Identification of Mitochondrial DNA (NUMTs) in the Nuclear Genome of Daphnia magna
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NUMTs | nuclear copies of mitochondrial dna |
BP | base pairs |
LG | linkage groups |
KIT | Korea Institute of Toxicology |
EST | expressed sequence tags |
nDNA | nuclear DNA |
mtDNA | mitochondrial DNA |
BLAST | Basic Local Alignment Search Tool |
ND1-6 and ND4L | NADH dehydrogenase subunits 1–6 and subunit 4L |
CO1-3 or COX1-3 | cytochrome oxidase subunits I-III |
ATP6 and 8 | ATPase subunit 6 and 8 |
CYTB | cytochrome b |
12S rRNA | gene for small subunit ribosomal RNA |
16S rRNA | gene for large subunit ribosomal RNA |
TRNA | gene coding transfer RNA |
References
- Ebert, D. A genome for the environment. Science 2011, 331, 539–540. [Google Scholar] [CrossRef] [PubMed]
- Lampert, W. Daphnia: Development of a model organism in ecology and evolution. Excell. Ecol. 2011, 21, 1–275. [Google Scholar]
- Miner, B.E.; de Meester, L.; Pfrender, M.E.; Lampert, W.; Hairston, N.G. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc. R. Soc. B Biol. Sci. 2012, 279, 1873–1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bownik, A.; Ślaska, B.; Bochra, J.; Gumieniak, K.; Gałek, K. Procaine penicillin alters swimming behaviour and physiological parameters of Daphnia magna. Environ. Sci. Pollut. Res. 2019, 26, 18662–18673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bownik, A.; Jasieczek, M.; Kosztowny, E. Ketoprofen affects swimming behavior and impairs physiological endpoints of Daphnia magna. Sci. Total Environ. 2020, 725. [Google Scholar] [CrossRef] [PubMed]
- Bownik, A.; Szabelak, A.; Kulińska, M.; Wałęka, M. Effects of L-proline on swimming parameters of Daphnia magna subjected to heat stress. J. Therm. Biol. 2019, 84, 154–163. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Bownik, A.; Dudka, J.; Kowal, K.; Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Sci. Total Environ. 2020, in press. [Google Scholar] [CrossRef]
- Bownik, A.; Ślaska, B.; Dudka, J. Cisplatin affects locomotor activity and physiological endpoints of Daphnia magna. J. Hazard. Mater. 2020, 384. [Google Scholar] [CrossRef]
- Persoone, G.; Baudo, R.; Cotman, M.; Blaise, C.; Thompson, K.C.; Moreira-Santos, M.; Vollat, B.; Törökne, A.; Han, T. Review on the acute Daphnia magna toxicity test? Evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowl. Manag. Aquat. Ecosyst. 2009, 1–29. [Google Scholar] [CrossRef] [Green Version]
- OECD. Daphnia Acute Immobilisation Test and Reproduction Test. In OECD Guideline for Testing of Chemicals; 1984; pp. 1–16. Available online: https://www.oecd.org/chemicalsafety/risk-assessment/1948249.pdf (accessed on 18 November 2020).
