Growth Factors in the Carotid Body—An Update
Abstract
:1. Introduction
2. Nerve Growth Factor Family
2.1. Nerve Growth Factor
2.2. Brain-Derived Neurotrophic Factor
2.3. Neurotrophin-3 and Neurotrophin-4/5
3. Glial Cell Line-Derived Neurotrophic Factor Family of Ligands
3.1. Glial-Derived Neurotrophic Factor
3.2. Neurturin, Persephin, and Artemin
4. Ciliary Neurotrophic Factor Family
5. Insulin and Insulin-Like Growth Factors
6. Fibroblast Growth Factors
7. Epidermal Growth Factor/Transforming Growth Factor-α Family
8. Transforming Growth Factor-β and Related Molecules
9. Inflammatory Cytokines
10. Vascular Endothelial Growth Factor
11. Endothelins
12. Platelet-Derived Growth Factor
13. Receptor–Receptor Interactions involving Growth Factors Receptors
14. The Trophic Role of CB Grafting in Parkinson’s Disease
15. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
6-OHDA | 6-hydroxydopamine |
ARTN | artemin |
BDNF | brain-derived neurotrophic factor |
BMP | morphogenetic protein |
CA | catecholamine |
CB | carotid body |
CH | chronic hypoxia |
CIH | chronic intermittent hypoxia |
CNTF | ciliary neurotrophic factor |
DA | dopaminergic |
DAMPs | damage-associated molecular patterns |
ECE | endothelin-converting enzyme |
EGF | epidermal growth factor |
EIA | enzyme immunoassay |
ERK | extracellular signal-regulated kinase |
ET | endothelin |
FGF | fibroblast growth factor |
GDNF | glial cell line-derived neurotrophic factor |
GFLs | GDNF family ligands |
GFR | glycosyl-phosphatidylinositol-anchored coreceptor |
gp130 | glycoprotein 130 |
GPCRs | G-protein coupled receptors |
HIF-1α | hypoxia inducible factor-1α |
IGF | insulin-like growth factor |
IH/ROX | intermittent hypoxia/reoxygenation |
IHH | intermittent hypobaric hypoxia |
IL | Interleukin |
JAK/STAT | Janus kinase/signal transduction and activator of transcription |
LIF | leukemia inhibitory factor |
L-NAME | hydrochloride NG-nitro-methyl ester-L-arginine |
LPA | lysophosphatidic acid |
LPS | lipopolysaccharide |
MCP-1 | monocyte chemoattractant protein-1 |
MPTP | 1-methyl-4-phenyl-1,2,3,6,-tetahydropyridine |
NCAM | neural cell adhesion molecule |
NCT | neonatal caffeine treatment |
NGF | nerve growth factor |
NMDA | N-methyl-D-aspartate |
NOS | nitric oxide synthase |
NRTN | neurturin |
NSCs | neural stem cells |
NT | neurotrophin |
PD | Parkinson’s disease |
PDGF | platelet-derived growth factor |
PLA | proximity ligation assay |
PSPN | persephin |
RET | Ret tyrosine kinase receptor |
RRI | receptor–receptor interactions |
RTKs | receptor tyrosine kinases |
SCG | superior cervical ganglion |
SHR | spontaneously hypertensive rats |
SVZ/OB | subventricular zone/olfactory bulb |
TGF | transforming growth factor |
TH | tyrosine hydroxylase |
TNFα | tumor necrosis factor α |
Trk | tyrosine receptor kinase |
VEGF | vascular endothelial growth factor |
VM | ventral mesencephalon |
References
- Sacramento, J.F.; Andrzejewski, K.; Melo, B.F.; Ribeiro, M.J.; Obeso, A.; Conde, S.V. Exploring the Mediators that Promote Carotid Body Dysfunction in Type 2 Diabetes and Obesity Related Syndromes. Int. J. Mol. Sci. 2020, 21, 5545. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.J.; Polotsky, V.Y. Carotid Body and Metabolic Syndrome: Mechanisms and Potential Therapeutic Targets. Int. J. Mol. Sci. 2020, 21, 5117. [Google Scholar] [CrossRef] [PubMed]
- Porzionato, A.; Macchi, V.; De Caro, R.; Di Giulio, C. Inflammatory and immunomodulatory mechanisms in the carotid body. Respir. Physiol. Neurobiol. 2013, 187, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Tse, A.; Yan, L.; Lee, A.K.; Tse, F.W. Autocrine and paracrine actions of ATP in rat carotid body. Can. J. Physiol. Pharm. 2012, 90, 705–711. [Google Scholar] [CrossRef]
- Leonard, E.M.; Nurse, C.A. Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells. Int. J. Mol. Sci. 2020, 21, 5434. [Google Scholar] [CrossRef]
- Pardal, R.; Ortega-Sáenz, P.; Durán, R.; López-Barneo, J. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 2007, 131, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Porzionato, A.; Macchi, V.; Stecco, C.; De Caro, R. The Carotid Sinus Nerve-Structure, Function, and Clinical Implications. Anat. Rec. 2019, 302, 575–587. [Google Scholar] [CrossRef]
- De Caro, R.; Macchi, V.; Sfriso, M.M.; Porzionato, A. Structural and neurochemical changes in the maturation of the carotid body. Respir. Physiol. Neurobiol. 2013, 185, 9–19. [Google Scholar] [CrossRef]
- Barbacid, M. Neurotrophic factors and their receptors. Curr. Opin. Cell. Biol. 1995, 7, 148–155. [Google Scholar] [CrossRef]
- Aloe, L.; Levi-Montalcini, R. Comparative studies on the effects elicited by pre and postnatal injections of anti-NGF, guanethidine, and 6-hydroxydopamine in chromaffin and ganglion cells of the adrenal medulla and carotid body in infant rats. Adv. Biochem. Psychopharmacol. 1980, 25, 221–226. [Google Scholar]
- Lawson, W. The neuroendocrine nature of the glomus cells: An experimental, ultrastructural, and histochemical tissue culture study. Laryngoscope 1980, 90, 120–144. [Google Scholar] [CrossRef] [PubMed]
- Kalman, D.; Wong, B.; Horvai, A.E.; Cline, M.J.; O’Lague, P.H. Nerve growth factor acts through cAMP-dependent protein kinase to increase the number of sodium channels in PC12 cells. Neuron 1990, 4, 355–366. [Google Scholar] [CrossRef]
- Pollock, J.D.; Krempin, M.; Rudy, B. Differential effects of NGF, FGF, EGF, cAMP, and dexamethasone on neurite outgrowth and sodium channel expression in PC12 cells. J. Neurosci. 1990, 10, 2626–2637. [Google Scholar] [CrossRef] [PubMed]
- Stea, A.; Jackson, A.; Nurse, C.A. Hypoxia and N6,O20-dibutyryladenosine 30,50-cyclic monophosphate, but not nerve growth factor, induce Naþ channels and hypertrophy in chromaffin-like arterial chemoreceptors. Proc. Natl. Acad. Sci. USA 1992, 89, 9469–9473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, H.; Nurse, C. Basic fibroblast growth factor regulates ionic currents and excitability of fetal rat carotid body chemoreceptors. Neurosci. Lett. 1995, 202, 41–44. [Google Scholar] [CrossRef]
