Electroconvulsive Shock Does Not Impair the Reconsolidation of Cued and Contextual Pavlovian Threat Memory
Abstract
:1. Introduction
2. Results
2.1. ECS Does Not Interfere with the Reconsolidation of Cued Auditory Fear Memory in Male and Female Rats
2.2. ECS Does Not Interfere with the Reconsolidation of Context Fear Memory in Male and Female Rats
2.3. ECS May Modestly Interfere with the Consolidation of Context Fear Extinction Memory
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Behavior
- Training: Animals were trained in a distinct contextual environment (training context) characterized by blue walls, bright lighting, and a grid floor, cleaned with 70% isopropanol before each round. After a 3 min acclimation period (pre-training), animals received a single conditioning trial that consisted of a 30 s, 5 kHz, 75 dB tone co-terminating with a 1 s, 0.75 mA foot shock. The animals remained in the conditioning context for another minute before being returned to their home cages.
- Context memory reactivation: Memory was reactivated by reintroducing the animals to the conditioning context for 3 min.
- Cued memory reactivation: Memory was reactivated by placing the animals in a novel environment characterized by clear walls, red lighting, textured floor, and a vanilla scent (testing context). For experiments using the typical reactivation conditions, after a 2 min acclimation period (pre-tone), animals were given one presentation of the conditioned stimulus (30 s, 5 kHz, 75 dB tone), and removed from the chamber after 30 s. For the experiment using a shorter reactivation session, animals were given a 10 s presentation of the tone and were removed from the chamber immediately.
- PR-LTM Test: For contextual memory, animals were returned to the training context for 5 min, and memory strength was determined by the amount of time spent engaged in freezing behavior. For cued memory, animals were placed in the testing context and were given 5 equally interspaced CS presentations delivered after a 150 s acclimation period. The percentage of time spent freezing during these five tones was averaged.
- Context extinction: Extinction trials consisted of 10 min exposures to the context, and freezing was averaged for the duration of the trial. To determine the changes in freezing from baseline levels, an “extinction score” was calculated by subtracting pre-training freezing from each day of extinction (ExtX—pre-training).
- Statistical analyses: One-way ANOVA, repeated-measures ANOVA, and unpaired t-tests were used to calculate the statistical significance between groups where appropriate. Post hoc analyses were carried out using uncorrected Fisher’s Least Significant Difference LSD.
4.3. Electroconvulsive Shock (ECS)
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ECS | Electroconvulsive shock |
ECT | Electroconvulsive therapy |
SEM | Standard error of the mean |
CS | Conditioned Stimulus |
References
- Nader, K.; Schafe, G.E.; Le Doux, J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 2000, 406, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Tronson, N.C.; Taylor, J.R. Molecular mechanisms of memory reconsolidation. Nat. Rev. Neurosci. 2007, 8, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Alberini, C.M. The role of reconsolidation and the dynamic process of long-term memory formation and storage. Front. Behav. Neurosci. 2011, 5, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.L. Reconsolidation: Maintaining memory relevance. Trends Neurosci. 2009, 32, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarome, T.J.; Werner, C.T.; Kwapis, J.L.; Helmstetter, F.J. Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala. PLoS ONE 2011, 6, e24349. [Google Scholar] [CrossRef] [PubMed]
- Hong, I.; Kim, J.; Kim, J.; Lee, S.; Ko, H.G.; Nader, K.; Kaang, B.K.; Tsien, R.W.; Choi, S. AMPA receptor exchange underlies transient memory destabilization on retrieval. Proc. Natl. Acad. Sci. USA 2013, 110, 8218–8223. [Google Scholar] [CrossRef] [Green Version]