- Routtu, J.; Hall, M.D.; Albere, B.; Beisel, C.; Bergeron, R.D.; Chaturvedi, A.; Choi, J.H.; Colbourne, J.; Meester, L.D.; Stephens, M.T.; et al. An SNP-based second-generation genetic map of Daphnia magna and its application to QTL analysis of phenotypic traits. BMC Genom. 2014, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Routtu, J.; Jansen, B.; Colson, I.; De Meester, L.; Ebert, D. The first-generation Daphnia magna linkage map. BMC Genomics 2010, 11. [Google Scholar] [CrossRef] [PubMed]
- Dukić, M.; Berner, D.; Roesti, M.; Haag, C.R.; Ebert, D. A high-density genetic map reveals variation in recombination rate across the genome of Daphnia magna. BMC Genet. 2016, 17, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.Y.; Choi, B.S.; Kim, M.S.; Park, J.C.; Jeong, C.B.; Han, J.; Lee, J.S. The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. Aquat. Toxicol. 2019, 210, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Colson, I.; Du Pasquier, L.; Ebert, D. Intragenic tandem repeats in Daphnia magna: Structure, function and distribution. BMC Res. Notes 2009, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, J.V.; Yuhki, N.; Masuda, R.; Modi, W.; O’Brien, S.J. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol. 1994, 39, 174–190. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yang, A. Exceptionally large mitochondrial fragments to the nucleus in sequenced mollusk genomes. Mitochondrial DNA Part A 2016, 27, 1409–1410. [Google Scholar] [CrossRef]
- Song, H.; Moulton, M.J.; Hiatt, K.D.; Whiting, M.F. Uncovering historical signature of mitochondrial DNA hidden in the nuclear genome: The biogeography of Schistocerca revisited. Cladistics 2013, 29, 643–662. [Google Scholar] [CrossRef]
- Leister, D. Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet. 2005, 21, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.T.; Knowlton, N. Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Mol. Biol. Evol. 2001, 18, 1484–1493. [Google Scholar] [CrossRef] [Green Version]
- Bensasson, D.; Zhang, D.X.; Hartl, D.L.; Hewitt, G.M. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecol. Evol. 2001, 16, 314–321. [Google Scholar] [CrossRef]
- Verscheure, S.; Backeljau, T.; Desmyter, S. In silico discovery of a nearly complete mitochondrial genome Numt in the dog (Canis lupus familiaris) nuclear genome. Genetica 2015, 143, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Hazkani-Covo, E.; Zeller, R.M.; Martin, W. Molecular poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 2010, 6. [Google Scholar] [CrossRef] [PubMed]
