet, E.; Dillard, C.; Foppolo, S.; Chen, C.H.; Parrinello, H.; Rialle, S.; Sokol, N.S.; Maurange, C. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila. eLife 2016, 5, e13463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, R.E.; Kottler, B.; Ludlow, Z.N.; Buhl, E.; Kim, D.; Morais da Silva, S.; Miedzik, A.; Coum, A.; Hodge, J.J.; Hirth, F.; et al. In vivo expansion of functionally integrated GABAergic interneurons by targeted increase in neural progenitors. EMBO J. 2018, 37, e98163. [Google Scholar] [CrossRef] [PubMed]
- Technau, G.M. Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience. J. Neurogenet. 1984, 1, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Awasaki, T.; Ito, K. Neuronal programmed cell death induces glial cell division in the adult Drosophila brain. Development 2009, 136, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Trotha, J.W.; Egger, B.; Brand, A.H. Cell proliferation in the Drosophila adult brain revealed by clonal analysis and bromodeoxyuridine labelling. Neural Dev. 2009, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Hernandez, I.; Rhiner, C.; Moreno, E. Adult neurogenesis in Drosophila. Cell Rep. 2013, 3, 1857–1865. [Google Scholar] [CrossRef] [Green Version]
- Foo, L.C.; Song, S.; Cohen, S.M. miR-31 mutants reveal continuous glial homeostasis in the adult Drosophila brain. EMBO J. 2017, 36, 1215–1226. [Google Scholar] [CrossRef]
- Nandakumar, S.; Grushko, O.; Buttitta, L.A. Polyploidy in the adult Drosophila brain. eLife 2020, 9, e54385. [Google Scholar] [CrossRef]
- Zielke, N.; Korzelius, J.; van Straaten, M.; Bender, K.; Schuhknecht, G.F.P.; Dutta, D.; Xiang, J.; Edgar, B.A. Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. Cell Rep. 2014, 7, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Buszczak, M.; Paterno, S.; Lighthouse, D.; Bachman, J.; Planck, J.; Owen, S.; Skora, A.D.; Nystul, T.G.; Ohlstein, B.; Allen, A.; et al. The carnegie protein trap library: A versatile tool for Drosophila developmental studies. Genetics 2007, 175, 1505–1531. [Google Scholar] [CrossRef] [Green Version]
- Edgar, B.A.; O’Farrell, P.H. Genetic control of cell division patterns in the Drosophila embryo. Cell 1989, 57, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 1999, 22, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.H.; Chen, C.H.; Shi, L.; Huang, Y.; Lee, T. Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat. Neurosci. 2009, 12, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Koontz, L.M.; Liu-Chittenden, Y.; Yin, F.; Zheng, Y.; Yu, J.; Huang, B.; Chen, Q.; Wu, S.; Pan, D. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev. Cell 2013, 25, 388–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Wu, S.; Barrera, J.; Matthews, K.; Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005, 122, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, G.C.; Diaz-de-la-Loza, M.D.; Borreguero-Munoz, N.; Holder, M.; Aguilar-Aragon, M.; Thompson, B.J. Mechanical strain regulates the Hippo pathway in Drosophila. Development 2018, 145. [Google Scholar] [CrossRef] [Green Version]
- Manning, S.A.; Dent, L.G.; Kondo, S.; Zhao, Z.W.; Plachta, N.; Harvey, K.F. Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo. Curr. Biol. 2018, 28, 1651–1660.e4. [Google Scholar] [CrossRef] [Green Version]
- Moreno, E.; Yan, M.; Basler, K. Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr. Biol. 2002, 12, 1263–1268. [Google Scholar] [CrossRef] [Green Version]
- Callaerts, P.; Leng, S.; Clements, J.; Benassayag, C.; Cribbs, D.; Kang, Y.Y.; Walldorf, U.; Fischbach, K.F.; Strauss, R. Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. J. Neurobiol. 2001, 46, 73–88. [Google Scholar] [CrossRef]
- Croset, V.; Treiber, C.D.; Waddell, S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 2018, 7, e34550. [Google Scholar] [CrossRef]
- Davie, K.; Janssens, J.; Koldere, D.; De Waegeneer, M.; Pech, U.; Kreft, L.; Aibar, S.; Makhzami, S.; Christiaens, V.; Bravo Gonzalez-Blas, C.; et al. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell 2018, 174, 982–998.e20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstantinides, N.; Kapuralin, K.; Fadil, C.; Barboza, L.; Satija, R.; Desplan, C. Phenotypic Convergence: Distinct Transcription Factors Regulate Common Terminal Features. Cell 2018, 174, 622–635.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoes, A.R.; Rhiner, C. A Cold-Blooded View on Adult Neurogenesis. Front. Neurosci. 2017, 11, 327. [Google Scholar] [CrossRef] [PubMed]
