Guanosine-Mediated Anxiolytic-Like Effect: Interplay with Adenosine A1 and A2A Receptors
Abstract
:1. Introduction
2. Results
2.1. Elevated Plus Maze Test
2.2. Light–Dark Box and Open Field Tests
2.3. [3H]Guanosine Binding to Hippocampal Membranes
3. Discussion
4. Materials and Methods
4.1. Animals and Drugs
4.2. Behavioral Tests
4.3. Behavioral Experimental Design
4.4. Hippocampal Membranes Preparation
4.5. [3H]GUO Binding Assay in Hippocampal Membranes and Competition Studies
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Di Liberto, V.; Mudò, G.; Garozzo, R.; Frinchi, M.; Fernandez-Dueñas, V.; Di Iorio, P.; Ciccarelli, R.; Caciagli, F.; Condorelli, D.F.; Ciruela, F.; et al. The Guanine-Based Purinergic System: The Tale of an Orphan Neuromodulation. Front. Pharmacol. 2016, 7, 158. [Google Scholar] [CrossRef]
- Bettio, L.E.B.; Gil-Mohapel, J.; Rodrigues, A.L.S. Guanosine and its role in neuropathologies. Purinergic Signal. 2016, 12, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Lanznaster, D.; Dal-Cim, T.; Piermartiri, T.C.B.; Tasca, C.I. Guanosine: A Neuromodulator with Therapeutic Potential in Brain Disorders. Aging Dis. 2016, 7, 657–679. [Google Scholar] [CrossRef] [Green Version]
- Tasca, C.I.; Lanznaster, D.; Oliveira, K.A.; Fernández-Dueñas, V.; Ciruela, F. Neuromodulatory Effects of Guanine-Based Purines in Health and Disease. Front. Cell. Neurosci. 2018, 12, 376. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, F.F.; Xapelli, S.; Miranda-Lourenço, C.; Tanqueiro, S.R.; Fonseca-Gomes, J.; Diogenes, M.J.; Ribeiro, J.A.; Sebastião, A.M. Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2016, 104, 226–242. [Google Scholar] [CrossRef]
- Rathbone, M.P.; Middlemiss, P.J.; DeLuca, B.; Jovetich, M. Extracellular guanosine increases astrocyte cAMP: Inhibition by adenosine A2 antagonists. Neuroreport 1991, 2, 661–664. [Google Scholar] [CrossRef]
- Gysbers, J.; Rathbone, M. GTP and guanosine synergistically enhance NGF-induced neurite outgrowth from PC12 cells. Int. J. Dev. Neurosci. 1996, 14, 19–34. [Google Scholar] [CrossRef]
- Traversa, U.; Bombi, G.; Camaioni, E.; Macchiarulo, A.; Costantino, G.; Palmieri, C.; Caciagli, F.; Pellicciari, R. Rat brain guanosine binding site. Biological studies and pseudo-receptor construction. Bioorg. Med. Chem. 2003, 11, 5417–5425. [Google Scholar] [CrossRef]
- Volpini, R.; Marucci, G.; Buccioni, M.; Dal, B.D.; Lambertucci, C.; Lammi, C.; Mishra, R.C.; Thomas, A.; Cristalli, G. Evidence for the existence of a specific g protein-coupled receptor activated by guanosine. ChemMedChem 2011, 6, 1074–1080. [Google Scholar] [CrossRef]
- Lanznaster, D.; Massari, C.M.; Markova, V.; Šimková, T.; Duroux, R.; Jacobson, K.A.; Fernández-Dueñas, V.; Tasca, C.I.; Ciruela, F. Adenosine A1-A2A Receptor-Receptor Interaction: Contribution to Guanosine-Mediated Effects. Cells 2019, 8, 1630. [Google Scholar] [CrossRef] [Green Version]
- Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Linden, J.; Narvaez, M.; Muller, C.E. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—An update. Pharmacol. Rev. 2011, 63, 1–34. [Google Scholar] [CrossRef]
- Cunha, R.A. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem. Int. 2001, 38, 107–125. [Google Scholar] [CrossRef]
- Boison, D. Adenosine as a neuromodulator in neurological diseases. Curr. Opin. Pharmacol. 2008, 8, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.F.; Comasseto, D.D.; Ramos, D.B.; Hansel, G.; Zimmer, E.R.; Loureiro, S.O.; Ganzella, M.; Souza, D.O. Guanosine Anxiolytic-Like Effect Involves Adenosinergic and Glutamatergic Neurotransmitter Systems. Mol. Neurobiol. 2017, 54, 423–436. [Google Scholar] [CrossRef]
- Vinadé, E.R.; Schmidt, A.P.; Frizzo, M.E.; Izquierdo, I.; Elisabetsky, E.; Souza, D.O. Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res. 2003, 977, 97–102. [Google Scholar] [CrossRef]
