Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,584)

Search Parameters:
Keywords = ECS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1152 KB  
Article
From Isolation to Genomics: Characterization of Aspergillus uvarum HT4 as a Novel Producer of Extracellular Tannase
by Erika Arbildi, Karen Ovsejevi, Diego Roldán, Rosario Durán, Magdalena Portela, Gabriela Garmendia and Silvana Vero
J. Fungi 2025, 11(10), 722; https://doi.org/10.3390/jof11100722 - 7 Oct 2025
Abstract
Tannases (tannin acyl hydrolases, EC 3.1.1.20) are enzymes of industrial interest due to their ability to hydrolyze hydrolyzable tannins into bioactive compounds like gallic acid. In this study fungal strains capable of producing extracellular tannase were isolated and identified. From tannin-rich substrates, 24 [...] Read more.
Tannases (tannin acyl hydrolases, EC 3.1.1.20) are enzymes of industrial interest due to their ability to hydrolyze hydrolyzable tannins into bioactive compounds like gallic acid. In this study fungal strains capable of producing extracellular tannase were isolated and identified. From tannin-rich substrates, 24 fungal isolates were obtained, of which 17 showed tannase activity. Molecular identification based on calmodulin gene sequencing identified three species of tannase-producing black aspergilli: Aspergillus luchuensis, A. niger (formerly A. welwitschiae), and A. uvarum. The isolate A. uvarum HT4 exhibited the highest extracellular tannase activity (182 U/mL) and was selected for further study. Whole-genome sequencing of HT4 revealed 15 putative tannase genes, most sharing high identity with A. uvarum CBS 121591. Two divergent genes appeared to be acquired via horizontal gene transfer from Aspergillus brunneoviolaceus and Penicillium angulare. Proteomic analysis of the secretome confirmed the expression of two extracellular tannases. The enzyme showed optimal activity at pH 5.0–6.0 and 40–50 °C. Secretome analysis revealed hydrolytic enzymes typical of saprophytic fungi in lignocellulose-rich environments. Importantly, no biosynthetic gene clusters of major mycotoxins were detected, supporting the biosafety of HT4 for industrial applications. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