- Rao-Ruiz, P.; Rotaru, D.C.; van der Loo, R.J.; Mansvelder, H.D.; Stiedl, O.; Smit, A.B.; Spijker, S. Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear. Nat. Neurosci. 2011, 14, 1302–1308. [Google Scholar] [CrossRef] [Green Version]
- Finnie, P.S.; Nader, K. The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci. Biobehav. Rev. 2012, 36, 1667–1707. [Google Scholar] [CrossRef]
- Pedreira, M.E.; Perez-Cuesta, L.M.; Maldonado, H. Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: Protein synthesis requirement and mediation by NMDA-type glutamatergic receptors. J. Neurosci. 2002, 22, 8305–8311. [Google Scholar] [CrossRef] [Green Version]
- Salinska, E. The role of group I metabotropic glutamate receptors in memory consolidation and reconsolidation in the passive avoidance task in 1-day-old chicks. Neurochem. Int. 2006, 48, 447–452. [Google Scholar] [CrossRef]
- Lagasse, F.; Devaud, J.M.; Mery, F. A switch from cycloheximide-resistant consolidated memory to cycloheximide-sensitive reconsolidation and extinction in Drosophila. J. Neurosci. 2009, 29, 2225–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felsenberg, J.; Barnstedt, O.; Cognigni, P.; Lin, S.; Waddell, S. Re-evaluation of learned information in Drosophila. Nature 2017, 544, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Milton, A.L.; Lee, J.L.; Everitt, B.J. Reconsolidation of appetitive memories for both natural and drug reinforcement is dependent on {beta}-adrenergic receptors. Learn. Mem. 2008, 15, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milton, A.L.; Everitt, B.J. The psychological and neurochemical mechanisms of drug memory reconsolidation: Implications for the treatment of addiction. Eur. J. Neurosci. 2010, 31, 2308–2319. [Google Scholar] [CrossRef]
- Taylor, J.R.; Olausson, P.; Quinn, J.J.; Torregrossa, M.M. Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 2009, 56 (Suppl. 1), 186–195. [Google Scholar] [CrossRef] [Green Version]
- Pitman, R.K. Will reconsolidation blockade offer a novel treatment for posttraumatic stress disorder? Front. Behav. Neurosci. 2011, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Suris, A.; Smith, J.; Powell, C.; North, C.S. Interfering with the reconsolidation of traumatic memory: Sirolimus as a novel agent for treating veterans with posttraumatic stress disorder. Ann. Clin. Psychiatry 2013, 25, 33–40. [Google Scholar]
- Misanin, J.R.; Miller, R.R.; Lewis, D.J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 1968, 160, 554–555. [Google Scholar] [CrossRef]
- Dawson, R.G.; McGaugh, J.L. Electroconvulsive shock effects on a reactivated memory trace: Further examination. Science 1969, 166, 525–527. [Google Scholar] [CrossRef]
- Debiec, J.; Ledoux, J.E. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 2004, 129, 267–272. [Google Scholar] [CrossRef]
- Taubenfeld, S.M.; Riceberg, J.S.; New, A.S.; Alberini, C.M. Preclinical assessment for selectively disrupting a traumatic memory via postretrieval inhibition of glucocorticoid receptors. Biol. Psychiatry 2009, 65, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikzad, S.; Vafaei, A.A.; Rashidy-Pour, A.; Haghighi, S. Systemic and intrahippocampal administrations of the glucocorticoid receptor antagonist RU38486 impairs fear memory reconsolidation in rats. Stress 2011, 14, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Bustos, S.G.; Giachero, M.; Maldonado, H.; Molina, V.A. Previous stress attenuates the susceptibility to Midazolam’s disruptive effect on fear memory reconsolidation: Influence of pre-reactivation D-cycloserine administration. Neuropsychopharmacology 2010, 35, 1097–1108. [Google Scholar] [CrossRef]
- Wood, N.E.; Rosasco, M.L.; Suris, A.M.; Spring, J.D.; Marin, M.F.; Lasko, N.B.; Goetz, J.M.; Fischer, A.M.; Orr, S.P.; Pitman, R.K. Pharmacological blockade of memory reconsolidation in posttraumatic stress disorder: Three negative psychophysiological studies. Psychiatry Res. 2015, 225, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Schroyens, N.; Alfei, J.M.; Schnell, A.E.; Luyten, L.; Beckers, T. Limited replicability of drug-induced amnesia after contextual fear memory retrieval in rats. Neurobiol. Learn. Mem. 2019, 166, 107105. [Google Scholar] [CrossRef]
