Identification and Functional Characterization of Tissue-Specific Terpene Synthases in Stevia rebaudiana
Abstract
:1. Introduction
2. Results
2.1. Analysis of Terpenoids in Stevia
2.2. Identification of Terpene Synthases from Stevia
2.3. Functional Characterization of SrTPSs
2.4. Expression of SrTPSs under Multiple Stress Conditions
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Extraction of Essential Oils from Stevia Tissues
4.3. RNA Isolation, cDNA Synthesis and Quantitative Real-Time PCR (qRT-PCR)
4.4. Isolation of Full-Length ORF of Stevia Genes and Vector Construction
4.5. Sequence Alignment and Phylogenetic Analysis
4.6. Subcellular Localization and In Vivo Assay
4.7. In Vitro TPS Assay
4.8. GC-MS Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Accession Numbers
Abbreviations
CaMV | Cauliflower mosaic virus |
GC-MS | Gas chromatography–mass spectrometry |
GPP | Geranyl pyrophosphate |
GGPP | Geranylgeranyl pyrophosphate |
FPP | Farnesyl pyrophosphate |
ORF | Open reading frame |
SG | Steviol glycoside |
TPS | Terpene synthase |
VOC | Volatile organic compound |
YFP | Yellow fluorescent protein |
References
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1–120. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Arimura, G.; Ozawa, R.; Shimoda, T.; Nishioka, T.; Boland, W.; Takabayashi, J. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 2000, 406, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Shiojiri, K.; Kishimoto, K.; Ozawa, R.; Kugimiya, S.; Urashimo, S.; Arimura, G.; Horiuchi, J.; Nishioka, T.; Matsui, K.; Takabayashi, J. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proc. Natl. Acad. Sci. USA 2006, 103, 16672–16676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenberg, J.A.; Heil, M.; Ahman, I.; Björkman, C. Optimizing crops for biocontrol of pests and disease. Trends Plant Sci. 2015, 20, 698–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 135, 1893–1902. [Google Scholar] [CrossRef] [Green Version]
- Bohlmann, J.; Meyer-Gauen, G.; Croteau, R. Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. USA 1998, 95, 4126–4133. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef]
- Schuh, G.; Heiden, A.; Hoffmann, T.H.; Kahl, J.; Rockel, P.; Rudolph, J.; Wildt, J. Emissions of volatile organic compounds from sunflower and beech: Dependence on temperature and light intensity. J. Atmos. Chem. 1997, 27, 291–318. [Google Scholar] [CrossRef]
- Loreto, F.; Delfine, S. Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol. 2000, 123, 1605–1610. [Google Scholar] [CrossRef] [Green Version]
- Hilker, M.; Kobs, C.; Varama, M.; Schrank, K. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J. Exp. Biol. 2002, 205, 455–461. [Google Scholar]
- Vallat, A.; Gu, H.; Dorn, S. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 2005, 66, 1540–1550. [Google Scholar] [CrossRef]
- Yamasaki, Y.; Akimitsu, K. In situ localization of gene transcriptions for monoterpene synthesis in irregular parenchymic cells surrounding the secretory cavities in rough lemon (Citrus jambhiri). J. Plant Physiol. 2007, 164, 1436–1448. [Google Scholar] [CrossRef] [PubMed]