15 pages, 574 KB  
Review
Guide to the Effects of Vibration on Health—Quantitative or Qualitative Occupational Health and Safety Prevention Guidance? A Scoping Review
by Eckardt Johanning and Alice Turcot
Vibration 2025, 8(4), 63; https://doi.org/10.3390/vibration8040063 - 6 Oct 2025
Abstract
This systematic review examined the health risk assessment methods of studies of whole-body vibration exposure from occupational vehicles or machines utilizing the International Standard ISO 2631-1 (1997) and/or the European Machine Directive 2002/44. This review found inconsistent reporting of measurement parameters in studies [...] Read more.
This systematic review examined the health risk assessment methods of studies of whole-body vibration exposure from occupational vehicles or machines utilizing the International Standard ISO 2631-1 (1997) and/or the European Machine Directive 2002/44. This review found inconsistent reporting of measurement parameters in studies on whole-body vibration (WBV) exposure. Although many authors treat the ISO 2631-1 HGCZ as a medical health standard with defined threshold levels, the epidemiological evidence for these limits is unclear. Similarly, the EU Directive offers more comprehensive risk management guidance, but the numeric limits are equal without supporting scientific evidence. Both guidelines likely represent the prevailing societal and interdisciplinary consensus at the time. Authors note discrepancies between international and national standards and adverse WBV exposure outcomes are reported below given boundaries. Future publications should report all relevant parameters from ISO 2631-1 and clearly state study limitations, exercising caution when applying ISO 2631-1 HGCZ in health and safety assessments and considering different susceptibility of diverse populations. We advise reducing WBV exposure to the lowest technically feasible limits wherever possible and applying the precautionary principle with attention to individual differences, instead of depending solely on numeric limits. Full article
18 pages, 3967 KB  
Article
Enhanced Piezoelectric and Ferroelectric Properties in the Lead-Free [(BiFeO3)m/(SrTiO3)n]p Multilayers by Varying the Thickness Ratio r = n/m and Periodicity p
by Jonathan Vera Montes, Francisco J. Flores-Ruiz, Carlos A. Hernández-Gutiérrez, Enrique Camps, Enrique Campos-González, Gonzalo Viramontes Gamboa, Fernando Ramírez-Zavaleta and Dagoberto Cardona Ramírez
Coatings 2025, 15(10), 1170; https://doi.org/10.3390/coatings15101170 - 6 Oct 2025
Abstract
Multilayer heterostructures of [(BiFeO3)m/(SrTiO3)n]p were synthesized on ITO-coated quartz substrates via pulsed laser deposition, with varying thickness ratios (r = n/m) and periodicities (p = 1–3). Structural, electrical, and piezoelectric properties were systematically [...] Read more.
Multilayer heterostructures of [(BiFeO3)m/(SrTiO3)n]p were synthesized on ITO-coated quartz substrates via pulsed laser deposition, with varying thickness ratios (r = n/m) and periodicities (p = 1–3). Structural, electrical, and piezoelectric properties were systematically investigated using X-ray diffraction, AFM, and PFM. The BiFeO3 layers crystallized in a distorted rhombohedral phase (R3c), free of secondary phases. Compared to single-layer BiFeO3 films, the multilayers exhibited markedly lower leakage current densities and enhanced piezoelectric response. Electrical conduction transitioned from space-charge-limited current at low fields (E < 100 kV/cm) to Fowler–Nordheim tunneling at high fields (E > 100 kV/cm). Optimal performance was achieved for r = 0.30, p = 1, with minimal leakage (J = 8.64 A/cm2 at E = 400 kV/cm) and a peak piezoelectric coefficient (d33 = 55.55 pm/V). The lowest coercive field (Ec = 238 kV/cm) occurred in the configuration r = 0.45, p = 3. Saturated hysteresis loops confirmed stable ferroelectric domains. These findings demonstrate that manipulating layer geometry in [(BiFeO3)m/(SrTiO3)n]p stacks significantly enhances functional properties, offering a viable path toward efficient, lead-free piezoelectric nanodevices. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures Deposition Techniques)
Show Figures

