Two Alternative Splicing Variants of AtERF73/HRE1, HRE1α and HRE1β, Have Differential Transactivation Activities in Arabidopsis
Abstract
:1. Introduction
2. Results
2.1. Structural Comparison of HRE1α and HRE1β
2.2. Comparison of HRE1α and HRE1β Functions in the Hypoxia Response and Root Development
2.3. N-Terminal and/or C-Terminal Regions of HRE1α and HRE1β Are Responsible for Transactivation Activity
2.4. N-Terminal Region of HRE1β Has One Motif Responsible for Transactivation Activity
2.5. C-Terminal Region of HRE1β Has Two Motifs Responsible for Transactivation Activity
2.6. Four Glutamate Residues and LWS Residues Contribute to Transactivation Activity
2.7. HRE1α and HRE1β Show Transactivation Activity In Vivo
2.8. Both HRE1α and HRE1β Transactivate Downstream Genes via the GCC Box
2.9. Analysis of Downstream Genes Regulated by HRE1α and HRE1β Using RNA-Seq
2.10. Analysis of Genes Downstream of HRE1α and HRE1β in the Hypoxia Response
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Plasmid Construction
4.3. Plant Transformation and Selection of Transgenic Plants
4.4. Stress Treatments
4.5. Root Length Measurement
4.6. Yeast Transformation
4.7. Transactivation Activity Analysis in Yeast
4.8. Protoplast Transformation
4.9. Dual-Luciferase Assay
4.10. RNA Isolation, cDNA Synthesis, Semi-Quantitative RT-PCR, and Quantitative RT-PCR
4.11. Multiple Alignment Analysis
4.12. Phylogenetic Tree
4.13. Library Preparation and Sequencing
4.14. Data Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AP2/ERF | APETALA2/ethylene-responsive factor |
BD | DNA-binding domain |
CaMV | Cauliflower mosaic virus |
DAG | Days after germination |
DEG | Differentially expressed gene |
DREB/CBF | Dehydration responsive element-binding factor/C-repeat-binding factor |
GAPc | Glyceraldehyde 3-phosphate dehydrogenase |
GO | Gene ontology |
MS | Murashige and Skoog |
ONPG | 2-nitrophenyl-β-D-galacto-pyranoside |
RAV | Related to ABI3/VP1 |
References
- Biłas, R.; Szafran, K.; Hnatuszko-Konka, K.; Kononowicz, A.K. Cis-regulatory elements used to control gene expression in plants. Plant Cell Tissue Organ Cult. 2016, 127, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Wessler, S.R. Homing into the origin of the AP2 DNA binding domain. Trends Plant Sci. 2005, 10, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, Y.; Liu, Q.; Dubouzet, J.G.; Abe, H.; Shinozaki, K.; Yamaguchi-Shinozaki, Y. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 2002, 290, 998–1009. [Google Scholar] [CrossRef]
- Nakano, T.; Suzuki, K.; Fujimura, T.; Shinshi, H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006, 140, 411–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharoni, A.M.; Nuruzzaman, M.; Satoh, K.; Shimizu, T.; Kondoh, H.; Sasaya, T.; Choi, I.R.; Omura, T.; Kikuchi, S. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 2011, 52, 344–360. [Google Scholar] [CrossRef]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 2012, 1819, 86–96. [Google Scholar] [CrossRef]
- Dubouzet, J.G.; Sakuma, Y.; Ito, Y.; Kasuga, M.; Dubouzet, E.G.; Miura, S.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003, 33, 751–763. [Google Scholar] [CrossRef]
- Bui, L.T.; Giuntoli, B.; Kosmacz, M.; Parlanti, S.; Licausi, F. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci. 2015, 236, 37–43. [Google Scholar] [CrossRef]
- Ghorbani, R.; Zakipour, Z.; Alemzadeh, A.; Razi, H. Genome-wide analysis of AP2/ERF transcription factors family in Brassica napus. Physiol. Mol. Biol. Plants 2020, 26, 1463–1476. [Google Scholar] [CrossRef]
- Luo, C.; Liu, H.; Ren, J.; Chen, D.; Cheng, X.; Sun, W.; Hong, B.; Huang, C. Cold-inducible expression of an Arabidopsis thaliana AP2 transcription factor gene, AtCRAP2, promotes flowering under unsuitable low-temperatures in chrysanthemum. Plant Physiol. Biochem. 2020, 146, 220–230. [Google Scholar] [CrossRef]
