Soft Nanoonions: A Dynamic Overview onto Catanionic Vesicles Temperature-Driven Transition
Abstract
:1. Introduction
2. Results and Discussion
2.1. SDS/CTAB System
2.2. SDS/CPB Versus Sodium Decyl Sulfate (SdS)/CPB Systems
2.3. Final Systems Optimization
3. Materials and Methods
3.1. Sample Preparation
3.2. Multinuclear NMR Experiments
3.3. PGSTE Measurements
3.4. UV-Vis
3.5. Polarized Light Microscopy
3.6. Confocal Microscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaler, E.W.; Murthy, A.K.; Rodriguez, B.E.; Zasadzinski, J.A. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 1989, 245, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Salkar, R.A.; Mukesh, D.; Samant, S.D.; Manohar, C. Mechanism of Micelle to Vesicle Transition in Cationic−Anionic Surfactant Mixtures. Langmuir 1998, 14, 3778–3782. [Google Scholar] [CrossRef]
- Jurašin, D.D.; Šegota, S.; Čadež, V.; Selmani, A.; Dutour Sikirć, M. Recent Advances in Catanionic Mixtures. Appl. Charact. Surfactants 2017, 33–73. [Google Scholar] [CrossRef] [Green Version]
- Bonincontro, A.; Falivene, M.; La Mesa, C.; Risuleo, G.; Ruiz-Pena, M. Dynamics of DNA Adsorption on and Release from SDS−DDAB Cat−Anionic Vesicles: A Multitechnique Study. Langmuir 2008, 24, 1973–1978. [Google Scholar] [CrossRef] [PubMed]
- Guida, V. Thermodynamics and kinetics of vesicles formation processes. Adv. Colloid Interface Sci. 2010, 161, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Russo Krauss, I.; Imperatore, R.; De Santis, A.; Luchini, A.; Paduano, L.; D’Errico, G. Structure and dynamics of cetyltrimethylammonium chloride-sodium dodecylsulfate (CTAC-SDS) catanionic vesicles: High-value nano-vehicles from low-cost surfactants. J. Colloid Interface Sci. 2017, 501, 112–122. [Google Scholar] [CrossRef]
- Dhawan, V.V.; Nagarsenker, M.S. Catanionic systems in nanotherapeutics—Biophysical aspects and novel trends in drug delivery applications. J. Control Release 2017, 266, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, P.; Funari, S.S.; La Mesa, C.; Mariani, P.; Ortore, M.G.; Sinibaldi, R.; Spinozzi, F. Multi- to Unilamellar Transitions in Catanionic Vesicles. J. Phys. Chem. B 2010, 114, 8056–8060. [Google Scholar] [CrossRef] [Green Version]
- Whitesides, G.M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [Green Version]
- Antunes, F.E.; Marques, E.F.; Miguel, M.G.; Lindman, B. Polymer-Vesicle association. Adv. Colloid Interface Sci. 2009, 147–148, 18–35. [Google Scholar] [CrossRef]
- Mal, A.; Bag, S.; Ghosh, S.; Moulik, S.P. Physicochemistry of CTAB-SDS interacted catanionic micelle-vesicle forming system: An extended exploration. Colloid Surf. A Physicochem. Eng. Asp. 2018, 553, 633–644. [Google Scholar] [CrossRef]
- Jr Johnson, C.S. Diffusion ordered nuclear magnetic resonance spectroscopy: Principles and applications. Progr. Nucl. Magn. Reson. Spettrosc. 1999, 34, 203–256. [Google Scholar] [CrossRef]
- Shekar, S.C.; Tang, J.A.; Jerschow, A. Dynamics of I = 3/2Nuclei in Isotropic Slow Motion, Anisotropic and Partially Ordered Phases. Concepts Magn. Reson. 2010, 36, 362–387. [Google Scholar] [CrossRef]
- Furó, I. NMR spectroscopy of micelles and related systems. J. Mol. Liq. 2005, 117, 117–137. [Google Scholar] [CrossRef]
- Milcovich, G.; Asaro, F. Insights into Catanionic Vesicles Thermal Transition by NMR Spectroscopy. Prog. Colloid Polym. Sci. 2012, 139, 35–38. [Google Scholar]
- Quintela, P.A.; Reno, R.C.S.; Kaifer, A.E. Cryptand [2.2.2] Complexation of Anionic Surfactant Counterions. Drastic Decrease of the CMC of Sodium Dodecyl and Decyl Sulfates. J. Phys. Chem. 1987, 91, 3582–3585. [Google Scholar] [CrossRef]
- Cifuentes, A.; Bernal, J.L.; Diez-Masa, J.C. Determination of critical micelle concentration values using capillary electrophoresis instrumentation. Anal. Chem. 1997, 69, 4271–4274. [Google Scholar] [CrossRef]