- Viljakainen, L.; Oliveira, D.C.S.G.; Werren, J.H.; Behura, S.K. Transfers of mitochondrial DNA to the nuclear genome in the wasp Nasonia vitripennis. Insect Mol. Biol. 2010, 19, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Behura, S.K. Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome. Mol. Biol. Evol. 2007, 24, 1492–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Moulton, M.J.; Whiting, M.F. Rampant nuclear insertion of mtDNA across diverse lineages with in Orthoptera (Insecta). PLoS ONE 2014, 9, 41–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Xing, Y.; Mao, X. The little brown bat nuclear genome contains an entire mitochondrial genome: Real or artifact? Gene 2017, 629, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, N.; Nakajima, A.; Horiuchi, M.; Shinagawa, M. Multiple nuclear pseudogenes of mitochondrial DNA exist in the canine genome. Mamm. Genome 2002, 13, 365–372. [Google Scholar] [CrossRef]
- Lai, R.W.; Lu, R.; Danthi, P.S.; Bravo, J.I.; Goumba, A.; Sampathkumar, N.K.; Benayoun, B.A. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep. 2019, 52, 86–108. [Google Scholar] [CrossRef]
- Berthier, K.; Chapuis, M.P.; Moosavi, S.M.; Tohidi-Esfahani, D.; Sword, G.A. Nuclear insertions and heteroplasmy of mitochondrial DNA as two sources of intra-individual genomic variation in grasshoppers. Syst. Entomol. 2011, 36, 285–299. [Google Scholar] [CrossRef]
- Mishmar, D.; Ruiz-Pesini, E.; Brandon, M.; Wallace, D.C. Mitochondrial DNA-Like Sequences in the Nucleus (NUMTs): Insights into Our African Origins and the Mechanism of Foreign DNA Integration. Hum. Mutat. 2004, 23, 125–133. [Google Scholar] [CrossRef]
- Woischnik, M.; Moraes, C.T. Pattern of Organization of Human Mitochondrial Pseudogenes in the Nuclear Genome. Genome Res. 2002, 12, 885–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertagnolli, A.C.; Soares, P.; van Asch, B.; Amorim, A.; Cirnes, L.; Máximo, V.; Cassali, G.D. An assessment of the clonality of the components of canine mixed mammary tumours by mitochondrial DNA analysis. Vet. J. 2009, 182, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Murgia, C.; Pritchard, J.K.; Kim, S.Y.; Fassati, A.; Weiss, R.A. Clonal Origin and Evolution of a Transmissible Cancer. Cell 2006, 126, 477–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ślaska, B.; Grzybowska-Szatkowska, L.; Bugno-Poniewierska, M.; Surdyka, M.; Śmiech, A. Nuclear and mitochondrial DNA mutation in human and canine tumors. Med. Weter. 2013, 69, 195–202. [Google Scholar]
- Souvorov, A.; Kapustin, Y.; Kiryutin, B.; Chetvernin, V.; Tatusova, T.; Lipman, D. Gnomon-NCBI Eukaryotic Gene Prediction Tool; National Center for Biotechnology Information: Bethesda, MD, USA, 2010. [Google Scholar]