- Yang, Y.; Al-Baidhani, H.H.J.; Harris, J.; Riboni, M.; Li, Y.; Mazonka, I.; Bazanova, N.; Chirkova, L.; Hussain, S.S.; Hrmova, M.; et al. DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: Impact on plant development, stress tolerance and yield. Plant Biotechnol. J. 2020, 18, 829–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, C.C.; Wang, A.H. Structural D/E-rich repeats play multiple roles especially in gene regulation through DNA/RNA mimicry. Mol. BioSyst. 2015, 11, 2144–2151. [Google Scholar] [CrossRef]
- Hiratsu, K.; Matsui, K.; Koyama, T.; Ohme-Takagi, M. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 2003, 34, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Umemura, Y.; Ohme-Takagi, M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J. 2008, 55, 954–967. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Ohme-Takagi, M. A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol. 2009, 50, 970–975. [Google Scholar] [CrossRef] [Green Version]
- Ohme-Takagi, M.; Shinshi, H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 1995, 7, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, T.J.; Liu, J.M.; Liu, W.Q.; Liu, Q.; Yan, Y.B.; Zhou, H.M. The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett. 2006, 580, 1303–1308. [Google Scholar] [CrossRef] [Green Version]
- Laloum, T.; Martín, G.; Duque, P. Alternative splicing control of abiotic stress responses. Trends Plant Sci. 2018, 23, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Matlin, A.J.; Clark, F.; Smith, C.W.J. Understanding alternative splicing: Towards a cellular code. Nat. Rev. Mol. Cell Biol. 2005, 6, 386–398. [Google Scholar] [CrossRef]
- Nilsen, T.W.; Graveley, B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Wachter, A.; Rühl, C.; Stauffer, E. The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation. Front. Plant Sci. 2012, 3, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrillo, E.; Kalyna, M.; Mandadi, K.K.; Tu, S.L.; Simpson, C.G. Editorial: Alternative splicing regulation in plants. Front. Plant Sci. 2020, 11, 913. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, N.; Liu, M.; Liu, J.; Du, B.; Wang, X.; Qi, X. An autoregulatory loop controlling Arabidopsis HsfA2 expression: Role of heat shock-induced alternative splicing. Plant Physiol. 2013, 162, 512–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, Y.; Fedoroff, N.V.; Koizumi, N. Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 2008, 20, 3107–3121. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, Y.; Mishiba, K.I.; Suzuki, E.; Shimada, Y.; Iwata, Y.; Koizumi, N. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci. Rep. 2011, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- Remy, E.; Cabrito, T.R.; Baster, P.; Batista, R.A.; Teixeira, M.C.; Friml, J.; Sá-Correia, I.; Duque, P. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell 2013, 25, 901–926. [Google Scholar] [CrossRef] [Green Version]
- Juntawong, P.; Girke, T.; Bazin, J.; Bailey-Serres, J. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 111, E203–E212. [Google Scholar] [CrossRef] [Green Version]
- van Veen, H.; Vashisht, D.; Akman, M.; Girke, T.; Mustroph, A.; Reinen, E.; Hartman, S.; Kooiker, M.; van Tienderen, P.; Schranz, M.E.; et al. Transcriptomes of eight Arabidopsis thaliana accessions reveal core conserved, genotype- and organ-specific responses to flooding stress. Plant Physiol. 2016, 172, 668–689. [Google Scholar] [CrossRef]
- Drew, M.C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 223–250. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 2008, 59, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Voesenek, L.A.C.J.; Bailey-Serres, J. Flood adaptive traits and processes: An overview. New Phytol. 2015, 206, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, D.J.; Conde, J.V.; Berckhan, S.; Prasad, G.; Mendiondo, G.M.; Holdsworth, M.J. Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol. 2015, 169, 23–31. [Google Scholar] [CrossRef]