- Fishman, M.C.; Schaffner, A.E. Carotid body cell culture and selective growth of glomus cells. Am. J. Physiol. 1984, 246, C106–C113. [Google Scholar] [CrossRef]
- Nurse, C.A. Localization of acetylcholinesterase in dissociated cell cultures of the carotid body of the rat. Cell Tissue Res. 1987, 250, 21–27. [Google Scholar] [CrossRef]
- Nurse, C.A. Carbonic anhydrase and neuronal enzymes in cultured glomus cells of the carotid body of the rat. Cell Tissue Res. 1990, 261, 65–71. [Google Scholar] [CrossRef]
- Nurse, C.A.; Vollmer, C. Role of basic FGF and oxygen in control of proliferation, survival, and neuronal differentiation in carotid body chromaffin cells. Dev. Biol. 1997, 184, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Atanasova, D.Y.; Lazarov, N.E. Expression of neurotrophic factors and their receptors in the carotid body of spontaneously hypertensive rats. Respir. Physiol. Neurobiol. 2014, 202, 6–15. [Google Scholar] [CrossRef]
- Hertzberg, T.; Fan, G.; Finley, J.C.; Erickson, J.T.; Katz, D.M. BDNF supports mammalian chemoafferent neurons in vitro and following peripheral target removal in vivo. Dev. Biol. 1994, 166, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Brady, R.; Zaidi, S.I.A.; Mayer, C.; Katz, D.M. BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J. Neurosci. 1999, 19, 2131–2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izal-Azcárate, A.; Belzunegui, S.; Sebastian, W.S.; Garrido-Gil, P.; Vazquez-Claverie, M.; Lopez, B.; Marcilla, I.; Luquin, M.A. Immunohistochemical characterization of the rat carotid body. Respir. Physiol. Neurobiol. 2008, 161, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Porzionato, A.; Macchi, V.; Parenti, A.; De Caro, R. Trophic factors in the carotid body. Int. Rev. Cell. Mol. Biol. 2008, 269, 1–58. [Google Scholar]
- Dmitrieff, E.F.; Wilson, J.T.; Dunmire, K.B.; Bavis, R.W. Chronic hyperoxia alters the expression of neurotrophic factors in the carotid body of neonatal rats. Respir. Physiol. Neurobiol. 2011, 175, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero, S.; Cuéllar, R.; Lemus, M.; Avalos, R.; Ramírez, G.; de Álvarez-Buylla, E.R. Brain-derived neurotrophic factor in the nucleus tractus solitarii modulates glucose homeostasis after carotid chemoreceptor stimulation in rats. Adv. Exp. Med. Biol. 2012, 758, 233–239. [Google Scholar] [PubMed]
- Bavis, R.W.; Blegen, H.J.; Logan, S.; Fallon, S.C.; McDonough, A.B. Role of TrkB during the postnatal development of the rat carotid body. Respir. Physiol. Neurobiol. 2015, 219, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Chavez-Valdez, R.; Mason, A.; Nunes, A.R.; Northington, F.J.; Tankersley, C.; Ahlawat, R.; Johnson, S.M.; Gauda, E.B. Effect of hyperoxic exposure during early development on neurotrophin expression in the carotid body and nucleus tractus solitarii. J. Appl. Physiol. 2012, 112, 1762–1772. [Google Scholar] [CrossRef]
- Bairam, A.; Kinkead, R.; Lajeunesse, Y.; Joseph, V. Neonatal caffeine treatment does not induce long-term consequences on TrkB receptors or BDNF expression in chemosensory organs of adult rats. Neurosci. Lett. 2010, 468, 292–296. [Google Scholar] [CrossRef]
- Pello, J.M.; Guate, J.L.; Naves, F.J.; Escaf, S.; Vega, J.A. Neurotrophins and neurotrophin receptors in some neural crest-derived tumours (ganglioneuroma, phaeochromocytoma and paraganglioma). Histopathology 1999, 34, 216–225. [Google Scholar] [CrossRef]
- Paratcha, G.; Ledda, F. GDNF and GFRalpha: A versatile molecular complex for developing neurons. Trends Neurosci. 2008, 31, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Nosrat, C.A.; Tomac, A.; Lindqvist, E.; Lindskog, S.; Humpel, C.; Stromberg, I.; Ebendal, T.; Hoffer, B.J.; Olson, L. Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res. 1996, 286, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Lipton, J.W.; Ling, Z.; Vu, T.Q.; Robie, H.C.; Mangan, K.P.; Weese-Mayer, D.E.; Carvey, P.M. Prenatal cocaine exposure reduces glial cell line-derived neurotrophic factor (GDNF) in the striatum and the carotid body of the rat: Implications for DA neurodevelopment. Dev. Brain Res. 1999, 118, 231–235. [Google Scholar] [CrossRef]
- Toledo-Aral, J.J.; Mendez-Ferrer, S.; Pardal, R.; Echevarria, M.; Lopez-Barneo, J. Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted parkinsonian rats. J. Neurosci. 2003, 23, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Leitner, M.L.; Wanga, L.H.; Osborne, P.A.; Golden, J.P.; Milbrandt, J.; Johnson, E.M. Expression and function of GDNF family ligands and receptors in the carotid body. Exp. Neurol. 2005, 191, S68–S79. [Google Scholar] [CrossRef] [PubMed]
- Villadiego, J.; Méndez-Ferrer, S.; Valdés-Sànchez, T.; Silos-Santiago, I.; Farinas, I.; Lòpez-Barneo, J.; Toledo-Aral, J.J. Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J. Neurosci. 2005, 25, 4091–4098. [Google Scholar] [CrossRef]
- Erickson, J.T.; Brosenitsch, T.A.; Katz, D.M. Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J. Neurosci. 2001, 21, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Balbir, A.; Okumura, M.; Schofield, B.; Coram, J.; Tankersley, C.G.; Fitzgerald, R.S.; O’Donnell, C.P.; Shirahata, M. Genetic regulation of chemoreceptor development in DBA/2J and A/J strains of mice. Adv. Exp. Med. Biol. 2006, 580, 99–104, discussion 351–359. [Google Scholar]
- Balbir, A.; Lee, H.; Okumura, M.; Biswal, S.; Fitzgerald, R.S.; Shirahata, M. A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 292, L704–L715. [Google Scholar] [CrossRef]
- Erickson, J.T.; Conover, J.C.; Borday, V.; Champagnat, J.; Barbacid, M.; Yancopoulos, G.; Katz, D.M. Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J. Neurosci. 1996, 16, 5361–5371. [Google Scholar] [CrossRef]