- Tourmen, Y.; Baris, O.; Dessen, P.; Jacques, C.; Malthièry, Y.; Reynier, P. Structure and Chromosomal Distribution of Human Mitochondrial Pseudogenes. Genomics 2002, 80, 71–77. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Dewaard, J.R.; Landry, J.F. DNA barcodes for 1/1000 of the animal Kingdom. Biol. Lett. 2010, 6, 359–362. [Google Scholar] [CrossRef]
- Moritz, C.; Cicero, C. DNA barcoding: Promise and pitfalls. PLoS Biol. 2004, 2. [Google Scholar] [CrossRef] [Green Version]
- Bertheau, C.; Schuler, H.; Krumböck, S.; Arthofer, W.; Stauffer, C. Hit or miss in phylogeographic analyses: The case of the cryptic NUMTs. Mol. Ecol. Resour. 2011, 11, 1056–1059. [Google Scholar] [CrossRef]
- Arulandhu, A.J.; Staats, M.; Hagelaar, R.; Voorhuijzen, M.M.; Prins, T.W.; Scholtens, I.; Costessi, A.; Duijsings, D.; Rechenmann, F.; Gaspar, F.B.; et al. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. Gigascience 2017, 6, 1–18. [Google Scholar] [CrossRef]
- Coghlan, M.L.; Haile, J.; Houston, J.; Murray, D.C.; White, N.E.; Moolhuijzen, P.; Bellgard, M.I.; Bunce, M. Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet. 2012, 8. [Google Scholar] [CrossRef]
- Hazkani-Covo, E.; Graur, D. A comparative analysis of numt evolution in human and chimpanzee. Mol. Biol. Evol. 2007, 24, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, M.; Sazzini, M.; Calabrese, F.M.; Simone, D.; Boattini, A.; Romeo, G.; Luiselli, D.; Attimonelli, M.; Gasparre, G. Polymorphic NumtS trace human population relationships. Hum. Genet. 2012, 131, 757–771. [Google Scholar] [CrossRef] [PubMed]
- Gaziev, A.I.; Shaikhaev, G.O. Nuclear mitochondrial Pseudogenes. Mol. Biol. 2010, 44, 358–368. [Google Scholar] [CrossRef]
- Dayama, G.; Emery, S.B.; Kidd, J.M.; Mills, R.E. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res. 2014, 42, 12640–12649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatre, L.; Ricchetti, M. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [Green Version]
- Roesch, L.F.W.; Fulthorpe, R.R.; Jaccques, R.J.S.; Bento, F.M.; de Oliveira Camargo, F.A. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. World J. Microbiol. Biotechnol. 2006, 22, 3389–3402. [Google Scholar] [CrossRef]
- Karlin, S.; Altschul, S.F. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 1990, 87, 2264–2268. [Google Scholar] [CrossRef] [Green Version]
Linkage Group (LG) | Physical Length (bp) from Lee et al., 2019 | Sum of NUMTs Lengths (bp) | Percentage Content of NUMTs on LG |
---|---|---|---|
LG1 | 14,058,888 | 5.063 | 0.036% |
LG2 | 16,351,056 | 6.071 | 0.037% |
LG3 | 11,081,246 | 4.389 | 0.040% |
LG4 | 10,002,879 | 4.147 | 0.041% |