Graphical abstract

27 pages, 647 KB  
Article
Supply Chain Ecosystem for Smart Sustainable City Multifloor Manufacturing Cluster: Knowledge Management Based on Open Innovation and Energy Conservation Policies
by Tygran Dzhuguryan, Kinga Kijewska, Stanisław Iwan and Karina Dzhuguryan
Sustainability 2025, 17(19), 8882; https://doi.org/10.3390/su17198882 - 6 Oct 2025
Abstract
City manufacturing (CM) is a key concept in smart sustainable cities. City multifloor manufacturing clusters (CMFMCs) are an integral part of large urban areas. Although smart sustainable CMFMCs attract growing attention, a major research gap remains. It concerns how different actors drive innovation [...] Read more.
City manufacturing (CM) is a key concept in smart sustainable cities. City multifloor manufacturing clusters (CMFMCs) are an integral part of large urban areas. Although smart sustainable CMFMCs attract growing attention, a major research gap remains. It concerns how different actors drive innovation within their supply chain ecosystems (SCEs). To address this gap, this paper examines the SCE of a CMFMC and knowledge management (KM) mechanisms of open innovation (OI), considering energy conservation (EC) policies. This qualitative study expands the understanding of the spatial configuration and key actors of the SCE of a CMFMC. It also analyses the role of the University Centre for Projects and Innovation (UCPI) as a physical orchestrator. The UCPI fosters innovation activity through KM based on OI and EC. Our findings contribute to the SCE literature by emphasizing the potential of its key actors. We show that an integrated approach to KM based on OI and EC enhances innovation in CMFMCs. This supports the sustainable development of smart cities. Full article
15 pages, 4716 KB  
Review
Coumarin–Dithiocarbamate Derivatives as Biological Agents
by Piotr Wiliński, Aleksander Kurzątkowski and Kinga Ostrowska
Int. J. Mol. Sci. 2025, 26(19), 9667; https://doi.org/10.3390/ijms26199667 - 3 Oct 2025
Abstract
Coumarin derivatives, whether natural or synthetic, have attracted considerable interest from medicinal chemists due to their versatile biological properties. Their appealing pharmacological activities—such as anticancer, anti-inflammatory, neuroprotective, anticoagulant, and antioxidant effects—combined with the ease of their synthesis and the ability to introduce chemical [...] Read more.
Coumarin derivatives, whether natural or synthetic, have attracted considerable interest from medicinal chemists due to their versatile biological properties. Their appealing pharmacological activities—such as anticancer, anti-inflammatory, neuroprotective, anticoagulant, and antioxidant effects—combined with the ease of their synthesis and the ability to introduce chemical modifications at multiple positions have made them a widely explored class of compounds. In the scientific literature, there are many examples. On the other hand, dithiocarbamates, originally employed as pesticides and fungicides in agriculture, have recently emerged as potential therapeutic agents for the treatment of serious diseases such as cancer and microbial infections. Moreover, dithiocarbamates bearing diverse organic functionalities have demonstrated significant antifungal properties against resistant phytopathogenic fungi, presenting a promising approach to combat the growing global issue of fungal resistance. Dithiocarbamates linked to coumarin derivatives have been shown to exhibit cytotoxic activity against various human cancer cell lines, including MGC-803 (gastric), MCF-7 (breast), PC-3 (prostate), EC-109 (esophageal), H460 (non-small cell lung), HCCLM-7 (hepatocellular carcinoma), HeLa (cervical carcinoma), MDA-MB-435S (mammary adenocarcinoma), SW480 (colon carcinoma), and Hep-2 (laryngeal carcinoma). Numerous studies have revealed that the inclusion of a dithiocarbamate moiety can provide central nervous system (CNS) activity, particularly through inhibitory potency and selectivity toward acetylcholinesterase (AChE) and monoamine oxidases (MAO-A and MAO-B). Recently, it has been reported that coumarin–dithiocarbamate derivatives exhibit α-glucosidase inhibitory effects and also possess promising antimicrobial activity. This study presents an overview of recent progress in the chemistry of coumarin–dithiocarbamate derivatives, with a focus on their biological activity. Previous review papers focused on coumarin derivatives as multitarget compounds for neurodegenerative diseases and described various types of compounds, with dithiocarbamate derivatives representing only a small part of them. Our work deals exclusively with coumarin dithiocarbamates and their biological activity. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

19 pages, 7612 KB  
Article
Co-Exposure to Glyphosate and Polyethylene Microplastic Affects Their Toxicity to Chlorella vulgaris: Implications for Algal Health and Aquatic Risk
by Magdalena Podbielska, Małgorzata Kus-Liśkiewicz, Dariusz Płoch and Ewa Szpyrka
Molecules 2025, 30(19), 3972; https://doi.org/10.3390/molecules30193972 - 3 Oct 2025
Abstract
Polyethylene microplastics (PE-MPs) and glyphosate (GLY) are widespread aquatic contaminants, but their combined effects on microalgae remain poorly understood. This study assessed the individual and joint toxicity of GLY and PE-MPs to the model microalga Chlorella vulgaris. Acute (3-day) and chronic (7-day) [...] Read more.
Polyethylene microplastics (PE-MPs) and glyphosate (GLY) are widespread aquatic contaminants, but their combined effects on microalgae remain poorly understood. This study assessed the individual and joint toxicity of GLY and PE-MPs to the model microalga Chlorella vulgaris. Acute (3-day) and chronic (7-day) exposures were performed using GLY at 1–40 mg/L, alone or combined with PE-MPs (10 mg/L). A four-parameter log-logistic (4PL) model was applied to estimate median effect concentrations (EC50). After 72 h, the EC50 values were 9.77 mg/L for the GLY single system and 2.31 mg/L for the GLY-PE combined system, confirming enhanced toxicity in combined exposures. Co-exposure reduced pigment levels (chlorophyll a, chlorophyll b, and carotenoids) by up to 65% and significantly increased oxidative stress markers, including reactive oxygen species production and malondialdehyde accumulation, compared with single treatments. Antioxidant enzymes (superoxide dismutase and catalase) showed concentration- and time-dependent responses, indicating activation of cellular defense mechanisms. Scanning Electron Microscopy revealed PE-induced aggregation and structural damage to algal cells, particularly at higher GLY concentrations. These findings demonstrate that PE-MPs can amplify the toxic effects of GLY on microalgae and highlight the need for further studies at environmentally relevant concentrations and with different polymer types. Full article
(This article belongs to the Special Issue Chemical Analysis of Pollutant in the Environment)
Show Figures