- López-Barneo, J.; Pardal, R.; Ortega-Sáenz, P.; Durán, R.; Villadiego, J.; Toledo-Aral, J.J. The neurogenic niche in the carotid body and its applicability to antiparkinsonian cell therapy. J. Neural. Transm. 2009, 116, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Sáenz, P.; Pardal, R.; Levitsky, K.; Villadiego, J.; Muñoz-Manchado, A.B.; Durán, R.; Bonilla-Henao, V.; Arias-Mayenco, I.; Sobrino, V.; Ordóñez, A.; et al. Cellular properties and chemosensory responses of the human carotid body. J. Physiol. 2013, 591, 6157–6173. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Sáenz, P.; Villadiego, J.; Pardal, R.; Toledo-Aral, J.J.; López-Barneo, J. Neurotrophic Properties, Chemosensory Responses and Neurogenic Niche of the Human Carotid Body. Adv. Exp. Med. Biol. 2015, 860, 139–152. [Google Scholar] [PubMed]
- Porzionato, A.; Vigato, E.; Macchi, V.; Parenti, A.; De Caro, R. Neural cell adhesion molecule expression in the human carotid body. Italy J. Anat. Embryol. 2008, 113, 249–256. [Google Scholar]
- Rodriguez-Pallares, J.; Joglar, B.; Muñoz-Manchado, A.B.; Villadiego, J.; Toledo-Aral, J.J.; Labandeira-Garcia, J.L. Cografting of carotid body cells improves the long-term survival, fiber outgrowth and functional effects of grafted dopaminergic neurons. Regen. Med. 2012, 7, 309–322. [Google Scholar] [CrossRef]
- Muñoz-Manchado, A.B.; Villadiego, J.; Suárez-Luna, N.; Bermejo-Navas, A.; Garrido-Gil, P.; Labandeira-García, J.L.; Echevarría, M.; López-Barneo, J.; Toledo-Aral, J.J. Neuroprotective and reparative effects of carotid body grafts in a chronic MPTP model of Parkinson’s disease. Neurobiol. Aging. 2013, 34, 902–915. [Google Scholar] [CrossRef]
- Davis, S.; Aldrich, T.H.; Stahl, N.; Pan, L.; Taga, T.; Kishimoto, T.; Ip, N.Y.; Yancopoulos, G.D. LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 1993, 260, 1805–1808. [Google Scholar] [CrossRef]
- Gearing, D.P.; Thut, C.J.; VandeBos, T.; Gimpel, S.D.; Delaney, P.B.; King, J.; Price, V.; Cosman, D.; Beckmann, M.P. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J. 1991, 10, 2839–2848. [Google Scholar] [CrossRef]
- Lam, S.Y.; Tipoe, G.L.; Liong, E.C.; Fung, M.L. Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body. Histochem. Cell Biol. 2008, 130, 549–559. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.J.; Xu, Z.; Li, X.; Li, G.L.; Ju, G.; Wang, B.R. Morphological evidence for existence of IL-6 receptor alpha in the glomus cells of rat carotid body. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2006, 288, 292–296. [Google Scholar] [CrossRef]
- Duan, C.; Xu, Q. Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions. Gen. Comp. Endocrinol. 2005, 142, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Iwafuchi, M.; Takahashi, H.; Ikuta, F.; Nishikawa, K.; Tanaka, H.; Yanaihara, N. Immunocytochemical demonstration of IGF-II-like immunoreactivity in human paraganglioma of the craniocervical region. Virchows Arch. A Pathol. Anat. Histopathol. 1989, 414, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Iwafuchi, M.; Yanaihara, C.; Hatanaka, H.; Tao, Z.; Yanaihara, N.; Tanaka, H.; Nishikawa, K. bIGF-II-like immunoreactivity in human tissues, neuroendocrine tumors, and PC12 cells. Diabetes Res. Clin. Pract. 1989, 7, S21–S27. [Google Scholar] [CrossRef]
- Nurse, C.A.; Fearon, I.M. Carotid body chemoreceptors in dissociated cell culture. Microsc. Res. Tech. 2002, 59, 249–255. [Google Scholar] [CrossRef]
- Ribeiro, M.J.; Sacramento, J.F.; Gonzalez, C.; Guarino, M.P.; Monteiro, E.C.; Conde, S.V. Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 2013, 62, 2905–2916. [Google Scholar] [CrossRef] [Green Version]
- Ornitz, D.M.; Itoh, N. Fibroblast growth factors. Genome Biol. 2001, 2, REVIEWS3005. [Google Scholar] [CrossRef] [Green Version]
- Kostas, M.; Lampart, A.; Bober, J.; Wiedlocha, A.; Tomala, J.; Krowarsch, D.; Otlewski, J.; Zakrzewska, M. Translocation of Exogenous FGF1 and FGF2 Protects the Cell against Apoptosis Independently of Receptor Activation. J. Mol. Biol. 2018, 430, 4087–4101. [Google Scholar] [CrossRef]
- Paciga, M.; Nurse, C.A. Basic FGF localization in rat carotid body: Paracrine role in O2-chemoreceptor survival. Neuroreport 2001, 12, 3287–3291. [Google Scholar] [CrossRef]
- Douwes Dekker, P.B.; Kuipers-Dijkshoornb, N.J.; Baelde, H.J.; van der Mey, A.G.L.; Hogendoorn, P.C.W.; Cornelisse, C.J. Basic fibroblast growth factor and fibroblastic growth factor receptor–1 may contribute to head and neck paraganglioma development by an autocrine or paracrine mechanism. Hum. Pathol. 2007, 38, 79–85. [Google Scholar] [CrossRef]
- Cao, X.; Sun, S.; Liu, H.; Tong, E.; Xia, H. Dynamic expression of bFGF and TGFbeta2 in glomus cell grafts of carotid body in rat model of Parkinson disease. J. Huazhong Univ. Sci. Technol. Med. Sci. 2003, 23, 380–395. [Google Scholar]
- Belzunegui, S.; Izal-Azcárate, A.; San Sebastián, W.; Garrido-Gil, P.; Vázquez-Claverie, M.; López, B.; Marcilla, I.; Luquin, M.R. Striatal carotid body graft promotes differentiation of neural progenitor cells into neurons in the olfactory bulb of adult hemiparkisonian rats. Brain Res. 2008, 1217, 213–220. [Google Scholar] [CrossRef]
- Milei, J.; Cao, G.; Grana, D.R.; Toblli, J.E. Plasminogen activator inhibitor-1 and transforming growth factor-beta 1 in carotid glomus and autonomic ganglia from spontaneously hypertensive rats. J. Hypertens. 2004, 22, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Toblli, J.E.; Grana, D.; Cao, G.; Milei, J. Effects of ACE inhibition and betablockade on plasminogen activator inhibitor-1 and transforming growth factor-beta1 in carotid glomus and autonomic ganglia in hypertensive rats. Am. J. Hypertens. 2007, 20, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Wrana, J.L.; Attisano, L.; Wieser, R.; Ventura, F.; Massague, J. Mechanism of activation of the TGF-beta receptor. Nature 1994, 370, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Fernández, R.; Nardocci, G.; Simon, F.; Martin, A.; Becerra, A.; Rodríguez-Tirado, C.; Maisey, K.R.; Acuña-Castillo, C.; Cortes, P.P. Lipopolysaccharide signaling in the carotid chemoreceptor pathway of rats with sepsis syndrome. Respir. Physiol. Neurobiol. 2011, 175, 336–348. [Google Scholar] [CrossRef]