LG5 | 10,116,075 | 4.600 | 0.045% |
LG6 | 9,588,688 | 3.997 | 0.042% |
LG7 | 10,149,764 | 4.829 | 0.048% |
LG8 | 9,006,911 | 3.533 | 0.039% |
LG9 | 8,299,553 | 3.966 | 0.048% |
LG10 | 8,061,327 | 3.796 | 0.047% |
Total | 106,716,387 | 44.391 | 0.042% |
mtDNA Sequence | LG | Number of NUMTs (100% Identical) * | Sum of Gene Fragments (bp) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
TRNA-GLN | 3 | 6 | 5 | 7 | 2 | 5 | 3 | 2 | 5 | 4 | 42 (15) | 966 |
TRNA-MET | 2 | 2 | 1 | 1 | - | - | - | - | - | - | 6 (6) | 102 |
ND2 | 12 | 18 | 15 | 12 | 12 | 9 | 12 | 12 | 6 | 7 | 115 (15) | 3235 |
TRNA-TRP | 3 | 2 | 3 | 3 | 2 | - | - | 3 | 1 | 2 | 19 (6) | 447 |
TRNA-CYS | 11 | 13 | 9 | 14 | 5 | 14 | 11 | 10 | 11 | 12 | 110 (12) | 2596 |
TRNA-TYR | - | 1 | - | - | - | - | - | 1 | 1 | 1 | 4 (1) | 100 |
COX1 | 1 | 1 | 2 | 2 | 5 | 3 | 7 | 3 | 3 | 4 | 31 (2) | 1175 |
TRNA-LEU1 | 5 | 1 | 9 | 3 | 1 | 6 | 5 | 3 | 1 | 2 | 36 (10) | 786 |
COX2 | 2 | 6 | 3 | 4 | 14 | 7 | 5 | 5 | 2 | 4 | 52 (9) | 1492 |
TRNA-LYS | - | 2 | 3 | - | 2 | - | 2 | 2 | - | 1 | 12 (3) | 290 |
TRNA-ASP | 3 | - | 1 | 2 | - | 2 | 1 | 3 | - | - | 12 (1) | 273 |
ATP8 | - | 5 | 1 | 2 | - | 1 | 3 | 2 | 1 | - | 15 (3) | 438 |
ATP6 | 4 | 7 | 4 | 4 | 5 | 2 | 2 | 1 | 2 | 3 | 34 (2) | 957 |
COX3 | 3 | 2 | 2 | - | 4 | 2 | 3 | - | 3 | 4 | 23 (3) | 717 |
TRNA-GLY | 2 | 3 | 4 | - | 2 | 1 | 5 | 2 | 2 | 2 | 23 (3) | 512 |
ND3 | 17 | 17 | 14 | 6 | 9 | 14 | 10 | 9 | 15 | 2 | 113 (21) | 2876 |
TRNA-ALA | 1 | 6 | 1 | 5 | 1 | 1 | 1 | 2 | - | 1 | 19 (0) | 407 |
TRNA-ARG | 2 | 1 | 5 | 5 | 2 | 5 | - | 1 | 1 | 3 | 25 (4) | 695 |
TRNA-ASN | 1 | 1 | - | 1 | - | - | - | - | 1 | - | 4 (1) | 112 |
TRNA-SER1 | - | - | - | - | - | - | - | 2 | - | - | 2 (0) | 52 |
TRNA-GLU | 5 | 7 | 4 | 2 | 4 | 3 | 4 | 4 | 5 | - | 38 (8) | 924 |
TRNA-PHE | - | 1 | - | - | 2 | 1 | - | 2 | 2 | 1 | 9 (2) | 187 |
ND5 | 17 | 15 | 7 | 11 | 7 | 10 | 10 | 3 | 10 | 8 | 98 (10) | 3244 |
TRNA-HIS | - | 3 | 1 | 2 | 2 | 3 | 7 | 1 | 3 | 2 | 24 (6) | 536 |
ND4 | 7 | 4 | 3 | 4 | 2 | 1 | 2 | 4 | 3 | 7 | 37 (1) | 1194 |
ND4L | 4 | 3 | 3 | 1 | 1 | 2 | 1 | 2 | - | 6 | 23 (2) | 615 |
TRNA-THR | 5 | 2 | - | - | 2 | - | 3 | 3 | 2 | - | 17 (9) | 355 |
TRNA-PRO | - | - | 1 | 3 | - | - | 1 | - | 1 | - | 6 (1) | 151 |
ND6 | 9 | 14 | 12 | 7 | 5 | 8 | 14 | 10 | 4 | 8 | 91 (7) | 2445 |
CYTB | 8 | 14 | 7 | 5 | 6 | 5 | 4 | 3 | 6 | 4 | 62 (8) | 1631 |
TRNA-SER2 | 9 | 7 | 9 | 3 | 9 | 6 | 5 | 4 | 5 | 11 | 68 (16) | 2644 |
ND1 | 15 | 12 | 9 | 13 | 6 | 11 | 13 | 6 | 5 | 6 | 96 (16) | 1486 |
TRNA-LEU2 | - | 3 | - | - | 1 | 1 | - | 1 | - | - | 6 (2) | 135 |
16S rRNA | 11 | 19 | 3 | 7 | 15 | 8 | 11 | 11 | 10 | 10 | 105 (10) | 3700 |