- Battacharya, S.; Haldar, J. Microcalorimetric and Conductivity Studies with Micelles Prepared from Multi-Headed Pyridinium Surfactants. Langmuir 2005, 21, 5747–5751. [Google Scholar] [CrossRef]
- Rosen, M.J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Asaro, F.; Liguori, L.; Pellizer, G. A multinuclear NMR approach to the study of the lyotropic system CTAB-D2O. Croat. Chem. Acta 2001, 74, 877–885. [Google Scholar]
- Boroske, E.; Helfrich, W. Magnetic anisotropy of egg lecithin membranes. Biophys. J. 1978, 24, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Loudet, C.; Diller, A.; Grélard, A.; Oda, R.; Dufourc, E.J. Biphenyl phosphatidylcholine: A promoter of liposome deformation and bicelle collective orientation by magnetic fields. Prog. Lipid Res. 2010, 49, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Woessner, D.E. NMR relaxation of spin-3/2 nuclei: Effects of structure, order, and dynamics in aqueous heterogeneous systems. Concepts Magn. Reson. 2001, 13, 294–325. [Google Scholar] [CrossRef]
- Asaro, F.; Pellizer, G.; Pergolese, B. 2H and 14N Nmr of Cetylpyridinium Bromide Lyotropic and Thermotropic Liquid Crystals. Mol. Cryst. Liq. Cryst. 2003, 394, 127–139. [Google Scholar] [CrossRef]
- Michina, Y.; Carrière, D.; Charpentier, T.; Brito, R.; Marques, E.F.; Douliez, J.-P.; Zemb, T. Absence of Lateral Phase Segregation in Fatty Acid-Based Catanionic Mixtures. J. Phys. Chem. B 2010, 114, 1932–1938. [Google Scholar] [CrossRef]
- Prabha, S.; Zhou, W.-Z.; Panyam, J.; Labhasetwar, V. Size-Dependency of nanoparticle-mediated gene transfection: Studies with fractionated nanoparticles. Int. J. Pharm. 2002, 244, 105–115. [Google Scholar] [CrossRef]
- Pelta, M.D.; Morris, G.A.; Stchendroff, M.J.; Hammond, S.J. A one-shot sequence for high-resolution diffusion-ordered spectroscopy. Magn. Reson. Chem. 2002, 40, S147–S152. [Google Scholar] [CrossRef]
- Antalek, B. Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results. Concepts Magn. Reson. Part A 2002, 14, 225–258. [Google Scholar] [CrossRef]
- Tanner, J.E. Use of the Stimulated Echo in NMR Diffusion Studies. J. Chem. Phys. 1970, 52, 2523–2526. [Google Scholar] [CrossRef]
Component | CMC |
Sodium decyl sulfate (SdS) | 33 mM [16] |
Sodium dodecyl sulfate (SDS) | 8.3 mM [17] |
Cetyltrimethylammonium bromide (CTAB) | 0.93 mM [17] |
Cetylpyridinium bromide (CPB) | 0.33 mM [18] |
Component | CMC |
Sodium decyl sulfate (SdS) | 33 mM [16] |
Sodium dodecyl sulfate (SDS) | 8.3 mM [17] |
Cetyltrimethylammonium bromide (CTAB) | 0.93 mM [17] |
Cetylpyridinium bromide (CPB) | 0.33 mM [18] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milcovich, G.; Antunes, F.E.; Grassi, M.; Asaro, F. Soft Nanoonions: A Dynamic Overview onto Catanionic Vesicles Temperature-Driven Transition. Int. J. Mol. Sci. 2020, 21, 6804. https://doi.org/10.3390/ijms21186804
Milcovich G, Antunes FE, Grassi M, Asaro F. Soft Nanoonions: A Dynamic Overview onto Catanionic Vesicles Temperature-Driven Transition. International Journal of Molecular Sciences. 2020; 21(18):6804. https://doi.org/10.3390/ijms21186804
Chicago/Turabian StyleMilcovich, Gesmi, Filipe E. Antunes, Mario Grassi, and Fioretta Asaro. 2020. "Soft Nanoonions: A Dynamic Overview onto Catanionic Vesicles Temperature-Driven Transition" International Journal of Molecular Sciences 21, no. 18: 6804. https://doi.org/10.3390/ijms21186804
APA StyleMilcovich, G., Antunes, F. E., Grassi, M., & Asaro, F. (2020). Soft Nanoonions: A Dynamic Overview onto Catanionic Vesicles Temperature-Driven Transition. International Journal of Molecular Sciences, 21(18), 6804. https://doi.org/10.3390/ijms21186804