- Lam, S.Y.; Liu, Y.; Ng, K.M.; Lau, C.F.; Liong, E.C.; Tipoe, G.L.; Fung, M.L. Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways. Histochem. Cell Biol. 2012, 137, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; He, L.; Dinger, B.; Stensaas, L.; Fidone, S. Effect of endothelin receptor antagonist bosentan on chronic hypoxia-induced inflammation and chemoafferent neuron adaptation in rat carotid body. High Alt. Med. Biol. 2012, 13, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Mkrtchian, S.; Kåhlin, J.; Gómez-Galán, M.; Ebberyd, A.; Yoshitake, T.; Schmidt, S.; Kehr, J.; Hildenborg, M.; Jonsson Fagerlund, M.; Erlandsson Harris, H.; et al. The impact of damage-associated molecular patterns on the neurotransmitter release and gene expression in the ex vivo rat carotid body. Exp. Physiol. 2020. Online ahead of print. [Google Scholar] [CrossRef]
- Liu, X.; He, L.; Stensaas, L.; Dinger, B.; Fidone, S. Adaptation to chronic hypoxia involves immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 296, L158–L166. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, R.; Gonzalez, S.; Rey, S.; Cortes, P.P.; Maisey, K.R.; Reyes, E.P.; Larrain, C.; Zapata, P. Lipopolysaccharide-induced carotid body inflammation in cats: Functional manifestations, histopathology and involvement of tumour necrosis factor-a. Exp. Physiol. 2008, 93, 892–907. [Google Scholar] [CrossRef]
- Del Rio, R.; Moya, E.A.; Iturriaga, R. Differential expression of pro-inflammatory cytokines, endothelin-1 and nitric oxide synthases in the rat carotid body exposed to intermittent hypoxia. Brain Res. 2011, 1395, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, R.; Moya, E.A.; Parga, M.J.; Madrid, C.; Iturriaga, R. Carotid body inflammation and cardiorespiratory alterations in intermittent hypoxia. Eur. Respir. J. 2012, 39, 1492–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Rio, R.; Moya, E.A.; Iturriaga, R. Contribution of inflammation on carotid body chemosensory potentiation induced by intermittent hypoxia. Adv. Exp. Med. Biol. 2012, 758, 199–205. [Google Scholar] [PubMed]
- Zhang, X.J.; Wang, X.; Xiong, L.Z.; Fan, J.; Duan, X.L.; Wang, B.R. Upregulation of IL-1 receptor type I and tyrosine hydroxylase in the rat carotid body following intraperitoneal injection of IL-1beta. Histochem. Cell Biol. 2007, 128, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Chen, B.Y.; Cui, L.Y.; Wang, B.L.; Liu, C.X.; Chen, P.F.; Guo, M.N.; Dong, L.X.; Li, S. Carotid body inflammation and carotid sinus nerve afferent activity after intermittent hypoxia exposure of various frequencies in rabbits. Zhonghua Jie He He Hu Xi Za Zhi 2008, 31, 670–674. [Google Scholar] [PubMed]
- Kåhlin, J.; Mkrtchian, S.; Ebberyd, A.; Hammarstedt-Nordenvall, L.; Nordlander, B.; Yoshitake, T.; Kehr, J.; Prabhakar, N.; Poellinger, L.; Fagerlund, M.J.; et al. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp. Physiol. 2014, 99, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Liu, L.; Fan, J.; He, S.; Li, R.; Peng, Z.W.; Wang, B.R. Interleukin-1β promotes the neurogenesis of carotid bodies by stimulating the activation of ERK1/2. Respir. Physiol. Neurobiol. 2015, 219, 78–84. [Google Scholar] [CrossRef]
- Liu, X.; He, L.; Dinger, B.; Stensaas, L.; Fidone, S. Sustained exposure to cytokines and hypoxia enhances excitability of oxygen-sensitive type I cells in rat carotid body: Correlation with the expression of HIF-1α protein and adrenomedullin. High Alt. Med. Biol. 2013, 14, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Zhang, B.; Shu, H.F.; Zhang, X.Y.; Wang, X.; Kuang, F.; Liu, L.; Peng, Z.W.; Wu, R.; Zhou, Z.; et al. Interleukin-6 increases intracellular Ca2+ concentration and induces catecholamine secretion in rat carotid body glomus cells. J. Neurosci. Res. 2009, 87, 2757–2762. [Google Scholar] [CrossRef]
- Nardocci, G.; Martin, A.; Abarzúa, S.; Rodríguez, J.; Simon, F.; Reyes, E.P.; Acuña-Castillo, C.; Navarro, C.; Cortes, P.P.; Fernández, R. Sepsis progression to multiple organ dysfunction in carotid chemo/baro-denervated rats treated with lipopolysaccharide. J. Neuroimmunol. 2015, 278, 44–52. [Google Scholar] [CrossRef]
- Jendzjowsky, N.G.; Roy, A.; Barioni, N.O.; Kelly, M.M.; Green, F.; Wyatt, C.N.; Pye, R.L.; Tenorio-Lopes, L.; Wilson, R. Preventing acute asthmatic symptoms by targeting a neuronal mechanism involving carotid body lysophosphatidic acid receptors. Nat. Commun. 2018, 9, 4030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhakar, N.R.; Peng, Y.J.; Kumar, G.K.; Nanduri, J.; Di Giulio, C.; Lahiri, S. Long-term regulation of carotid body function: Acclimatization and adaptation--invited article. Adv. Exp. Med. Biol. 2009, 648, 307–317. [Google Scholar]
- Tipoe, G.L.; Fung, M.L. Expression of HIF-1alpha, VEGF and VEGF receptors in the carotid body of chronically hypoxic rat. Respir. Physiol. Neurobiol. 2003, 138, 143–154. [Google Scholar] [CrossRef]
- Chen, J.; Dinger, B.; Jyung, R.; Stensaas, L.; Fidone, S. Altered expression of vascular endothelial growth factor and FLK-1 receptor in chronically hypoxic rat carotid body. Adv. Exp. Med. Biol. 2003, 536, 583–591. [Google Scholar] [PubMed]
- Di Giulio, C.; Bianchi, G.; Cacchio, M.; Macri, M.A.; Ferrero, G.; Rapino, C.; Verratti, V.; Piccirilli, M.; Artese, L. Carotid body HIF-1alpha, VEGF and NOS expression during aging and hypoxia. Adv. Exp. Med. Biol. 2003, 536, 603–610. [Google Scholar]
- Di Giulio, C.; Bianchi, G.; Cacchio, M.; Artese, L.; Rapino, C.; Macri, M.A.; Di Ilio, C. Oxygen and life span: Chronic hypoxia as a model for studying HIF-1alpha, VEGF and NOS during aging. Respir. Physiol. Neurobiol. 2005, 147, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.Y.; Tipoe, G.L.; Liong, E.C.; Fung, M.L. Differential expressions and roles of hypoxia-inducible factor-1alpha, -2alpha and -3alpha in the rat carotid body during chronic and intermittent hypoxia. Histol. Histopathol. 2008, 23, 271–280. [Google Scholar] [PubMed]
- Di Giulio, C.; Antosiewicz, J.; Walski, M.; Petruccelli, G.; Verratti, V.; Bianchi, G.; Pokorski, M. Physiological carotid body denervation during aging. Adv. Exp. Med. Biol. 2009, 648, 257–263. [Google Scholar]