TRNA-VAL | 2 | 2 | 1 | 1 | 3 | 1 | 2 | 2 | - | - | 14 (4) | 320 |
12S rRNA | 12 | 16 | 6 | 7 | 5 | 6 | 12 | 5 | 13 | 10 | 92 (10) | 2617 |
TRNA-ILE | - | - | - | - | - | - | - | - | - | - | 0 | 0 |
D-LOOP | 13 | 12 | 22 | 13 | 29 | 12 | 12 | 10 | 11 | 13 | 147 (23) | 3979 |
SUM | 189 | 228 | 170 | 150 | 165 | 150 | 171 | 134 | 135 | 138 | 1630 (253) | |
Sum of fragments in the LG (bp) | 5063 | 6071 | 4389 | 4147 | 4600 | 3997 | 4829 | 3533 | 3966 | 3796 | 44.391 |
Sequence | Length (in bp) | Min (in bp) | % Min | Max (in bp) | % Max |
---|---|---|---|---|---|
TRNA-GLN | 68 | 16 | 24% | 44 | 65% |
TRNA-MET | 65 | 16 | 25% | 18 | 28% |
ND2 | 987 | 18 | 2% | 58 | 6% |
TRNA-TRP | 64 | 16 | 25% | 38 | 59% |
TRNA-CYS | 64 | 16 | 25% | 40 | 63% |
TRNA-TYR | 64 | 18 | 28% | 35 | 55% |
COX1 | 1537 | 19 | 1% | 72 | 5% |
TRNA-LEU1 | 68 | 16 | 24% | 39 | 57% |
COX2 | 679 | 18 | 3% | 52 | 8% |
TRNA-LYS | 70 | 17 | 24% | 35 | 50% |
TRNA-ASP | 63 | 17 | 27% | 32 | 51% |
ATP8 | 168 | 17 | 10% | 54 | 32% |
ATP6 | 675 | 18 | 3% | 47 | 7% |
COX3 | 789 | 19 | 2% | 94 | 12% |
TRNA-GLY | 63 | 16 | 25% | 32 | 51% |
ND3 | 354 | 17 | 5% | 99 | 28% |
TRNA-ALA | 62 | 19 | 31% | 28 | 45% |
TRNA-ARG | 64 | 16 | 25% | 61 | 95% |
TRNA-ASN | 67 | 16 | 24% | 45 | 67% |
TRNA-SER1 | 65 | 25 | 38% | 27 | 42% |
TRNA-GLU | 65 | 16 | 25% | 63 | 97% |
TRNA-PHE | 68 | 16 | 24% | 26 | 38% |
ND5 | 1708 | 19 | 1% | 94 | 6% |
TRNA-HIS | 63 | 16 | 25% | 42 | 67% |
ND4 | 1315 | 19 | 1% | 108 | 8% |
ND4L | 306 | 17 | 6% | 38 | 12% |
TRNA-THR | 63 | 16 | 25% | 60 | 95% |
TRNA-PRO | 64 | 16 | 25% | 34 | 53% |
ND6 | 504 | 18 | 4% | 64 | 13% |
CYTB | 1133 | 18 | 2% | 46 | 4% |
ND1 | 927 | 18 | 2% | 88 | 9% |
TRNA-SER2 | 69 | 16 | 23% | 35 | 51% |
TRNA-LEU2 | 67 | 16 | 24% | 27 | 40% |
16S RRNA | 1373 | 19 | 1% | 78 | 6% |
TRNA-VAL | 72 | 16 | 22% | 38 | 53% |
12S RRNA | 752 | 18 | 2% | 72 | 10% |
TRNA-ILE | 64 | - | - | - | - |
D-LOOP | 289 | 17 | 6% | 182 | 63% |
Sequence | LG1 | LG2 | LG3 | LG4 | LG5 | LG6 | LG7 | LG8 | LG9 | LG10 | Mean % Identity–Gene |
---|---|---|---|---|---|---|---|---|---|---|---|
TRNA-GLN | 93.8 | 88.8 | 94.3 | 92.9 | 92.3 | 85.1 | 97.1 | 89.4 | 90.5 | 95.0 | 91.6 |
TRNA-MET | 100.0 | 100.0 | 100.0 | 100.0 | - | - | - | - | - | - | 100.0 |
ND2 | 88.7 | 91.4 | 90.2 | 88.0 | 89.3 | 88.4 | 91.2 | 90.0 | 87.2 | 87.2 | 89.5 |
TRNA-TRP | 90.9 | 95.2 | 88.3 | 90.2 | 93.8 | - | - | 89.7 | 100.0 | 94.0 | 91.8 |
TRNA-CYS | 92.6 | 89.7 | 89.1 | 89.9 | 88.4 | 93.3 | 91.4 | 87.6 | 88.7 | 92.4 | 90.5 |
TRNA-TYR | - | 85.7 | - | - | - | - | - | 100.0 | 94.7 | 97.1 | 94.4 |
COX1 | 79.5 | 92.3 | 82.6 | 94.6 | 87.8 | 82.2 | 88.3 | 90.7 | 92.8 | 95.4 | 89.1 |