- Seok, H.Y.; Tarte, V.N.; Lee, S.Y.; Park, H.Y.; Moon, Y.H. Arabidopsis HRE1α, a splicing variant of AtERF73/HRE1, functions as a nuclear transcription activator in hypoxia response and root development. Plant Cell Rep. 2014, 33, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Licausi, F.; van Dongen, J.T.; Giuntoli, B.; Novi, G.; Santaniello, A.; Geigenberger, P.; Perata, P. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 2010, 62, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, D.J.; Lee, S.C.; Isa, N.M.; Gramuglia, S.; Fukao, T.; Bassel, G.W.; Correia, C.S.; Corbineau, F.; Theodoulou, F.L.; Bailey-Serres, J.; et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 2011, 479, 415–418. [Google Scholar] [CrossRef]
- Hao, Y.J.; Song, Q.X.; Chen, H.W.; Zou, H.F.; Wei, W.; Kang, X.S.; Ma, B.; Zhang, W.K.; Zhang, J.S.; Chen, S.Y. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta 2010, 232, 1033–1043. [Google Scholar] [CrossRef]
- Matsukura, S.; Mizoi, J.; Yoshida, T.; Todaka, D.; Ito, Y.; Maruyama, K.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol. Genet. Genom. 2010, 283, 185–196. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ryu, J.Y.; Baek, K.; Park, C.M. High temperature attenuates the gravitropism of inflorescence stems by inducing SHOOT GRAVITROPISM 5 alternative splicing in Arabidopsis. New Phytol. 2016, 209, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Gasch, P.; Fundinger, M.; Muller, J.T.; Lee, T.; Bailey-Serres, J.; Mustroph, A. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell 2016, 28, 160–180. [Google Scholar] [CrossRef] [Green Version]
- Capella, M.; Re, D.A.; Arce, A.L.; Chan, R.L. Plant homeodomain-leucine zipper I transcription factors exhibit different functional AHA motifs that selectively interact with TBP or/and TFIIB. Plant Cell Rep. 2014, 33, 955–967. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.; Zhang, C.; Ma, Q.; Joo, S.H.; Kim, S.K.; Xu, Z.; Chong, K. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE 2008, 3, e3521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, S.B.; Belachew, A.; Ma, S.F.; Young, M.; Ade, J.; Shen, Y.; Marion, C.M.; Holtan, H.E.; Bailey, A.; Stone, J.K.; et al. The EDLL motif: A potent plant transcriptional activation domain from AP2/ERF transcription factors. Plant J. 2012, 70, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Park, H.Y.; Seok, H.Y.; Park, B.K.; Kim, S.H.; Goh, C.H.; Lee, B.H.; Lee, C.H.; Moon, Y.H. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem. Biophys. Res. Commun. 2008, 375, 80–85. [Google Scholar] [CrossRef]
- Hofgen, R.; Willmitzer, L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988, 16, 9877. [Google Scholar] [CrossRef] [Green Version]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.Y.; Wu, J.; Miller, B.L. StuA is required for cell pattern formation in Aspergillus. Genes Dev. 1992, 6, 1770–1782. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.D.; Cho, Y.H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Seok, H.Y.; Nguyen, L.V.; Nguyen, D.V.; Lee, S.Y.; Moon, Y.H. Investigation of a novel salt stress-responsive pathway mediated by Arabidopsis DEAD-box RNA helicase gene AtRH17 using RNA-Seq analysis. Int. J. Mol. Sci. 2020, 21, 1595. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georges, N.T.; Walter, Z.; Siméon, F. Frequentist model averaging and applications to Bernoulli trials. Open J. Stat. 2016, 6, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.; Zimmermann, P. Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008, 2008, 420747. [Google Scholar] [CrossRef]
GO Term | Description | Number in Input List | p-Value |
---|---|---|---|
GO:0048511 | Rhythmic process | 5 | 1.14 × 10−3 |
GO:0009909 | Regulation of flower development | 5 | 1.85 × 10−3 |
GO:2000241 | Regulation of reproductive process | 6 | 1.90 × 10−3 |
GO:0009628 | Response to abiotic stimulus | 16 | 2.54 × 10−3 |
GO:0009416 | Response to light stimulus | 9 | 3.08 × 10−3 |