- Del Rio, R.; Muñoz, C.; Arias, P.; Court, F.A.; Moya, E.A.; Iturriaga, R. Chronic intermittent hypoxia-induced vascular enlargement and VEGF upregulation in the rat carotid body is not prevented by antioxidant treatment. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, L702–L711. [Google Scholar]
- Felix, A.S.; Rocha, V.N.; Nascimento, A.L.; de Carvalho, J.J. Carotid body remodelling in l-NAME-induced hypertension in the rat. J. Comp. Pathol. 2012, 146, 348–356. [Google Scholar] [CrossRef]
- Salman, S.; Vollmer, C.; McClelland, G.B.; Nurse, C.A. Characterization of ectonucleotidase expression in the rat carotid body: Regulation by chronic hypoxia. Am. J. Physiol. Cell Physiol. 2017, 313, C274–C284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zara, S.; Pokorski, M.; Cataldi, A.; Porzionato, A.; De Caro, R.; Antosiewicz, J.; Di Giulio, C. Development and aging are oxygen-dependent and correlate with VEGF and NOS along life span. Adv. Exp. Med. Biol. 2013, 756, 223–228. [Google Scholar] [PubMed]
- Zara, S.; Porzionato, A.; De Colli, M.; Macchi, V.; Cataldi, A.; De Caro, R.; Di Giulio, C. Human carotid body neuroglobin, vascular endothelial growth factor and inducible nitric oxide synthase expression in heroin addiction. Histol. Histopathol. 2013, 28, 903–911. [Google Scholar] [PubMed]
- Ozaka, T.; Doi, Y.; Kayashima, K.; Fujimoto, S. Weibel-Palade bodies as a storage site of calcitonin gene-related peptide and endothelin-1 in blood vessels of the ratcarotid body. Anat. Rec. 1997, 247, 388–394. [Google Scholar] [CrossRef]
- Iturriaga, R.; Moya, E.A.; Del Rio, R. Carotid body potentiation induced by intermittent hypoxia: Implications for cardiorespiratory changes induced by sleep apnoea. Clin. Exp. Pharm. Physiol. 2009, 36, 1197–1204. [Google Scholar] [CrossRef]
- He, L.; Chen, J.; Dinger, B.; Stensaas, L.; Fidone, S. Endothelin modulateschemoreceptor cell function in mammalian carotid body. Adv. Exp. Med. Biol. 1996, 410, 305–311. [Google Scholar]
- Chen, J.; He, L.; Dinger, B.; Stensaas, L.; Fidone, S. Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 282, L1314–L1323. [Google Scholar] [CrossRef]
- Chen, Y.; Tipoe, G.L.; Liong, E.; Leung, S.; Lam, S.Y.; Iwase, R.; Tjong, Y.W.; Fung, M.L. Chronic hypoxia enhances endothelin-1-induced intracellular calcium elevation in rat carotid body chemoreceptors and up-regulates ETA receptor expression. Pflug. Arch: Eur. J. Physiol. 2002, 443, 565–573. [Google Scholar] [CrossRef]
- Rey, S.; Del Rio, R.; Alcayaga, J.; Iturriaga, R. Endothelins in the cat petrosal ganglion and carotid body: Effects and immunolocalization. Brain Res. 2006, 1069, 154–158. [Google Scholar] [CrossRef]
- Rey, S.; Del Rio, R.; Iturriaga, R. Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent- hypoxia. Brain Res. 2006, 1086, 152–159. [Google Scholar] [CrossRef]
- Rey, S.; Corthorn, J.; Chacon, C.; Iturriaga, R. Expression and immunolocalization of endothelin peptides and its receptors, ETA and ETB, in the carotid body exposed to chronic intermittent hypoxia. J. Histochem. Cytochem. 2007, 55, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, S.; Del Rio, R.; Iturriaga, R. Contribution of endothelin-1 and endothelin A and B receptors to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Adv. Exp. Med. Biol. 2008, 605, 228–232. [Google Scholar] [PubMed]
- Pawar, A.; Nanduri, J.; Yuan, G.; Khan, S.A.; Wang, N.; Kumary, G.K.; Prabhakar, N.R. Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R735–R742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Deng, Y.; Shang, J.; Yang, X.H.; Liu, K.; Liu, H.G.; Xu, Y.J. Effect of NADPH oxidase inhibitor apocynin on the expression of hypoxia-induced factor-1α and endothelin-1 in rat carotid body exposed to chronic intermittent hypoxia. J. Huazhong Univ. Sci. Technol. Med. Sci. 2013, 33, 178–184. [Google Scholar] [CrossRef]
- Peng, Y.J.; Nanduri, J.; Raghuraman, G.; Wang, N.; Kumar, G.K.; Prabhakar, N.R. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp. Physiol. 2013, 98, 1620–1630. [Google Scholar] [CrossRef] [Green Version]
- Mosqueira, M.; Iturriaga, R. Chronic hypoxia changes gene expression profile of primary rat carotid body cells: Consequences on the expression of NOS isoforms and ET-1 receptors. Physiol. Genom. 2019, 51, 109–124. [Google Scholar] [CrossRef]
- Di Giulio, C.; Verratti, V.; Artese, L.; Petruccelli, G.; Walski, M.; Pokorski, M. Aging and expression of heme oxygenase-1 and endothelin-1 in the rat carotid body after chronic hypoxia. J. Physiol. Pharm. 2009, 60, 41–44. [Google Scholar]
- Li, J.; Yang, S.; Yu, F.; Ji, E.; Woodrow Weiss, J. Endothelin-1 enhanced carotid body chemosensory activity in chronic intermittent hypoxia through PLC, PKC and p38MAPK signaling pathways. Neuropeptides 2019, 74, 44–51. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, E.S.; Xiang, S.; Tamisier, R.; Tong, J.; Huang, J.; Woodrow Weiss, J. Exposure to cyclic intermittent hypoxia increases expression of functional NMDA receptors in the rat carotid body. J. Appl. Physiol. 2009, 106, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hogan, J.O.; Kim, D. Voltage- and receptor-mediated activation of a non-selective cation channel in rat carotid body glomus cells. Respir. Physiol. Neurobiol. 2017, 237, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Murali, S.; Zhang, M.; Nurse, C.A. Paracrine Signaling in Glial-Like Type II Cells of the Rat Carotid Body. Adv. Exp. Med. Biol. 2015, 860, 41–47. [Google Scholar] [PubMed]
- Platero-Luengo, A.; González-Granero, S.; Durán, R.; Díaz-Castro, B.; Piruat, J.I.; García-Verdugo, J.M.; Pardal, R.; López-Barneo, J. An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia. Cell 2014, 156, 291–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, I.F.; Heese, O.; Black, P.M. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J. Neurooncol. 2000, 50, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Jyung, R.W.; LeClair, E.E.; Bernat, R.A.; Kang, T.S.; Ung, F.; McKenna, M.J.; Tuan, R.S. Expression of angiogenic growth factors in paragangliomas. Laryngoscope 2000, 110, 161–167. [Google Scholar] [CrossRef]