TRNA-LEU1 | 91.0 | 100.0 | 92.5 | 91.9 | 100.0 | 93.6 | 91.5 | 95.2 | 86.2 | 83.3 | 92.2 |
COX2 | 81.6 | 95.4 | 86.5 | 87.5 | 92.1 | 90.2 | 91.1 | 89.0 | 85.0 | 89.0 | 90.2 |
TRNA-LYS | - | 95.2 | 86.5 | - | 98.6 | - | 95.1 | 91.9 | - | 90.5 | 92.6 |
TRNA-ASP | 96.8 | - | 95.0 | 84.4 | - | 85.6 | 90.9 | 91.5 | - | - | 90.9 |
ATP8 | - | 88.4 | 88.5 | 84.8 | - | 100.0 | 84.5 | 87.7 | 90.9 | - | 88.0 |
ATP6 | 86.9 | 85.1 | 90.4 | 88.4 | 93.1 | 90.3 | 86.9 | 95.2 | 85.5 | 92.7 | 88.9 |
COX3 | 84.9 | 90.5 | 87.6 | - | 90.5 | 91.3 | 97.1 | - | 88.3 | 94.6 | 90.9 |
TRNA-GLY | 90.4 | 92.1 | 92.0 | - | 95.2 | 90.9 | 94.3 | 85.0 | 95.2 | 88.3 | 92.0 |
ND3 | 90.2 | 91.5 | 89.2 | 88.5 | 96.1 | 91.1 | 90.3 | 89.9 | 91.5 | 95.7 | 91.0 |
TRNA-ALA | 90.5 | 93.7 | 94.7 | 89.8 | 94.7 | 90.9 | 88.0 | 90.7 | - | 94.7 | 91.9 |
TRNA-ARG | 89.0 | 90.5 | 92.0 | 94.3 | 89.7 | 87.0 | - | 90.9 | 94.7 | 97.7 | 91.7 |
TRNA-ASN | 84.6 | 100.0 | - | 88.0 | - | - | - | - | 95.6 | - | 92.0 |
TRNA-SER1 | - | - | - | - | - | - | - | 90.3 | - | - | 90.3 |
TRNA-GLU | 89.8 | 90.8 | 89.3 | 90.2 | 93.0 | 95.1 | 87.6 | 91.6 | 96.2 | - | 91.5 |
TRNA-PHE | - | 100.0 | - | - | 90.1 | 90.5 | - | 95.5 | 92.6 | 91.3 | 93.1 |
ND5 | 89.5 | 88.0 | 86.1 | 92.5 | 89.4 | 92.4 | 86.8 | 86.0 | 89.5 | 88.6 | 89.2 |
TRNA-HIS | - | 95.1 | 100.0 | 100.0 | 80.7 | 87.6 | 91.2 | 88.9 | 89.0 | 100.0 | 91.8 |
ND4 | 89.5 | 86.1 | 90.9 | 87.3 | 93.0 | 89.7 | 87.3 | 88.5 | 88.7 | 94.1 | 89.8 |
ND4L | 86.1 | 87.4 | 84.6 | 82.9 | 100.0 | 88.9 | 95.0 | 87.3 | - | 90.8 | 88.5 |
TRNA-THR | 98.3 | 89.5 | - | - | 95.0 | - | 98.3 | 100.0 | 94.0 | - | 96.6 |
TRNA-PRO | - | - | 91.3 | 90.7 | - | - | 100.0 | - | 92.6 | - | 92.7 |
ND6 | 92.9 | 89.0 | 89.7 | 92.6 | 87.8 | 90.9 | 89.1 | 89.2 | 88.7 | 92.6 | 90.2 |
CYTB | 91.1 | 89.4 | 89.8 | 93.0 | 91.1 | 87.1 | 88.9 | 93.4 | 92.2 | 90.9 | 90.5 |
ND1 | 90.7 | 92.7 | 93.1 | 88.3 | 92.3 | 88.3 | 91.5 | 92.5 | 90.6 | 86.1 | 90.6 |
TRNA-SER2 | 95.3 | 92.3 | 94.4 | 95.2 | 89.4 | 93.6 | 96.6 | 90.2 | 90.3 | 88.8 | 92.3 |
TRNA-LEU2 | - | 92.0 | - | - | 85.2 | 85.2 | - | 100.0 | - | - | 91.1 |
16S RRNA | 86.3 | 87.6 | 81.7 | 91.9 | 87.1 | 88.4 | 86.4 | 87.9 | 86.1 | 92.7 | 87.8 |
TRNA-VAL | 100.0 | 83.5 | 90.5 | 92.0 | 90.9 | 90.5 | 83.3 | 100.0 | - | - | 91.4 |
12S RRNA | 89.1 | 89.9 | 88.2 | 87.8 | 90.2 | 88.9 | 89.2 | 93.0 | 93.1 | 85.5 | 89.5 |
D-LOOP | 91.9 | 90.0 | 91.7 | 91.8 | 88.8 | 91.0 | 90.3 | 92.6 | 91.5 | 88.0 | 90.6 |
Mean % Identity–LG | 90.6 | 90.3 | 90.3 | 90.5 | 90.4 | 90.2 | 90.4 | 90.6 | 90.6 | 90.7 | 90.4 |
NUMTs | mtDNA Fragments Found in Pseudogenes | mtDNA Fragments Found in Transcriptome | ||||
---|---|---|---|---|---|---|