GO:0009314 | Response to radiation | 9 | 3.98 × 10−3 |
GO:0048831 | Regulation of shoot system development | 5 | 4.85 × 10−3 |
GO:0009639 | Response to red or far red light | 5 | 6.66 × 10−3 |
GO:0007623 | Circadian rhythm | 4 | 7.67 × 10−3 |
GO:0009719 | Response to endogenous stimulus | 13 | 1.46 × 10−2 |
GO:0009739 | Response to gibberellin | 4 | 1.49 × 10−2 |
GO:0010468 | Regulation of gene expression | 18 | 1.73 × 10−2 |
GO:0048580 | Regulation of postembryonic development | 5 | 2.43 × 10−2 |
GO:0048367 | Shoot system development | 8 | 2.94 × 10−2 |
GO:0010017 | Red or far-red light signaling pathway | 3 | 3.13 × 10−2 |
GO:0051171 | Regulation of nitrogen compound metabolic process | 17 | 3.21 × 10−2 |
GO:0071489 | Cellular response to red or far red light | 3 | 3.27 × 10−2 |
GO:0010605 | Negative regulation of macromolecule metabolic process | 6 | 3.60 × 10−2 |
GO:1901700 | Response to oxygen-containing compound | 11 | 3.64 × 10−2 |
GO:0010033 | Response to organic substance | 13 | 4.12 × 10−2 |
GO:0019438 | Aromatic compound biosynthetic process | 18 | 4.27 × 10−2 |
GO:0033993 | Response to lipid | 7 | 4.52 × 10−2 |
GO:0009892 | Negative regulation of metabolic process | 6 | 4.75 × 10−2 |
GO:2000112 | Regulation of cellular macromolecule biosynthetic process | 16 | 4.86 × 10−2 |
GO:0010556 | Regulation of macromolecule biosynthetic process | 16 | 4.99 × 10−2 |
GO Term | Description | Number in Input List | p-Value |
---|---|---|---|
GO:0009636 | Response to toxic substance | 17 | 2.52 × 10−11 |
GO:1901700 | Response to oxygen-containing compound | 60 | 8.75 × 10−9 |
GO:0019748 | Secondary metabolic process | 29 | 2.76 × 10−7 |
GO:0009404 | Toxin metabolic process | 10 | 6.78 × 10−7 |
GO:0009407 | Toxin catabolic process | 9 | 1.16 × 10−6 |
GO:0090487 | Secondary metabolite catabolic process | 9 | 1.16 × 10−6 |
GO:0001101 | Response to acid chemical | 43 | 6.89 × 10−6 |
GO:0051707 | Response to another organism | 44 | 9.27 × 10−6 |
GO:0043207 | Response to external biotic stimulus | 44 | 9.59 × 10−6 |
GO:0009607 | Response to biotic stimulus | 45 | 1.29 × 10−5 |
GO:0009605 | Response to external stimulus | 53 | 1.49 × 10−5 |
GO:0006749 | Glutathione metabolic process | 9 | 2.63 × 10−5 |
GO:0034614 | Cellular response to reactive oxygen species | 8 | 2.78 × 10−5 |
GO:0071555 | Cell wall organization | 25 | 4.92 × 10−5 |
GO:1901698 | Response to nitrogen compound | 17 | 5.02 × 10−5 |
GO:0006952 | Defense response | 50 | 8.59 × 10−5 |
GO:0045229 | External encapsulating structure organization | 25 | 1.29 × 10−4 |
GO:0002213 | Defense response to insect | 5 | 2.30 × 10−4 |
GO:0071554 | Cell wall organization or biogenesis | 28 | 2.71 × 10−4 |
GO:0010039 | Response to iron ion | 7 | 3.12 × 10−4 |
GO:0071732 | Cellular response to nitric oxide | 5 | 3.55 × 10−4 |
GO:0006790 | Sulfur compound metabolic process | 19 | 3.91 × 10−4 |
GO:0010033 | Response to organic substance | 57 | 3.93 × 10−4 |
GO:0006575 | Cellular modified amino acid metabolic process | 10 | 3.94 × 10−4 |
GO:0010035 | Response to inorganic substance | 32 | 4.05 × 10−4 |
GO Term | Description | Number in Input List | p-Value |
---|---|---|---|
GO:0010033 | Response to organic substance | 14 | 1.57 × 10−4 |
GO:0009719 | Response to endogenous stimulus | 13 | 1.61 × 10−4 |
GO:1901700 | Response to oxygen-containing compound | 12 | 2.36 × 10−4 |
GO:0009725 | Response to hormone | 11 | 1.59 × 10−3 |
GO:0001101 | Response to acid chemical | 9 | 2.49 × 10−3 |
GO:0014070 | Response to organic cyclic compound | 5 | 7.19 × 10−3 |
GO:0009751 | Response to salicylic acid | 4 | 9.32 × 10−3 |
GO:0009753 | Response to jasmonic acid | 4 | 9.81 × 10−3 |
GO:0006355 | Regulation of transcription, DNA-template | 12 | 1.29 × 10−2 |
GO:2001141 | Regulation of RNA biosynthetic process | 12 | 1.30 × 10−2 |
GO:1903506 | Regulation of nucleic acid-templated transcription | 12 | 1.30 × 10−2 |
GO:0051252 | Regulation of RNA metabolic process | 12 | 1.46 × 10−2 |