- Agnati, L.F.; Fuxe, K.; Zini, I.; Lenzi, P.; Hökfelt, T. Aspects on receptor regulation and isoreceptor identification. Med. Biol. 1980, 58, 182–187. [Google Scholar]
- Agnati, L.F.; Fuxe, K.; Giardino, L.; Calza, L.; Zoli, M.; Battistini, N.; Benfenati, F.; Vanderhaeghen, J.J.; Guidolin, D.; Ruggeri, M.; et al. Evidence for cholecystokinin-dopamine receptor interactions in the central nervous system of the adult and old rat. Studies on their functional meaning. Ann. N.Y. Acad. Sci. 1985, 448, 315–333. [Google Scholar] [CrossRef]
- Fuxe, K.; Agnati, L.F.; Benfenati, F.; Celani, M.; Zini, I.; Zoli, M.; Mutt, V. Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J. Neural Transm. 1983, 18, 165–179. [Google Scholar]
- Zoli, M.; Agnati, L.F.; Hedlund, P.B.; Li, X.M.; Ferré, S.; Fuxe, K. Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol. Neurobiol. 1993, 7, 293–334. [Google Scholar] [CrossRef]
- Yano, H.; Chao, M.V. Neurotrophin receptor structure and interactions. Pharm. Acta Helv. 2000, 74, 253–260. [Google Scholar] [CrossRef]
- Guidolin, D.; Marcoli, M.; Tortorella, C.; Maura, G.; Agnati, L.F. Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development? Front. Endocrinol. 2019, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Porzionato, A.; Stocco, E.; Guidolin, D.; Agnati, L.; Macchi, V.; De Caro, R. Receptor-Receptor Interactions of G Protein-Coupled Receptors in the Carotid Body: A Working Hypothesis. Front. Physiol. 2018, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Conde, S.V.; Gonzalez, C.; Batuca, J.R.; Monteiro, E.C.; Obeso, A. An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J. Neurochem. 2008, 107, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Conde, S.V.; Obeso, A.; Monteiro, E.C.; Gonzalez, C. The A(2B)-D(2) receptor interaction that controls carotid body catecholamines release locates between the last two steps of hypoxic transduction cascade. Adv. Exp. Med. Biol. 2009, 648, 161–168. [Google Scholar] [PubMed]
- Marshall, C.J. Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 1995, 80, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Alberts, B.; Johnston, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell. Garland Sci. 2007. [Google Scholar] [CrossRef]
- Del Piccolo, N.; Sarabipour, S.; Hristova, K. A New Method to Study Heterodimerization of Membrane Proteins and Its Application to Fibroblast Growth Factor Receptors. J. Biol. Chem. 2017, 292, 1288–1301. [Google Scholar] [CrossRef] [Green Version]
- Barker, P.A. High affinity not in the vicinity? Neuron 2007, 53, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Toni, T.; Dua, P.; van der Graaf, P.H. Systems Pharmacology of the NGF Signaling Through p75 and TrkA Receptors. CPT Pharmacomet. Syst. Pharmacol. 2014, 3, e150. [Google Scholar] [CrossRef]
- Di Palma, M.; Sartini, S.; Lattanzi, D.; Cuppini, R.; Pita-Rodriguez, M.; Diaz-Carmenate, Y.; Narvaez, M.; Fuxe, K.; Borroto-Escuela, D.O.; Ambrogini, P. Evidence for the existence of A2AR-TrkB heteroreceptor complexes in the dorsal hippocampus of the rat brain: Potential implications of A2AR and TrkB interplay upon ageing. Mech. Ageing Dev. 2020, 190, 111289. [Google Scholar] [CrossRef]
- Murakami, M.; Hibi, M.; Nakagawa, N.; Nakagawa, T.; Yasukawa, K.; Yamanishi, K.; Taga, T.; Kishimoto, T. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 1993, 260, 1808–1810. [Google Scholar] [CrossRef]
- De Serio, A.; Graziani, R.; Laufer, R.; Ciliberto, G.; Paonessa, G. In vitro binding of ciliary neurotrophic factor to its receptors: Evidence for the formation of an IL-6-type hexameric complex. J. Mol. Biol. 1995, 254, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Schuster, B.; Kovaleva, M.; Sun, Y.; Regenhard, P.; Matthews, V.; Grötzinger, J.; Rose-John, S.; Kallen, K.J. Signaling of human ciliary neurotrophic factor (CNTF) revisited. The interleukin-6 receptor can serve as an alpha-receptor for CTNF. J. Biol. Chem. 2003, 278, 9528–9535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, B.; Meinert, W.; Rose-John, S.; Kallen, K.J. The human interleukin-6 (IL-6) receptor exists as a preformed dimer in the plasma membrane. FEBS Lett. 2003, 538, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Harada, N.; Himeno, A.; Shigematsu, K.; Sumikawa, K.; Niwa, M. Endothelin-1 binding to endothelin receptors in the rat anterior pituitary gland: Possible formation of an ETA-ETB receptor heterodimer. Cell. Mol. Neurobiol. 2002, 22, 207–226. [Google Scholar] [CrossRef] [PubMed]
- Gregan, B.; Jürgensen, J.; Papsdorf, G.; Furkert, J.; Schaefer, M.; Beyermann, M.; Rosenthal, W.; Oksche, A. Ligand-dependent differences in the internalization of endothelin A and endothelin B receptor heterodimers. J. Biol. Chem. 2004, 279, 27679–27687. [Google Scholar] [CrossRef] [Green Version]
- Boesen, E.I. Endothelin ETB receptor heterodimerization: Beyond the ETA receptor. Kidney Int. 2008, 74, 693–694. [Google Scholar] [CrossRef] [Green Version]
- Evans, N.J.; Walker, J.W. Endothelin receptor dimers evaluated by FRET, ligand binding, and calcium mobilization. Biophys. J. 2008, 95, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Kapsokalyvas, D.; Schiffers, P.M.; Maij, N.; Suylen, D.P.; Hackeng, T.M.; van Zandvoort, M.A.; De Mey, J.G. Imaging evidence for endothelin ETA/ETB receptor heterodimers in isolated rat mesenteric resistance arteries. Life Sci. 2014, 111, 36–41. [Google Scholar] [CrossRef]
- Henchcliffe, C.; Sarva, H. Restoring Function to Dopaminergic Neurons: Progress in the Development of Cell-Based Therapies for Parkinson’s Disease. Cns Drugs 2020, 34, 559–577. [Google Scholar] [CrossRef]
- Luquin, M.R.; Manrique, M.; Guillén, J.; Arbizu, J.; Ordoñez, C.; Marcilla, I. Enhanced GDNF expression in dopaminergic cells of monkeys grafted with carotid body cell aggregates. Brain Res. 2011, 1375, 120–127. [Google Scholar] [CrossRef]
Growth Factor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|
NGF | Type I cells Type II cells | Rat | Immunohistochemistry | Atanasova and Lazarov, 2014 [20] |
BDNF | Carotid body | Rat | RT-PCR Southern blots | Hertzberg et al., 1994 [21] |