- Irmisch, S.; Krause, S.T.; Kunert, G.; Gershenzon, J.; Degenhardt, J.; Köllner, T.G. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biol. 2012, 12, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, A.; Agrawal, L.; Misra, R.C.; Sharma, S.; Ghosh, S. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes. BMC Genom. 2015, 16, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.J.; Jin, J.; Zheng, J.; Wong, L.; Chua, N.H.; Jang, I.C. Comparative transcriptomics unravel biochemical specialization of leaf tissues of Stevia for diterpenoid production. Plant Physiol. 2015, 169, 2462–2480. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Tian, P.; Zhang, F.; Qin, H.; Miao, H.; Chen, Q.; Hu, Z.; Cao, L.; Wang, M.; Gu, X.; et al. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus). Plant Physiol. 2016, 172, 603–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.K.; Guleria, P. Steviol glycosides from Stevia: Biosynthesis pathway review and their application in foods and medicine. Crit. Rev. Food Sci. Nutr. 2012, 52, 988–998. [Google Scholar] [CrossRef] [PubMed]
- Cioni, P.L.; Morelli, I.; Andolfi, L.; Macchia, M.; Ceccarini, L. Qualitative and quantitative analysis of essential oils of five lines Stevia rebaudiana Bert. genotypes cultivated in Pisa (Italy). J. Essent. Oil Res. 2006, 18, 76–79. [Google Scholar] [CrossRef]
- Jin, J.; Kim, M.J.; Dhandapani, S.; Tjhang, J.G.; Yin, J.L.; Wong, L.; Sarojam, R.; Chua, N.H.; Jang, I.C. Floral transcriptome of Ylang Ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. J. Exp. Bot. 2015, 66, 3959–3975. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Sharma, R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech. 2015, 5, 129–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Suzuki, N.; Ohme-Takagi, M.; Shinshi, H. Immediate early induction of mRNAs for ethylene-responsive transcription factors in tobacco leaf strips after cutting. Plant J. 1998, 15, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chao, G.; Singh, K.B. The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. Plant J. 1996, 10, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Lang, V.; Palva, E.T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 1992, 20, 951–962. [Google Scholar] [CrossRef]
- Lang, V.; Mantyla, E.; Welin, B.; Sundberg, B.; Palva, E.T. Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol. 1994, 104, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.A.; Wildung, M.R.; Williams, D.C.; Hyatt, D.C.; Croteau, R. cDNA isolation, functional expression, and characterization of (+)-alpha-pinene synthase and (-)-alpha-pinene synthase from loblolly pine (Pinus taeda): Stereocontrol in pinene biosynthesis. Arch. Biochem. Biophys. 2003, 411, 267–276. [Google Scholar] [CrossRef]
- Martin, D.M.; Bohlmann, J. Identification of Vitis vinifera (-)-alpha-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry 2004, 65, 1223–1229. [Google Scholar] [CrossRef]
- Lee, S.; Chappell, J. Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol. 2008, 147, 1017–1033. [Google Scholar] [CrossRef] [Green Version]
- Fahnrich, A.; Krause, K.; Piechulla, B. Product variability of the ‘cineole cassette’ monoterpene synthases of related Nicotiana species. Mol. Plant 2011, 4, 965–984. [Google Scholar] [CrossRef] [Green Version]
- Waliwitiya, R.; Belton, P.; Nicholson, R.A.; Lowenberger, C.A. Plant terpenoids: Acute toxicities and effects on flight motor activity and wing beat frequency in the blow fly Phaenicia sericata. J. Econ. Entomol. 2012, 105, 72–84. [Google Scholar] [CrossRef]
- Cai, Y.; Jia, J.W.; Crock, J.; Lin, Z.X.; Chen, X.Y.; Croteau, R. A cDNA clone for beta-caryophyllene synthase from Artemisia annua. Phytochemistry 2002, 61, 523–529. [Google Scholar] [CrossRef]