Gene | Number | Greatest Length (bp) | Number | Greatest Length (bp) | Number | Greatest Length (bp) |
TRNA-GLN | 46 | 44 | 13 | 19 | 23 | 35 |
TRNA-MET | 6 | 18 | 5 | 18 | 21 | 29 |
ND2 | 128 | 58 | 47 | 39 | 36 | 58 |
TRNA-TRP | 23 | 38 | 11 | 30 | 58 | 38 |
TRNA-CYS | 136 | 40 | 23 | 26 | 101 | 34 |
TRNA-TYR | 4 | 35 | 0 | 0 | 5 | 25 |
COX1 | 37 | 72 | 11 | 72 | 52 | 61 |
TRNA-LEU1 | 38 | 39 | 5 | 20 | 28 | 23 |
COX2 | 70 | 53 | 21 | 38 | 14 | 39 |
TRNA-LYS | 14 | 35 | 8 | 35 | 7 | 31 |
TRNA-ASP | 14 | 32 | 3 | 29 | 18 | 39 |
ATP8 | 18 | 54 | 2 | 15 | 10 | 26 |
ATP6 | 38 | 64 | 11 | 24 | 6 | 64 |
COX3 | 29 | 94 | 15 | 27 | 25 | 28 |
TRNA-GLY | 23 | 32 | 13 | 37 | 31 | 48 |
ND3 | 131 | 99 | 28 | 99 | 27 | 53 |
TRNA-ALA | 21 | 28 | 5 | 18 | 57 | 28 |
TRNA-ARG | 29 | 61 | 18 | 31 | 85 | 61 |
TRNA-ASN | 4 | 45 | 4 | 19 | 3 | 45 |
TRNA-SER1 | 3 | 27 | 0 | 0 | 1 | 20 |
TRNA-GLU | 46 | 63 | 15 | 29 | 27 | 30 |
TRNA-PHE | 10 | 26 | 5 | 24 | 1 | 26 |
ND5 | 107 | 94 | 19 | 65 | 70 | 43 |
TRNA-HIS | 26 | 42 | 7 | 21 | 28 | 27 |
ND4 | 46 | 108 | 25 | 33 | 73 | 33 |
ND4L | 25 | 38 | 10 | 38 | 5 | 30 |
TRNA-THR | 18 | 60 | 9 | 22 | 46 | 60 |
TRNA-PRO | 6 | 34 | 1 | 13 | 19 | 38 |
ND6 | 106 | 64 | 21 | 41 | 97 | 42 |
CYTB | 71 | 59 | 27 | 38 | 19 | 35 |
TRNA-SER2 | 74 | 35 | 29 | 37 | 33 | 31 |
ND1 | 107 | 88 | 45 | 88 | 24 | 34 |
TRNA-LEU2 | 7 | 27 | 10 | 23 | 9 | 27 |
16S rRNA | 123 | 78 | 63 | 59 | 100 | 46 |
TRNA-VAL | 19 | 38 | 9 | 20 | 8 | 32 |
12S rRNA | 136 | 72 | 10 | 25 | 42 | 51 |
TRNA-ILE | 0 | 0 | 3 | 20 | 2 | 20 |
D-LOOP | 170 | 182 | 48 | 34 | 64 | 50 |
Sum | 1909 | 599 | 1275 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowal, K.; Tkaczyk, A.; Pierzchała, M.; Bownik, A.; Ślaska, B. Identification of Mitochondrial DNA (NUMTs) in the Nuclear Genome of Daphnia magna. Int. J. Mol. Sci. 2020, 21, 8725. https://doi.org/10.3390/ijms21228725
Kowal K, Tkaczyk A, Pierzchała M, Bownik A, Ślaska B. Identification of Mitochondrial DNA (NUMTs) in the Nuclear Genome of Daphnia magna. International Journal of Molecular Sciences. 2020; 21(22):8725. https://doi.org/10.3390/ijms21228725
Chicago/Turabian StyleKowal, Krzysztof, Angelika Tkaczyk, Mariusz Pierzchała, Adam Bownik, and Brygida Ślaska. 2020. "Identification of Mitochondrial DNA (NUMTs) in the Nuclear Genome of Daphnia magna" International Journal of Molecular Sciences 21, no. 22: 8725. https://doi.org/10.3390/ijms21228725
APA StyleKowal, K., Tkaczyk, A., Pierzchała, M., Bownik, A., & Ślaska, B. (2020). Identification of Mitochondrial DNA (NUMTs) in the Nuclear Genome of Daphnia magna. International Journal of Molecular Sciences, 21(22), 8725. https://doi.org/10.3390/ijms21228725