Carotid body Nerve fibers | In situ hybridization Immunohistochemistry | Brady et al., 1999 [22] | ||
Type I cells | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] | ||
Carotid body | RT-PCR Western blot | Bairam et al., 2010 [29] | ||
Carotid body | qRT-PCR ELISA | Dmitrieff et al., 2011 [25] | ||
Carotid body | qRT-PCR Western blot ELISA | Chavez-Valdez et al. 2012 [28] | ||
Type I cells Type II cells | Immunohistochemistry | Atanasova and Lazarov, 2014 [20] | ||
NT-3 | Type I cells Type II cells | Rat | Immunohistochemistry | Atanasova and Lazarov, 2014 [20] |
Growth Factor | Receptor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|---|
NGF | TrkA p75 | Type I cells Type II cells | Rat | Immunohistochemistry | Atanasova and Lazarov, 2014 [20] |
BDNF | p75 | Type I cells Type II cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] |
TrkB | Carotid body | RT-PCR Western blot | Bairam et al., 2010 [29] | ||
TrkB | Carotid body | Western blot | Dmitrieff et al., 2011 [25] | ||
TrkB p75 | Carotid body | qRT-PCR Western blot | Chavez-Valdez et al. 2012 [28] | ||
TrkB p75 | Type I cells Type II cells | Immunohistochemistry | Atanasova and Lazarov, 2014 [20] | ||
NT-3 | TrkC p75 | Type I cells Type II cells | Rat | Immunohistochemistry | Atanasova and Lazarov, 2014 [20] |
Growth Factor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|
GDNF | Carotid body | Rat | In situ hybridization | Nosrat et al., 1996 [32] |
Carotid body | Rat | ELISA | Lipton et al., 1999 [33] | |
Carotid body | Mouse | Immunohistochemistry | Erickson et al., 2001 [37] | |
Carotid body Type I cells | Rat | RT-PCR X-gal staining | Toledo-Aral et al., 2003 [34] | |
Carotid body | Rat | RT-PCR | Leitner et al., 2005 [35] | |
Type I cells | Mouse | X-gal staining | Villadiego et al., 2005 [36] | |
Carotid body | Rat | Standard and in situ ELISA | ||
Carotid body | Mouse | RT-PCR | Balbir et al., 2006 [38] | |
Carotid body | Mouse | Microarray analysis | Balbir et al., 2007 [39] | |
Type I cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] | |
Carotid body | Rat | qRT-PCR ELISA | Dmitrieff et al., 2011 [25] | |
Carotid body cell aggregates | Rat | ELISA | Rodriguez-Pallares et al., 2012 [45] | |
Carotid body | Human Rat | RT-PCR ELISA | Ortega-Sáenz et al., 2013 [42] | |
Carotid body | Mouse | qRT-PCR X-gal staining | Muñoz-Manchado et al., 2013 [46] | |
Type I cells | Rat | Immunohistochemistry | Atanasova and Lazarov, 2014 [20] | |
ARTN | Carotid body | Rat | RT-PCR | Leitner et al., 2005 [35] |
Growth Factor | Receptor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|---|
GDNF | GFRα1 RET | Carotid body | Rat | RT-PCR | Toledo-Aral et al., 2003 [34] |
GFRα1 RET | Carotid body | Rat | RT-PCR Immunohistochemistry | Leitner et al., 2005 [35] | |
RET | Type I cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] | |
RET | Carotid body | Rat | qRT-PCR | Dmitrieff et al., 2011 [25] | |
GFRα1 | Type I cells | Rat | Immunohistochemistry | Atanasova and Lazarov, 2014 [20] | |
NRTN | GFRα2 | Carotid body | Rat | RT-PCR Immunohistochemistry | Leitner et al., 2005 [35] |
ARTN | GFRα3 | Carotid body | Rat | RT-PCR Immunohistochemistry | Leitner et al., 2005 [35] |
Growth Factor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|
CNTF | Type I cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] |
IGF-I | Type I cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] |
IGF-II | Type I cells | Human | Immunohistochemistry | Suzuki et al., 1989 [53] |
Growth Factor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|
bFGF | Type I cells | Rat | Immunofluorescence | Paciga and Nurse, 2001 [58] |
Type I cells Type II cells | Rat | Immunohistochemistry | Cao et al., 2003 [60] | |
Type I cells | Human | qRT-PCR Immunohistochemistry | Douwes Dekker et al., 2007 [59] | |
Type I cells Type II cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] | |
EGF | Type I cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] Belzunegui et al., 2008 [61] |
TGF-α | Type I cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] |
TGF-β1 | Carotid body | Rat | Immunohistochemistry | Milei et al., 2004 [62] Toblli et al., 2007 [63] |
TGF-β2 | Type I cells | Rat | Immunohistochemistry | Cao et al., 2003 [60] |
BMP2 | Carotid body | Mouse | qRT-PCR Microarray analysis | Balbir et al., 2007 [39] |
Growth Factor | Receptor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|---|
CNTF | gp130 | Type I cells | Rat | RT-PCR Immunohistochemistry | Lam et al., 2008 [49] |
bFGF | FGFR | Type I cells | Rat | Immunofluorescence | Paciga and Nurse, 2001 [58] |
FGFR1 | Type I cells | Human | qRT-PCR Immunohistochemistry | Douwes Dekker et al., 2007 [59] | |
EGF | EGFR | Type I cells Type II cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] |
PDFG | PDGFR | Type I cells Type II cells | Rat | Double immunofluorescence | Izal-Azcárate et al., 2008 [23] |
Growth Factor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|
IL-1α | Carotid body | Rat | qPCR RNA sequencing | Mkrtchian et al. 2020 [68] |
IL-1β | Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2008 [49] |
Type I cells | Rat | Amplified RNA/qPCR technology | Liu et al., 2009 [69] | |
Carotid body | Rat | Immunohistochemistry | Del Rio et al., 2011 [71] | |
Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2012 [66] | |
Carotid body | Rat | qRT-PCR | Liu et al., 2012 [67] | |
Carotid body | Rat | Immunohistochemistry | Del Rio et al., 2012 [72] | |
Type I cells | Rat | Immunohistochemistry | Del Rio et al., 2012 [73] | |
Carotid body | Human | ELISA | Kåhlin et al., 2014 [76] | |
IL-6 | Carotid body lysates | Rabbit | ELISA | Feng et al., 2008 [75] |
Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2008 [49] | |
Type I cells Type II cells | Rat | Amplified RNA/qPCR technology In situ hybridization | Liu et al., 2009 [69] | |
Carotid body | Rat | Immunohistochemistry | Del Rio et al., 2011 [71] | |
Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2012 [66] | |
Carotid body | Rat | qRT-PCR | Liu et al., 2012 [67] | |
Carotid body | Human | ELISA | Kåhlin et al., 2014 [76] | |