- Langenheim, J.H. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 1994, 20, 1223–1280. [Google Scholar] [CrossRef] [PubMed]
- Gouinguené, S.; Degen, T.; Turlings, T.C.J. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 2001, 11, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Rasmann, S.; Köllner, T.G.; Degenhardt, J.; Hiltpold, I.; Toepfer, S.; Kuhlmann, U.; Gershenzon, J.; Turlings, T.C. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 2005, 434, 732–737. [Google Scholar] [CrossRef]
- Köllner, T.G.; Held, M.; Lenk, C.; Hiltpold, I.; Turlings, T.C.; Gershenzon, J.; Degenhardt, J. A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 2008, 20, 482–494. [Google Scholar] [CrossRef] [Green Version]
- Beale, M.H.; Birkett, M.A.; Bruce, T.J.A.; Chamberlain, K.; Field, L.F.; Huttly, A.K.; Martin, J.L.; Parker, R.; Philips, A.L.; Pickett, J.A.; et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behaviour. Proc. Natl. Acad. Sci. USA 2006, 103, 10509–10513. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.S.; Köllner, T.G.; Wiggins, G.; Grant, J.; Degenhardt, J.; Chen, F. Molecular and genomic basis of volatile---mediated indirect defense against insects in rice. Plant J. 2008, 55, 491–503. [Google Scholar] [CrossRef]
- Bleeker, P.M.; Mirabella, R.; Diergaarde, P.J.; VanDoorn, A.; Tissier, A.; Kant, M.R.; Prins, M.; Vos, M.D.; Haring, M.A.; Schuurink, R.C. Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc. Natl. Acad. Sci. USA 2012, 109, 20124–20129. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.J.; Gang, D.R. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues. PLoS ONE 2012, 7, e51481. [Google Scholar] [CrossRef] [Green Version]
- Khrimian, A.; Shirali, S.; Guzman, F. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes. J. Nat. Prod. 2015, 78, 3071–3074. [Google Scholar] [CrossRef]
- Martin, D.M.; Faldt, J.; Bohlmann, J. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 2004, 135, 1908–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köpke, D.; Schröder, R.; Fischer, H.M.; Gershenzon, J.; Hilker, M.; Schmidt, A. Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine? Planta 2008, 228, 427–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeling, C.I.; Weisshaar, S.; Ralph, S.G.; Jancsik, S.; Hamberger, B.; Dullat, H.K.; Bohlmann, J. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol. 2011, 11, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, R.K. Chemical composition of the essential oil of Chromolaena odorata (L.) R. M. King & H. Rob. Roots from India. J. Chem. 2013, 2013, 195057. [Google Scholar]
- Martins, D.F.; Emer, A.A.; Batisti, A.P.; Donatello, N.; Carlesso, M.G.; Mazzardo-Martins, L.; Venzke, D.; Micke, G.A.; Pizzolatti, M.G.; Piovezan, A.P.; et al. Inhalation of Cedrus atlantica essential oil alleviates pain behavior through activation of descending pain modulation pathways in a mouse model of postoperative pain. J. Ethnopharmacol. 2015, 175, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Todorova, M.; Trendafilova, A.; Ivanova, V.; Danova, K.; Dimitrov, D. Essential oil composition of Inula britannica L. from Bulgaria. Nat. Prod. Res. 2017, 31, 1693–1696. [Google Scholar] [CrossRef]