Figure 1

24 pages, 8041 KB  
Article
Stable Water Isotopes and Machine Learning Approaches to Investigate Seawater Intrusion in the Magra River Estuary (Italy)
by Marco Sabattini, Francesco Ronchetti, Gianpiero Brozzo and Diego Arosio
Hydrology 2025, 12(10), 262; https://doi.org/10.3390/hydrology12100262 - 3 Oct 2025
Abstract
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, [...] Read more.
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, isotopic tracing (δ18O; δD), and multivariate statistical modeling. Over an 18-month period, 11 fixed stations were monitored across six seasonal campaigns, yielding a comprehensive dataset of water electrical conductivity (EC) and stable isotope measurements from fresh water to salty water. EC and oxygen isotopic ratios displayed strong spatial and temporal coherence (R2 = 0.99), confirming their combined effectiveness in identifying intrusion patterns. The mass-balance model based on δ18O revealed that marine water fractions exceeded 50% in the lower estuary for up to eight months annually, reaching as far as 8.5 km inland during dry periods. Complementary δD measurements provided additional insight into water origin and fractionation processes, revealing a slight excess relative to the local meteoric water line (LMWL), indicative of evaporative enrichment during anomalously warm periods. Multivariate regression models (PLS, Ridge, LASSO, and Elastic Net) identified river discharge as the primary limiting factor of intrusion, while wind intensity emerged as a key promoting variable, particularly when aligned with the valley axis. Tidal effects were marginal under standard conditions, except during anomalous events such as tidal surges. The results demonstrate that marine intrusion is governed by complex and interacting environmental drivers. Combined isotopic and machine learning approaches can offer high-resolution insights for environmental monitoring, early-warning systems, and adaptive resource management under climate-change scenarios. Full article
13 pages, 3420 KB  
Article
Design, Synthesis and Herbicidal Activity of 1,2,4-Oxadiazole Compounds as Novel Light-Dependent Protochlorophyllide Oxidoreductase Inhibitors
by Xiao Hu, Jing Miao, Yiyi Tian, Wennan Luo, Jixian Shang, Ruiyuan Liu and Huizhe Lu
Molecules 2025, 30(19), 3970; https://doi.org/10.3390/molecules30193970 - 3 Oct 2025
Abstract
Light-dependent protochlorophyllide oxidoreductase (LPOR, E.C.1.3.1.33) plays a crucial role in the biosynthesis of chlorophyll in plants. Therefore, inactivating LPOR can hinder the production of chlorophyll to achieve the effect of weed control. In this research, utilizing an active substructure splicing method, 20 new [...] Read more.
Light-dependent protochlorophyllide oxidoreductase (LPOR, E.C.1.3.1.33) plays a crucial role in the biosynthesis of chlorophyll in plants. Therefore, inactivating LPOR can hinder the production of chlorophyll to achieve the effect of weed control. In this research, utilizing an active substructure splicing method, 20 new 1,2,4-oxadiazole compounds targeting LPOR were synthesized. Among them, compounds 5j, 5k and 5q exhibited superior inhibitory efficacy in greenhouse herbicidal trials. In vitro enzyme activity assays indicated that 5q significantly inhibited Arabidopsis thaliana LPOR (AtLPOR), with an IC50 value of 17.63 μM. Furthermore, compound 5q exhibited superior crop safety and holds potential application prospects for weed management in cotton. Molecular docking and dynamic simulations were employed to elucidate the binding mode and molecular mechanism of 5q with AtLPOR. These experimental and theoretical results indicate that 5q is a promising candidate for the development of novel herbicides targeting LPOR. Full article
Show Figures