- Falk, S.; Gotz, M. Glial control of neurogenesis. Curr. Opin. Neurobiol. 2017, 47, 188–195. [Google Scholar] [CrossRef]
Evidence of Adult Neurogenesis | Evidence Against Adult Neurogenesis | ||
---|---|---|---|
Finding | Reference | Finding | Reference |
Cell Proliferation | |||
Cycling cells detected in S-phase with 3H-Thymidine, BrdU, EdU, PCNA-GFP and FUCCI; in G1, with FUCCI; in G2, G2/M were revealed with FUCCI, nuclear Stg-GFP and Yki-GFP. | [6,33,34,35,37] | BrdU incorporation not detected in adult and PCNA-GFP was not seen after 96h APF. | [2,3,27] |
Polyploidy in the adult brain. | [38] | ||
Inference of mitosis from MARCM clones. Clones induced in the adult brain generated both glial and neuronal progeny cells. Incidence of clones increased with flippase-induced recombination compared to controls. Some clones were BrdU+. | [34,35,36,37] | No MARCM clones detected in normal adult brains | [6,27] |
MARCM clones were detected in control brains that had not been heat-shocked, and Twin-Spot based approaches may not guarantee reporter knock-down | [34,35,36] | ||
Inference of mitosis: A BrdU pulse in the adult resulted in multiple labelled progeny cells over time. | [34,35,37] | ||
Injury, Neuronal Activity and Altered Gene Function Can Increase Cell Proliferation | |||
Injury increased proliferation in central brain and optic lobes (BrdU, MARCM) | [34,36] | ||
Altering gene function can increase cell number, proliferation (various methods, including pH3) or brain size: dMyc, miR-31a, Toll-2, wek, MyD88, yki | [6,36,37] | ||
Activating neurons increases cell number | [6] | ||
Gliogenesis and neurogenesis | |||
Gliogenesis: Repo+ BrdU+ cells in MARCM clones, after injury, alterations in gene expression and lineage tracing of inscGAL4 in the adult brain. | [34,35,37] | ||
Neurogenesis: Perma-Twin MARCM Elav+ clones, MARCM together with Toll-2 over-expression and lineage tracing with inscGAL4 in adult brain. | [6,36,37] | ||
Neuroblasts/neural stem cells | |||
Potentially unknown Type II NB INPs and progeny cells | [9,14,15,23] | Developmental neuroblasts are eliminated before adult eclosion | [24,25,27,28,29] |
Cells with NB markers Dpn, Mira, Ey, worGAL4 and inscGAL4 in the adult brain. InscGAL4 with lineage tracing in adult produced both neurons and glia | [6,36,37,49] | Dpn+, Mira+ and Pros+ cells disappear after pupa | [27] |
RNAseq analysis revealed NB genes expressed in the adult brain | [50,51,52] | Typical NB genes can have pleiotropic functions | [50,51] |
Missing evidence | Seeing dividing cells with pH3, other mitotic markers or time-lapse films Identification of adult progenitor cells, origin, model of cell division and resulting progeny cells |
Gene | Number of Cells | ||
---|---|---|---|
CW-Midbrain 1 | DA-Brain 2 | KD-Optic Lobes 3 | |
cas | 6 cells | 8 cells | 24 cells |
d | Many | Many | Many |
svp | Some | Many | Many |
poxn | A few | Some | 24 cells |
hb | Some | Many | A few |
kr | Some | Many | A few |
grh | 27 cells | A few | Many |
toy | Many | > Many | Many |
dac | Many | Many | Some |
eyeless | Some | Many | Some |
exd | Some | > Many | Many |
br-c | Many | Many | Many |
chinmo | Many | > Many | > Many |
imp | Many | > Many | Many |
lin28 | A few | Some | A few |
dpn | 1 cell | A few | A few |
wor | 4 cells | 1 cell | 13 cells |
mira | 11 cells | Some | A few |
ase | 8 cells | 1 cell | 8 cells |
numb | Many | > Many | Many |
insc | 0 cells | 19 cells | 26 cells |
pros | Many | > Many | > Many |
brat | Many | > Many | Many |
zld | Many | > Many | ? |
yki | Some | Many | Some |
stg | 12 cells | A few | A few |
sd | Many | > Many | > Many |
KEY | A few | 30–200 cells | |
Some | 201–1000 cells | ||
Many | 1001–10,000 cells | ||
> Many | >10,000 cells |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Hidalgo, A. Adult Neurogenesis in the Drosophila Brain: The Evidence and the Void. Int. J. Mol. Sci. 2020, 21, 6653. https://doi.org/10.3390/ijms21186653
Li G, Hidalgo A. Adult Neurogenesis in the Drosophila Brain: The Evidence and the Void. International Journal of Molecular Sciences. 2020; 21(18):6653. https://doi.org/10.3390/ijms21186653
Chicago/Turabian StyleLi, Guiyi, and Alicia Hidalgo. 2020. "Adult Neurogenesis in the Drosophila Brain: The Evidence and the Void" International Journal of Molecular Sciences 21, no. 18: 6653. https://doi.org/10.3390/ijms21186653
APA StyleLi, G., & Hidalgo, A. (2020). Adult Neurogenesis in the Drosophila Brain: The Evidence and the Void. International Journal of Molecular Sciences, 21(18), 6653. https://doi.org/10.3390/ijms21186653