- Pitman, R.K.; Milad, M.R.; Igoe, S.A.; Vangel, M.G.; Orr, S.P.; Tsareva, A.; Gamache, K.; Nader, K. Systemic mifepristone blocks reconsolidation of cue-conditioned fear; propranolol prevents this effect. Behav. Neurosci. 2011, 125, 632–638. [Google Scholar] [CrossRef]
- Radulovic, J.; Tronson, N.C. Protein synthesis inhibitors, gene superinduction and memory: Too little or too much protein? Neurobiol. Learn. Mem. 2008, 89, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Maren, S. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 2001, 24, 897–931. [Google Scholar] [CrossRef] [Green Version]
- Lyford, G.L.; Yamagata, K.; Kaufmann, W.E.; Barnes, C.A.; Sanders, L.K.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Lanahan, A.A.; Worley, P.F. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 1995, 14, 433–445. [Google Scholar] [CrossRef] [Green Version]
- Myers, K.M.; Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 2007, 12, 120–150. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.B.; Doran, J.M.; Sippel, L.M.; Harpaz-Rotem, I. Fear extinction and memory reconsolidation as critical components in behavioral treatment for posttraumatic stress disorder and potential augmentation of these processes. Neurosci. Lett. 2017, 649, 170–175. [Google Scholar] [CrossRef]
- Luttges, M.W.; McGaugh, J.L. Permanence of retrograde amnesia produced by electroconvulsive shock. Science 1967, 156, 408–410. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, J.L.; Landfield, P.W. Delayed development of amnesia following electroconvulsive shock. Physiol. Behav. 1970, 5, 1109–1113. [Google Scholar] [CrossRef]
- Quartermain, D.; Paolino, R.M.; Miller, N.E. A brief temporal gradient of retrograde amnesia independent of situational change. Science 1965, 149, 1116–1118. [Google Scholar] [CrossRef]
- Sprott, R.L. Retrograde amnesia in two strains of mice. Psychol. Rep. 1966, 19, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Greenough, W.T.; Schwitzgebel, R.L. Effect of a single ECS on extinction of a bar-press. Psychol. Rep. 1966, 19, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Terry, L.; Holliday, J.H. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace: A replication. Psychon. Sci 1972, 29, 137–138. [Google Scholar] [CrossRef]
- Lewis, D.J.; Bregman, N.J.; Mahan, J.J. Cue-dependent amnesia in rats. J. Comp. Physiol. Psychol. 1972, 81, 243–247. [Google Scholar] [CrossRef]
- Lewis, D.J.; Bregman, N.J. Source of cues for cue-dependent amnesia in rats. J. Comp. Physiol. Psychol. 1973, 85, 421–426. [Google Scholar] [CrossRef]
- Squire, L.R.; Slater, P.C.; Chace, P.M. Reactivation of recent or remote memory before electroconvulsive therapy does not produce retrograde amnesia. Behav. Biol. 1976, 18, 335–343. [Google Scholar] [CrossRef]
- Lu, T.J.; Lu, R.B.; Hong, J.S.; Yang, Y.K.; Yu, L. Impairment of an electroconvulsive stimulus on reconsolidation of memories established by conditioning. Chin. J. Physiol. 2013, 56, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Kroes, M.C.; Tendolkar, I.; van Wingen, G.A.; van Waarde, J.A.; Strange, B.A.; Fernandez, G. An electroconvulsive therapy procedure impairs reconsolidation of episodic memories in humans. Nat. Neurosci. 2014, 17, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Kesner, R.P.; D’Andrea, J.A. Electroconvulsive shock disrupts both information storage and retrieval. Physiol. Behav. 1971, 7, 73–76. [Google Scholar] [CrossRef]
- Newton, S.S.; Collier, E.F.; Hunsberger, J.; Adams, D.; Terwilliger, R.; Selvanayagam, E.; Duman, R.S. Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenic factors. J. Neurosci. 2003, 23, 10841–10851. [Google Scholar] [CrossRef]
- Altar, C.A.; Laeng, P.; Jurata, L.W.; Brockman, J.A.; Lemire, A.; Bullard, J.; Bukhman, Y.V.; Young, T.A.; Charles, V.; Palfreyman, M.G. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J. Neurosci. 2004, 24, 2667–2677. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Danladi, J.; Wegener, G.; Madsen, T.M.; Nyengaard, J.R. Sustained Ultrastructural Changes in Rat Hippocampal Formation After Repeated Electroconvulsive Seizures. Int. J. Neuropsychopharmacol. 2020, 23, 446–458. [Google Scholar] [CrossRef] [Green Version]