Figure 1

34 pages, 3928 KB  
Article
Simulation of Chirped FBG and EFPI-Based EC-PCF Sensor for Multi-Parameter Monitoring in Lithium Ion Batteries
by Mohith Gaddipati, Krishnamachar Prasad and Jeff Kilby
Sensors 2025, 25(19), 6092; https://doi.org/10.3390/s25196092 - 2 Oct 2025
Abstract
The growing need for efficient and safe high-energy lithium-ion batteries (LIBs) in electric vehicles and grid storage necessitates advanced internal monitoring solutions. This work presents a comprehensive simulation model of a novel integrated optical sensor based on ethylene carbonate-filled photonic crystal fiber (EC-PCF). [...] Read more.
The growing need for efficient and safe high-energy lithium-ion batteries (LIBs) in electric vehicles and grid storage necessitates advanced internal monitoring solutions. This work presents a comprehensive simulation model of a novel integrated optical sensor based on ethylene carbonate-filled photonic crystal fiber (EC-PCF). The proposed design synergistically combines a chirped fiber Bragg grating (FBG) and an extrinsic Fabry–Pérot interferometer (EFPI) on a multiplexed platform for the multifunctional sensing of refractive index (RI), temperature, strain, and pressure (via strain coupling) within LIBs. By matching the RI of the PCF cladding to the battery electrolyte using ethylene carbonate, the design maximizes light–matter interaction for exceptional RI sensitivity, while the cascaded EFPI enhances mechanical deformation detection beyond conventional FBG arrays. The simulation framework employs the Transfer Matrix Method with Gaussian apodization to model FBG reflectivity and the Airy formula for high-fidelity EFPI spectra, incorporating critical effects like stress-induced birefringence, Transverse Electric (TE)/Transverse Magnetic (TM) polarization modes, and wavelength dispersion across the 1540–1560 nm range. Robustness against fabrication variations and environmental noise is rigorously quantified through Monte Carlo simulations with Sobol sequences, predicting temperature sensitivities of ∼12 pm/°C, strain sensitivities of ∼1.10 pm/με, and a remarkable RI sensitivity of ∼1200 nm/RIU. Validated against independent experimental data from instrumented battery cells, this model establishes a robust computational foundation for real-time battery monitoring and provides a critical design blueprint for future experimental realization and integration into advanced battery management systems. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