- Yadav, H.; Dreher, D.; Athmer, B.; Porzel, A.; Gavrin, A.; Baldermann, S.; Tissier, A.; Hause, B. Medicago TERPENE SYNTHASE 10 is involved in defense against an oomycete root pathogen. Plant Physiol. 2019, 180, 1598–1613. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.; Madilao, L.L.; Ralph, S.; Bohlmann, J. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol. 2005, 137, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Agarwal, S.K. Himachalol and beta-himachalene: Insecticidal principles of himalayan cedarwood oil. J. Chem. Ecol. 1988, 14, 1145–1151. [Google Scholar] [CrossRef]
- Chaudhary, A.; Sharma, P.; Nadda, G.; Tewary, D.K.; Singh, B. Chemical composition and larvicidal activities of the Himalayan cedar, Cedrus deodara essential oil and its fractions against the diamondback moth, Plutella xylostella. J. Insect Sci. 2011, 11, 157. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, R. Quantification on the LightCycler. In Rapid Cycle Real-time PCR, Methods and Applications; Meuer, S., Wittwer, C., Nakagawara, K., Eds.; Springer Press: Heidelberg, Germany, 2001; pp. 21–34. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 1992, 8, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
No. a | Compound name | RT b | RI c | Molecular Formula | RA (%) d | |||
---|---|---|---|---|---|---|---|---|
L | F | S | R | |||||
1 | p-Xylene | 8.17 | 886 | C8H10 | 1.10 | 0.29 | 0.20 | |
2 | α-Pinene | 9.18 | 962 | C10H16 | 0.27 | 0.51 | 0.28 | |
3 | β-Phellandrene | 9.81 | 1009 | C10H16 | 0.28 | 0.35 | 0.19 | |
4 | β-Pinene | 9.97 | 1021 | C10H16 | 3.52 | 5.73 | 3.59 | |
5 | α-Terpinolene | 10.27 | 1044 | C10H16 | 1.81 | |||
6 | α-Phellandrene | 10.34 | 1049 | C10H16 | 0.82 | |||
7 | β-Cymene | 10.68 | 1074 | C10H14 | 0.26 | |||
8 | D-Sylvestrene | 10.76 | 1080 | C10H16 | 0.27 | |||
9 | Limonene | 10.80 | 1084 | C10H16 | 0.30 | |||
10 | β-Ocimene | 10.98 | 1096 | C10H16 | 0.20 | 0.37 | ||
11 | β-Linalool | 11.93 | 1168 | C10H18O | 0.89 | 0.37 | 0.54 | |
12 | α-Terpineol | 12.17 | 1186 | C10H18O | 4.51 | |||
13 | O-Methylthymol | 14.19 | 1338 | C11H16O | 2.59 | |||
14 | γ-Elemene | 15.97 | 1472 | C15H24 | 0.87 | 0.26 | 1.53 | |
15 | Neryl acetate | 16.15 | 1485 | C12H20O2 | 0.41 | 6.61 | ||
16 | α-Longipinene | 16.19 | 1489 | C15H24 | 3.18 | |||
17 | α-Ylangene | 16.59 | 1519 | C15H24 | 0.11 | |||
18 | δ-Elemene | 16.68 | 1525 | C15H24 | 1.00 | 0.31 | 0.22 | |
19 | Modephene | 16.75 | 1527 | C15H24 | 8.49 | |||
20 | β-Elemene | 16.79 | 1533 | C15H24 | 13.61 | 6.03 | 2.77 | |
21 | α-Isocomene | 16.85 | 1538 | C15H24 | 10.27 | |||
22 | β-Isocomene | 17.20 | 1564 | C15H24 | 4.63 | |||
23 | β-Caryophyllene | 17.33 | 1574 | C15H24 | 4.00 | 5.27 | 5.02 | 1.66 |
24 | γ-Curcumene | 17.40 | 1579 | C15H24 | 1.59 | |||
25 | β-Farnesene | 17.58 | 1593 | C15H24 | 52.53 | 0.83 | ||
26 | α-Caryophyllene | 17.82 | 1611 | C15H24 | 0.79 | 0.85 | 3.67 | 0.66 |
27 | α-Bergamotol | 17.94 | 1620 | C15H24O | 1.10 | |||
28 | β-Bergamotene | 18.02 | 1625 | C15H24 | 0.63 | |||
29 | β-Sesquiphellandrene | 18.02 | 1625 | C15H24 | 15.91 | |||
30 | Germacrene D | 18.20 | 1639 | C15H24 | 0.79 | 0.45 | 6.25 | |
31 | α-Himachalene | 18.22 | 1641 | C15H24 | 0.81 | |||
32 | β-Selinene | 18.29 | 1646 | C15H24 | 0.33 | 0.59 | ||
33 | Bicyclogermacrene | 18.42 | 1656 | C15H24 | 1.40 | 0.55 | 4.70 | 0.34 |
34 | Alloaromadendrene | 18.55 | 1666 | C15H24 | 0.09 | 0.81 | ||
35 | β-Copaene | 18.63 | 1671 | C15H24 | 0.08 | 0.20 | 0.65 | |
36 | δ-Cadinene | 18.71 | 1678 | C15H24 | 0.11 | 0.33 | ||
37 | γ-Bisabolene | 18.76 | 1682 | C15H24 | 0.25 | |||