- Imoto, Y.; Segi-Nishida, E.; Suzuki, H.; Kobayashi, K. Rapid and stable changes in maturation-related phenotypes of the adult hippocampal neurons by electroconvulsive treatment. Mol. Brain 2017, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Chawla, M.K.; Gray, D.T.; Nguyen, C.; Dhaliwal, H.; Zempare, M.; Okuno, H.; Huentelman, M.J.; Barnes, C.A. Seizure-Induced Arc mRNA Expression Thresholds in Rat Hippocampus and Perirhinal Cortex. Front. Syst. Neurosci. 2018, 12, 53. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Warner-Schmidt, J.; Duman, R.S.; Gage, F.H. Electroconvulsive seizure promotes spine maturation in newborn dentate granule cells in adult rat. Dev. Neurobiol. 2012, 72, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Jarome, T.J.; Ferrara, N.C.; Kwapis, J.L.; Helmstetter, F.J. Contextual Information Drives the Reconsolidation-Dependent Updating of Retrieved Fear Memories. Neuropsychopharmacology 2015, 40, 3044–3052. [Google Scholar] [CrossRef]
- Dyrvig, M.; Hansen, H.H.; Christiansen, S.H.; Woldbye, D.P.; Mikkelsen, J.D.; Lichota, J. Epigenetic regulation of Arc and c-Fos in the hippocampus after acute electroconvulsive stimulation in the rat. Brain Res. Bull. 2012, 88, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.L.; Everitt, B.J.; Thomas, K.L. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 2004, 304, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Meloni, E.G.; Carlezon, W.A., Jr.; Milad, M.R.; Pitman, R.K.; Nader, K.; Bolshakov, V.Y. Learning and reconsolidation implicate different synaptic mechanisms. Proc. Natl. Acad. Sci. USA 2013, 110, 4798–4803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploski, J.E.; Newton, S.S.; Duman, R.S. Electroconvulsive seizure-induced gene expression profile of the hippocampus dentate gyrus granule cell layer. J. Neurochem. 2006, 99, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.S.; Jeong, H.G.; Chung, H.J. Electroconvulsive Seizures in Rats and Fractionation of Their Hippocampi to Examine Seizure-induced Changes in Postsynaptic Density Proteins. J. Vis. Exp. 2017. [Google Scholar] [CrossRef] [PubMed]
Year | Subject | Learning Model | Amnesia? | Reference |
---|---|---|---|---|
1968 | Rat | Auditory fear conditioning, memory tested using appetitive (drinking) task | Yes | [18] |
1969 | Rat | Auditory fear conditioning, memory tested using appetitive (drinking) task | No | [19] |
1972 | Rat | Auditory fear conditioning, memory tested using appetitive (drinking) task | Yes | [37] |
1972 | Rat | K maze (spatial memory) | Yes | [38] |
1973 | Rat | K maze (spatial memory) | Yes | [39] |
1976 | Depressed patients | Item recognition memory, remote memory recall | No | [40] |
2013 | Mice | Cocaine/Food CPP, Passive Avoidance | Yes | [41] |
2014 | Depressed patients | Recall of emotionally aversive slide-show stories | Yes | [42] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elahi, H.; Hong, V.; Ploski, J.E. Electroconvulsive Shock Does Not Impair the Reconsolidation of Cued and Contextual Pavlovian Threat Memory. Int. J. Mol. Sci. 2020, 21, 7072. https://doi.org/10.3390/ijms21197072
Elahi H, Hong V, Ploski JE. Electroconvulsive Shock Does Not Impair the Reconsolidation of Cued and Contextual Pavlovian Threat Memory. International Journal of Molecular Sciences. 2020; 21(19):7072. https://doi.org/10.3390/ijms21197072
Chicago/Turabian StyleElahi, Hajira, Veronica Hong, and Jonathan E. Ploski. 2020. "Electroconvulsive Shock Does Not Impair the Reconsolidation of Cued and Contextual Pavlovian Threat Memory" International Journal of Molecular Sciences 21, no. 19: 7072. https://doi.org/10.3390/ijms21197072
APA StyleElahi, H., Hong, V., & Ploski, J. E. (2020). Electroconvulsive Shock Does Not Impair the Reconsolidation of Cued and Contextual Pavlovian Threat Memory. International Journal of Molecular Sciences, 21(19), 7072. https://doi.org/10.3390/ijms21197072