30 pages, 2239 KB  
Article
Valorization of Hazelnut (Corylus avellana L.) Skin By-Product as a Multifunctional Ingredient for Cosmetic Emulsions
by Teresa Mencherini, Tiziana Esposito, Francesca Sansone, Daniela Eletto, Martina Pannetta, Oihana Gordobil, Anna Lisa Piccinelli, Carlo Ferniani, Giulia Auriemma, Luca Rastrelli and Rita Patrizia Aquino
Antioxidants 2025, 14(10), 1199; https://doi.org/10.3390/antiox14101199 - 2 Oct 2025
Abstract
Roasted hazelnut skins (RHSs), generated as by-products of industrial hazelnut processing, were extracted by pressurized liquid extraction to yield a hydroalcoholic extract (RHS-H). The extract was rich in polyphenols (308.4 ± 4.6 mg GAE/g) and proanthocyanidins (169.3 ± 10 mg CE/g) and showed [...] Read more.
Roasted hazelnut skins (RHSs), generated as by-products of industrial hazelnut processing, were extracted by pressurized liquid extraction to yield a hydroalcoholic extract (RHS-H). The extract was rich in polyphenols (308.4 ± 4.6 mg GAE/g) and proanthocyanidins (169.3 ± 10 mg CE/g) and showed strong antioxidant activity (DPPH EC50 = 5.08 ± 1.08 µg/mL; TEAC = 2.82 ± 0.03 mM Trolox/mg) together with antimicrobial effects against Staphylococcus aureus and Staphylococcus epidermidis. RHS-H also enhanced the UV absorbance of synthetic UV filters. When incorporated into oil-in-water (O/W) cosmetic emulsions at low concentrations (0.2–2% w/w), RHS-H did not affect physicochemical stability: formulations maintained acceptable organoleptic properties, dermocompatible pH (4.7–5.5), electrostatic stability (ζ-potential ranging from –57 to –60 mV), and rheological behavior. Functionally, RHS-H increased the antioxidant activity of emulsions (radical scavenging > 80% vs. 52% in the blank), ensured microbial protection in challenge tests, and enhanced SPF by 9.4% at 0.2% w/w, with further improvements at higher concentrations, reaching broad-spectrum photoprotection (critical wavelength > 370 nm). Overall, RHS-H represents a natural multifunctional ingredient with antioxidant, preservative, and photoprotective properties, providing a sustainable strategy to upcycle hazelnut processing waste and reduce reliance on synthetic additives in cosmetic formulations. Full article
(This article belongs to the Special Issue Natural Antioxidants for Cosmetic Applications)
14 pages, 2241 KB  
Article
Passive Brain–Computer Interface Using Textile-Based Electroencephalography
by Alec Anzalone, Emily Acampora, Careesa Liu and Sujoy Ghosh Hajra
Sensors 2025, 25(19), 6080; https://doi.org/10.3390/s25196080 - 2 Oct 2025
Abstract
Background: Passive brain–computer interface (pBCI) systems use a combination of electroencephalography (EEG) and machine learning (ML) to evaluate a user’s cognitive and physiological state, with increasing applications in both clinical and non-clinical scenarios. pBCI systems have been limited by their traditional reliance on [...] Read more.
Background: Passive brain–computer interface (pBCI) systems use a combination of electroencephalography (EEG) and machine learning (ML) to evaluate a user’s cognitive and physiological state, with increasing applications in both clinical and non-clinical scenarios. pBCI systems have been limited by their traditional reliance on sensor technologies that cannot easily be integrated into non-laboratory settings where pBCIs are most needed. Advances in textile-electrode-based EEG show promise in overcoming the operational limitations; however, no study has demonstrated their use in pBCIs. This study presents the first application of fully textile-based EEG for pBCIs in differentiating cognitive states. Methods: Cognitive state comparisons between eyes-open (EO) and eyes-closed (EC) conditions were conducted using publicly available data for both novel textile and traditional dry-electrode EEG. EO vs. EC differences across both EEG sensor technologies were assessed in delta, theta, alpha, and beta EEG power bands, followed by the application of a Support Vector Machine (SVM) classifier. The SVM was applied to each EEG system separately and in a combined setting, where the classifier was trained on dry EEG data and tested on textile EEG data. Results: The textile EEG system accurately captured the characteristic increase in alpha power from EO to EC (p < 0.01), but power values were lower than those of dry EEG across all frequency bands. Classification accuracies for the standalone dry and textile systems were 96% and 92%, respectively. The cross-sensor generalizability assessment resulted in a 91% classification accuracy. Conclusions: This study presents the first use of textile-based EEG for pBCI applications. Our results indicate that textile-based EEG can reliably capture changes in EEG power bands between EO and EC, and that a pBCI system utilizing non-traditional textile electrodes is both accurate and generalizable. Full article
Show Figures