GO:0071229 | Cellular response to acid chemical | 5 | 1.61 × 10−2 |
GO:0019219 | Regulation of nucleobase-containing compound metabolic process | 12 | 1.70 × 10−2 |
GO:0043161 | Proteasome-mediated ubiquitin-dependent protein catabolic process | 5 | 1.90 × 10−2 |
GO:0097659 | Nucleic acid-templated transcription | 12 | 1.92 × 10−2 |
GO:0010498 | Proteasomal protein catabolic process | 5 | 1.93 × 10−2 |
GO:0032774 | RNA biosynthetic process | 12 | 1.95 × 10−2 |
GO:0071310 | Cellular response to organic substance | 7 | 1.96 × 10−2 |
GO:0033993 | Response to lipid | 6 | 2.05 × 10−2 |
GO:1901698 | Response to nitrogen compound | 4 | 2.22 × 10−2 |
GO:2000112 | Regulation of cellular macromolecule biosynthetic process | 12 | 2.57 × 10−2 |
GO:0010556 | Regulation of macromolecule biosynthetic process | 12 | 2.63 × 10−2 |
GO:0051171 | Regulation of nitrogen compound metabolic process | 12 | 3.19 × 10−2 |
GO:0032870 | Cellular response to hormone stimulus | 6 | 3.36 × 10−2 |
GO Term | Description | Number in Input List | p-Value |
---|---|---|---|
GO:0009628 | Response to abiotic stimulus | 37 | 3.49 × 10−5 |
GO:0009719 | Response to endogenous stimulus | 33 | 8.07 × 10−5 |
GO:0010033 | Response to organic substance | 35 | 2.57 × 10−4 |
GO:0009725 | Response to hormone | 30 | 3.11 × 10−4 |
GO:0009061 | Anaerobic respiration | 4 | 3.65 × 10−4 |
GO:1901700 | Response to oxygen-containing compound | 27 | 1.42 × 10−3 |
GO:0009664 | Plant-type cell wall organization | 7 | 2.97 × 10−3 |
GO:0001101 | Response to acid chemical | 21 | 4.14 × 10−3 |
GO:0006979 | Response to oxidative stress | 12 | 4.59 × 10−3 |
GO:0032870 | Cellular response to hormone stimulus | 17 | 5.09 × 10−3 |
GO:0009416 | Response to light stimulus | 15 | 5.70 × 10−3 |
GO:0071495 | Cellular response to endogenous stimulus | 17 | 6.31 × 10−3 |
GO:0000160 | Phosphorelay signal transduction system | 8 | 6.31 × 10−3 |
GO:0009314 | Response to radiation | 15 | 8.13 × 10−3 |
GO:0009741 | Response to brassinosteroid | 5 | 8.15 × 10−3 |
GO:0042744 | Hydrogen peroxide catabolic process | 5 | 8.48 × 10−3 |
GO:0071669 | Plant-type cell wall organization or biogenesis | 8 | 9.75 × 10−3 |
GO:0071369 | Cellular response to ethylene stimulus | 7 | 1.16 × 10−2 |
GO:0071555 | Cell wall organization | 12 | 1.21 × 10−2 |
GO:0010411 | Xyloglucan metabolic process | 4 | 1.33 × 10−2 |
GO:0072593 | Reactive oxygen species metabolic process | 6 | 1.34 × 10−2 |
GO:0042743 | Hydrogen peroxide metabolic process | 5 | 1.35 × 10−2 |
GO:0031328 | Positive regulation of cellular biosynthetic process | 10 | 1.38 × 10−2 |
GO:0009755 | Hormone-mediated signaling pathway | 15 | 1.42 × 10−2 |
GO:0009891 | Positive regulation of biosynthetic process | 10 | 1.58 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seok, H.-Y.; Ha, J.; Lee, S.-Y.; Bae, H.; Moon, Y.-H. Two Alternative Splicing Variants of AtERF73/HRE1, HRE1α and HRE1β, Have Differential Transactivation Activities in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 6984. https://doi.org/10.3390/ijms21196984
Seok H-Y, Ha J, Lee S-Y, Bae H, Moon Y-H. Two Alternative Splicing Variants of AtERF73/HRE1, HRE1α and HRE1β, Have Differential Transactivation Activities in Arabidopsis. International Journal of Molecular Sciences. 2020; 21(19):6984. https://doi.org/10.3390/ijms21196984
Chicago/Turabian StyleSeok, Hye-Yeon, Jimin Ha, Sun-Young Lee, Hyoungjoon Bae, and Yong-Hwan Moon. 2020. "Two Alternative Splicing Variants of AtERF73/HRE1, HRE1α and HRE1β, Have Differential Transactivation Activities in Arabidopsis" International Journal of Molecular Sciences 21, no. 19: 6984. https://doi.org/10.3390/ijms21196984
APA StyleSeok, H. -Y., Ha, J., Lee, S. -Y., Bae, H., & Moon, Y. -H. (2020). Two Alternative Splicing Variants of AtERF73/HRE1, HRE1α and HRE1β, Have Differential Transactivation Activities in Arabidopsis. International Journal of Molecular Sciences, 21(19), 6984. https://doi.org/10.3390/ijms21196984