38 | β-Caryophyllene oxide | 19.07 | 1704 | C15H24O | 0.32 | |||
39 | Nerolidol | 19.13 | 1709 | C15H26O | 0.71 | 1.82 | 0.84 | |
40 | Neryl-2-methylbutanoate | 19.23 | 1717 | C15H26O2 | 0.37 | |||
41 | Farnesol | 19.30 | 1722 | C15H26O | 0.30 | |||
42 | Germacrene D-4-ol | 19.52 | 1739 | C15H26O | 0.63 | 0.31 | 1.35 | |
43 | Spathulenol | 19.57 | 1742 | C15H24O | 0.25 | 0.82 | ||
44 | α-Caryophyllene oxide | 19.69 | 1751 | C15H24O | 0.20 | 0.27 | ||
45 | 6-Methyl-6-(5-methylfuran-2-yl)heptan-2-one | 20.20 | 1790 | C13H20O2 | 0.69 | |||
46 | β-Atlantone | 20.82 | 1836 | C15H22O | 0.54 | 4.86 | ||
47 | Curcuphenol | 21.18 | 1863 | C15H22O | 0.82 | |||
48 | Zingiberenol | 21.50 | 1887 | C15H26O | 1.51 | |||
49 | Himachalol | 21.65 | 1898 | C15H26O | 1.67 | 21.00 | ||
50 | Aristolenol | 21.68 | 1901 | C15H24O | 0.20 | 0.33 | ||
51 | Cedrenol | 21.95 | 1921 | C15H24O | 0.25 | 1.50 | ||
52 | Neophytadiene | 22.60 | 1970 | C20H38 | 33.00 | 0.35 | 1.08 | |
53 | 3,7,11,15-Tetramethyl-2-hexadecene | 22.68 | 1976 | C20H40 | 1.23 | 0.20 | ||
54 | 3,7,11,15-Tetramethyl-2-hexadecenol | 22.89 | 1992 | C20H40O | 3.91 | 0.10 | 0.16 | |
55 | 2-Methyl-7-octadecyne | 23.11 | 2008 | C19H36 | 7.68 | 0.25 | 0.29 | |
56 | 2,5,5,8a-Tetramethyl-4-methylene-6,7,8,8a-tetrahydro-4H,5H-chromen-4a-yl hydroperoxide | 23.36 | 2027 | C14H22O3 | 0.57 | |||
57 | Ethyl 9,12-hexadecadienoate | 23.46 | 2035 | C18H32O2 | 1.48 | |||
58 | Sclareol | 25.82 | 2212 | C20H36O2 | 2.60 | |||
59 | 2-cis-9-Octadecenyloxyethanol | 28.60 | 2421 | C20H40O2 | 1.24 | 0.40 | ||
60 | Methyl 5,9-docosadienoate | 28.73 | 2430 | C23H42O2 | 0.44 | |||
61 | 4,8,13-Duvatriene-1,3-diol | 29.19 | 2465 | C20H34O2 | 1.91 | 4.08 | 0.41 | |
62 | 8(20),14-Labdadiene-6α,13-diol | 29.58 | 2494 | C20H34O2 | 1.02 | |||
63 | 8(17), 12-Labdadiene-15,16-dial | 29.67 | 2501 | C20H30O2 | 9.23 | |||
64 | Copaiferic acid | 30.64 | 2574 | C20H32O2 | 9.82 | 18.00 | 1.61 | |
65 | Copalic acid | 30.70 | 2579 | C20H32O2 | 10.50 | 29.60 | 1.64 | |
66 | 5α-Pregnane-18,20-diol | 31.10 | 2608 | C21H36O2 | 1.76 | 3.31 | ||
67 | 2-Methylenecholestan-3-ol | 31.21 | 2617 | C28H48O | 5.30 | |||
68 | Heptacosane | 31.45 | 2635 | C27H56 | 1.18 | |||
69 | Isopropyl hexacosyl ether | 33.24 | 2769 | C29H60O | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhandapani, S.; Kim, M.J.; Chin, H.J.; Leong, S.H.; Jang, I.-C. Identification and Functional Characterization of Tissue-Specific Terpene Synthases in Stevia rebaudiana. Int. J. Mol. Sci. 2020, 21, 8566. https://doi.org/10.3390/ijms21228566
Dhandapani S, Kim MJ, Chin HJ, Leong SH, Jang I-C. Identification and Functional Characterization of Tissue-Specific Terpene Synthases in Stevia rebaudiana. International Journal of Molecular Sciences. 2020; 21(22):8566. https://doi.org/10.3390/ijms21228566
Chicago/Turabian StyleDhandapani, Savitha, Mi Jung Kim, Hui Jun Chin, Sing Hui Leong, and In-Cheol Jang. 2020. "Identification and Functional Characterization of Tissue-Specific Terpene Synthases in Stevia rebaudiana" International Journal of Molecular Sciences 21, no. 22: 8566. https://doi.org/10.3390/ijms21228566
APA StyleDhandapani, S., Kim, M. J., Chin, H. J., Leong, S. H., & Jang, I.-C. (2020). Identification and Functional Characterization of Tissue-Specific Terpene Synthases in Stevia rebaudiana. International Journal of Molecular Sciences, 21(22), 8566. https://doi.org/10.3390/ijms21228566