Figure 1

15 pages, 908 KB  
Review
A Targeted Blockade of Terminal C5a Is Critical to Management of Sepsis and Acute Respiratory Distress Syndrome: The Mechanism of Action of Vilobelimab
by Matthew W. McCarthy, Camilla Chong, Niels C. Riedemann and Renfeng Guo
Int. J. Mol. Sci. 2025, 26(19), 9628; https://doi.org/10.3390/ijms26199628 - 2 Oct 2025
Abstract
Vilobelimab, a first-in-class, human–mouse chimeric immunoglobulin G4 (IgG4) kappa monoclonal antibody, targets human complement component 5a (C5a) in plasma. Unlike upstream complement inhibitors, vilobelimab does not inhibit the generation of the membrane attack complex (C5b-9), necessary to mitigate certain infections. C5a is a [...] Read more.
Vilobelimab, a first-in-class, human–mouse chimeric immunoglobulin G4 (IgG4) kappa monoclonal antibody, targets human complement component 5a (C5a) in plasma. Unlike upstream complement inhibitors, vilobelimab does not inhibit the generation of the membrane attack complex (C5b-9), necessary to mitigate certain infections. C5a is a strong anaphylatoxin and chemotactic agent that plays an essential role in both innate and adaptive immunity. Elevated levels of C5a have been associated with pathologic processes, including sepsis and inflammatory respiratory disorders such as acute respiratory distress syndrome (ARDS). Blocking C5a with vilobelimab has shown therapeutic promise. A randomized, multicenter placebo-controlled Phase III study of vilobelimab in patients with severe COVID-19 (PANAMO) found that patients treated with vilobelimab had a significantly lower risk of death by day 28 and 60. Based on this study, the United States Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for Gohibic® (vilobelimab) injection for the treatment of COVID-19 in hospitalized adults when initiated within 48 h of receiving invasive mechanical ventilation (IMV) or extracorporeal membrane oxygenation (ECMO). In January 2025, the European Commission (EC) granted marketing authorization for Gohibic® (vilobelimab) for the treatment of adult patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced ARDS who are receiving systemic corticosteroids as part of standard of care and receiving IMV with or without ECMO. Herein, we review the mechanism of action of vilobelimab in selectively inhibiting C5a-induced inflammation, outlining its bench-to-bedside development from the fundamental biology of the complement system and preclinical evidence through to the clinical data demonstrating its life-saving potential in the management of COVID-19–induced ARDS. Full article
Show Figures

Figure 1

24 pages, 9676 KB  
Article
Effects of Compound Fertilizer Containing Polyhalite on Soil and Maize Growth Under Different Nitrogen Levels
by Xiaohan Li, Ruixue Jing, Jimin Guo, Shun Li, Liyong Bai and Jiulan Dai
Sustainability 2025, 17(19), 8827; https://doi.org/10.3390/su17198827 - 2 Oct 2025
Abstract
The growing potassium (K) demand and supply–demand imbalance in intensive agriculture require the development of multi-nutrient K fertilizers. Polyhalite (POLY), a multi-nutrient natural mineral rich in K, calcium, magnesium, and sulfur, can enhance soil nutrient diversity and fertility. However, research on its synergistic [...] Read more.
The growing potassium (K) demand and supply–demand imbalance in intensive agriculture require the development of multi-nutrient K fertilizers. Polyhalite (POLY), a multi-nutrient natural mineral rich in K, calcium, magnesium, and sulfur, can enhance soil nutrient diversity and fertility. However, research on its synergistic application with nitrogen (N) fertilizer remains limited. Therefore, this study was designed to apply three different fertilizer composites at four N concentration gradients through field plot experiments to evaluate crop productivity and nutrient use efficiency. Results revealed that the application of both compound fertilizers with N fertilizer increased maize yield, ranging from 1.03% to 11.53%, compared with the PK control. Moreover, 25-7-8 (MOP)(POLY26%) achieved a maximum yield of 9499.88 kg/ha at the N1 (170 kg/ha) level. This represents a significant increase of 11.53% compared with the PK control. Moreover, the application of compound fertilizer containing POLY could significantly increase the N fertilizer utilization rate; improve the quality of maize; and exert a significant effect on soil pH, EC, and nutrient content. This study paves the way for broader application of POLY by establishing its novel role as a sustainable nutrient source. It provides critical strategic guidance for advancing global resource-efficient agriculture. Full article
Show Figures