IL-4, IL-8, IL-10 | Carotid body | Human | ELISA | Kåhlin et al., 2014 [76] |
TNFα | Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2008 [49] |
Type I cells Endothelial cells | Cat | Immunohistochemistry | Fernandez et al., 2008 [70] | |
Type I cells | Amplified RNA/qPCR technology | Liu et al., 2009 [69] | ||
Type I cells | Rat | RT-PCR Double immunofluorescence Western blot | Fernandez et al., 2011 [65] | |
Carotid body | Rat | Immunohistochemistry | Del Rio et al., 2011 [71] | |
Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2012 [66] | |
Carotid body | Rat | qRT-PCR | Liu et al., 2012 [67] | |
Carotid body | Rat | Immunohistochemistry | Del Rio et al., 2012 [72] | |
Type I cells | Rat | Immunohistochemistry | Del Rio et al., 2012 [73] | |
Carotid body | Rat | ELISA | Mkrtchian et al. 2020 [68] |
Growth Factor | Receptor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|---|
IL-1β | IL-1R1 | Type I cells | Rat | Double immunofluorescence Western blot | Zhang et al., 2007 [74] |
Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2008 [49] | ||
Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2012 [66] | ||
Type I cells | Human | Double immunofluorescence | Kåhlin et al., 2014 [76] | ||
IL-6 | IL-6Rα | Type I cells | Rat | RT-PCR Double immunofluorescence Western blot | Wang et al., 2006 [50] |
gp130 | Type I cells | Rat | RT-PCR Double immunofluorescence Western blot | Wang et al., 2006 [50] | |
Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2008 [49] | ||
Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2012 [66] | ||
Type I cells | Human | Double immunofluorescence | Kåhlin et al., 2014 [76] | ||
TNFα | TNFR1 | Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2008 [49] |
TNFR1 | Type I cells | Cat | RT-PCR Immunohistochemistry Western blot | Fernandez et al., 2008 [70] | |
TNFR2 | Endothelial cells | Cat | RT-PCR Immunohistochemistry | ||
TNFR1 | Type I cells | Rat | RT-PCR Double immunofluorescence Western blot | Fernandez et al., 2011 [65] | |
TNFR2 | Surrounding glomus cell clusters | ||||
TNFR1 | Type I cells | Rat | RT-PCR Double immunofluorescence | Lam et al., 2012 [66] |
Growth Factor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|
VEGF | Type I cells | Rat | Immunohistochemistry | Tipoe and Fung, 2003 [83] Lam et al., 2008 [87] |
Type I cells | Rat | Immunocytochemistry | Chen et al., 2003 [84] | |
Carotid body | Rat | Immunohistochemistry | Di Giulio et al., 2003 [85] Di Giulio et al., 2005 [86] Di Giulio et al., 2009 [88] | |
Carotid body lysates | Rabbit | ELISA | Feng et al., 2008 [75] | |
Type I cells | Rat | Double immunofluorescence | Belzunegui et al., 2008 [61] | |
Type I cells Blood vessels | Rat | Immunohistochemistry | Del Rio et al., 2011 [89] Felix et al., 2012 [90] | |
Carotid body | Human | Immunohistochemistry | Zara et al., 2013 [92] Zara et al., 2013 [93] | |
Carotid body | Rat | qRT-PCR | Salman et al., 2017 [91] |
Growth Factor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|
ET-1 | Type I cells | Rat | Immunocytochemistry | He et al., 1996 [96] |
Endothelial cells | Rat | Immunohistochemistry Immunoelectron microscopy | Ozaka et al., 1997 [94] | |
Type I cells | Rat | qRT-PCR Immunocytochemistry | Chen et al., 2002 [97] | |
Type I cells | Rat | Immunohistochemistry | Lam et al., 2008 [87] | |
Carotid body lysates | Rabbit | ELISA | Feng et al., 2008 [75] | |
Type I cells Endothelium of blood vessels | Cat | Immunohistochemistry | Rey et al., 2006 [99] | |
Type I cells Perilobular areas | Cat | Immunohistochemistry | Rey et al., 2006 [100] Rey et al., 2008 [102] | |
Type I cells Blood vessels | Cat | Double immunofluorescence | Rey et al., 2007 [101] | |
Type I cells | Rat | RT-PCR Double immunofluorescence EIA | Pawar et al., 2009 [103] | |
Blood vessels Carotid body parenchyma | Rat | Immunohistochemistry | Di Giulio et al., 2009 [107] | |
Type I cells Perilobular areas | Rat | Immunohistochemistry | Del Rio et al., 2011 [71] | |
Type I cells Intralobular immune cells | Rat | Double immunofluorescence | Liu et al., 2012 [67] | |
Carotid body | Rat | qRT-PCR | Liu et al., 2013 [104] | |
Carotid body Type I cells Blood vessels | Rat | qRT-PCR Double immunofluorescence EIA | Peng et al., 2013 [105] | |
Carotid body | Rat | cDNA expression array | Mosqueira and Iturriaga, 2019 [106] |
Growth Factor | Receptor | Localization | Species | Detection Methods | Reference |
---|---|---|---|---|---|
VEGF | VEGFR1 VEGFR2 | Carotid body | Rat | Immunohistochemistry | Tipoe and Fung, 2003 [83] |
Flk-1 | Type I cells | Rat | Immunocytochemistry | Chen et al., 2003 [84] | |
ET-1 | ETA-R | Type I cells | Rat | qRT-PCR Immunocytochemistry | Chen et al., 2002 [97] |
ETA-R ETB-R | Type I cells Endothelium of blood vessels | Cat | Immunohistochemistry Western blot | Rey et al., 2007 [101] Rey et al., 2008 [102] | |
ETA-R ETB-R | Carotid body | Rat | RT-PCR | Pawar et al., 2009 [103] | |
ETA-R ETB-R | Carotid body | Rat | qRT-PCR | Peng et al., 2013 [105] | |
ETA-R ETB-R | Carotid body | Rat | Western blot | Mosqueira and Iturriaga, 2019 [106] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stocco, E.; Barbon, S.; Tortorella, C.; Macchi, V.; De Caro, R.; Porzionato, A. Growth Factors in the Carotid Body—An Update. Int. J. Mol. Sci. 2020, 21, 7267. https://doi.org/10.3390/ijms21197267
Stocco E, Barbon S, Tortorella C, Macchi V, De Caro R, Porzionato A. Growth Factors in the Carotid Body—An Update. International Journal of Molecular Sciences. 2020; 21(19):7267. https://doi.org/10.3390/ijms21197267
Chicago/Turabian StyleStocco, Elena, Silvia Barbon, Cinzia Tortorella, Veronica Macchi, Raffaele De Caro, and Andrea Porzionato. 2020. "Growth Factors in the Carotid Body—An Update" International Journal of Molecular Sciences 21, no. 19: 7267. https://doi.org/10.3390/ijms21197267
APA StyleStocco, E., Barbon, S., Tortorella, C., Macchi, V., De Caro, R., & Porzionato, A. (2020). Growth Factors in the Carotid Body—An Update. International Journal of Molecular Sciences, 21(19), 7267. https://doi.org/10.3390/ijms21197267