Figure 1

22 pages, 12373 KB  
Article
Groundwater Quality and Health Risk Assessment in Trenggalek Karst Springs and Underground Rivers as a Drinking Water Source
by Aminuddin, Nendaryono Madiutomo, Zulfahmi, Tedy Agung Cahyadi, Ilham Firmansyah, Rizka Maria, Heri Nurohman and Nopri Dwi Siswanto
Geosciences 2025, 15(10), 381; https://doi.org/10.3390/geosciences15100381 - 2 Oct 2025
Abstract
The karst landscape of Trenggalek Regency, located in several sub-districts including Dongko, Kampak, and Watulimo, is shaped by the Wonosari Formation and is characterized by springs and underground rivers. Due to water scarcity in the region, local communities heavily depend on these natural [...] Read more.
The karst landscape of Trenggalek Regency, located in several sub-districts including Dongko, Kampak, and Watulimo, is shaped by the Wonosari Formation and is characterized by springs and underground rivers. Due to water scarcity in the region, local communities heavily depend on these natural water sources. This study assesses the groundwater quality of 16 springs and 20 underground rivers to evaluate their suitability for consumption and associated health risks. Using the groundwater quality index (GWQI), human health risk assessment (HHRA), and statistical methods, various physicochemical parameters were analyzed, including pH, total dissolved solids (TDS), electrical conductivity (EC), and concentrations of iron (Fe2+), manganese (Mn2+), calcium carbonate (CaCO3), and sulfate (SO4). Water generally meets the World Health Organization standards for safe drinking. However, correlation analysis reveals notable mineral dissolution and possible anthropogenic influence. TDS strongly correlates with EC (r = 0.97), while Fe2+ shows significant relationships with Mn and TDS. Conversely, CaCO3 shows a negative correlation with EC and TDS, suggesting alternative sources beyond rock weathering. The HHRA indicates higher non-carcinogenic health risks from Fe2+ contamination in underground rivers compared to springs. The study’s novelty comes in its integrated assessment of groundwater quality and health hazards in Trenggalek’s karst region, which uses GWQI, HHRA, and statistical analysis to show geochemical interactions and highlight iron-related health issues in underground rivers. Full article
Show Figures

Figure 1

21 pages, 7155 KB  
Article
SERS Detection of Environmental Variability in Balneary Salt Lakes During Tourist Season: A Pilot Study
by Csilla Molnár, Karlo Maškarić, Lucian Barbu-Tudoran, Tudor Tămaș, Ilirjana Bajama and Simona Cîntă Pînzaru
Biosensors 2025, 15(10), 655; https://doi.org/10.3390/bios15100655 - 1 Oct 2025
Abstract
This pilot study uses Raman spectroscopy and SERS to monitor monthly water composition changes in two adjacent hypersaline lakes (L1 and L2) at a balneary resort, during the peak tourist season (May–October 2023). In situ pH and electrical conductivity (EC) measurements, along with [...] Read more.
This pilot study uses Raman spectroscopy and SERS to monitor monthly water composition changes in two adjacent hypersaline lakes (L1 and L2) at a balneary resort, during the peak tourist season (May–October 2023). In situ pH and electrical conductivity (EC) measurements, along with evaporite analyses, complemented the spectroscopic data. Although traditionally considered similar, the lakes frequently raise public questions about their relative bathing benefits. While not directly addressing the therapeutic effects, the study reveals distinct physicochemical profiles between the lakes. Raman data showed consistently higher sulfate levels in L2, a trend also observed in winter monitoring. pH levels were higher in L1 (8–9.8) than in L2 (7.2–8), except for one October depth reading. This trend held during winter, except in April. Surface waters showed more variability and slightly higher values than those at 1 m depth. SERS spectra featured β-carotene peaks, linked to cyanobacteria, and Ag–Cl bands, indicating nanoparticle aggregation from inorganic ions. SERS intensity strongly correlated with pH and EC, especially in L2 (r = 0.96), suggesting stable surface–depth chemistry. L1 exhibited more monthly variability, likely due to differing biological activity. Although salinity and EC were not linearly correlated at high salt levels, both reflected seasonal trends. The integration of Raman, SERS, and physicochemical data proves effective for monitoring hypersaline lake dynamics, offering a valuable tool for environmental surveillance and therapeutic water quality assessment, in support of evidence-based water management and therapeutic use of salt lakes, aligning with goals for sustainable medical tourism and environmental stewardship. Full article
(This article belongs to the Special Issue Advanced SERS Biosensors for Detection and Analysis)
Show Figures

Graphical abstract

Back to TopTop