- Hoffman, E.J.; Mathew, S.J. Anxiety disorders: A comprehensive review of pharmacotherapies. Mt. Sinai J. Med. 2008, 75, 248–262. [Google Scholar] [CrossRef]
- Nutt, D.J.; Malizia, A.L. New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. Br. J. Psychiatry 2001, 179, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Johansson, B.; Halldner, L.; Dunwiddie, T.V.; Masino, S.A.; Poelchen, W.; Giménez-Llort, L.; Escorihuela, R.M.; Fernández-Teruel, A.; Wiesenfeld-Hallin, Z.; Xu, X.-J.; et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc. Natl. Acad. Sci. USA 2001, 98, 9407–9412. [Google Scholar] [CrossRef] [Green Version]
- Gimenez-Llort, L.; Fernandez-Teruel, A.; Escorihuela, R.M.; Fredholm, B.B.; Tobena, A.; Pekny, M.; Johansson, B. Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur. J. Neurosci. 2002, 16, 547–550. [Google Scholar] [CrossRef]
- Deckert, J. The adenosine A(2A) receptor knockout mouse: A model for anxiety? Int. J. Neuropsychopharmacol. 1998, 1, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Kemp, N.; Adeyemo, O.; Buchanan, P.; Stone, T.W. Anxiolytic activity of adenosine receptor activation in mice. Br. J. Pharmacol. 1995, 116, 2127–2133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florio, C.; Prezioso, A.; Papaioannou, A.; Vertua, R. Adenosine A1 receptors modulate anxiety in CD1 mice. Psychopharmacology 1998, 136, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Bettio, L.E.; Neis, V.B.; Pazini, F.L.; Brocardo, P.S.; Patten, A.R.; Gil-Mohapel, J.; Christie, B.; Rodrigues, A.L.S. The antidepressant-like effect of chronic guanosine treatment is associated with increased hippocampal neuronal differentiation. Eur. J. Neurosci. 2016, 43, 1006–1015. [Google Scholar] [CrossRef]
- Dobrachinski, F.; Gerbatin, R.R.; Sartori, G.; Golombieski, R.M.; Antoniazzi, A.; Nogueira, C.W.; Royes, L.F.; Fighera, M.R.; Porciúncula, L.O.; Cunha, R.A.; et al. Guanosine Attenuates Behavioral Deficits After Traumatic Brain Injury by Modulation of Adenosinergic Receptors. Mol. Neurobiol. 2018, 56, 3145–3158. [Google Scholar] [CrossRef]
- De Almeida, R.F.; Cereser, V.H.; Faraco, R.B.; Böhmer, A.E.; Souza, D.O.; Ganzella, M. Systemic administration of GMP induces anxiolytic-like behavior in rats. Pharmacol. Biochem. Behav. 2010, 96, 306–311. [Google Scholar] [CrossRef]
- Vinadé, E.R.; Izquierdo, I.; Lara, D.R.; Schmidt, A.P.; Souza, D.O. Oral administration of guanosine impairs inhibitory avoidance performance in rats and mice. Neurobiol. Learn. Mem. 2004, 81, 137–143. [Google Scholar] [CrossRef]
- Dunwiddie, T.V.; Masino, S.A. The Role and Regulation of Adenosine in the Central Nervous System. Annu. Rev. Neurosci. 2001, 24, 31–55. [Google Scholar] [CrossRef] [Green Version]
- Bettio, L.E.; Cunha, M.P.; Budni, J.; Pazini, F.L.; Oliveira, Á.; Colla, A.R.; Rodrigues, A.L.S. Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav. Brain Res. 2012, 234, 137–148. [Google Scholar] [CrossRef]
- Bettio, L.E.; Freitas, A.E.; Neis, V.B.; Santos, D.B.; Ribeiro, C.M.; Rosa, P.B.; Farina, M.; Rodrigues, A.L.S. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharmacol. Biochem. Behav. 2014, 127, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Dal-Cim, T.; Ludka, F.K.; Martins, W.C.; Reginato, C.; Parada, E.; Egea, J.; López, M.G.; Tasca, C.I. Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J. Neurochem. 2013, 126, 437–450. [Google Scholar] [CrossRef]
- Ortiz, R.; Ulrich, H.; Zarate, C.A.; Machado-Vieira, R. Purinergic system dysfunction in mood disorders: A key target for developing improved therapeutics. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 57, 117–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincenzi, F.; Ravani, A.; Pasquini, S.; Merighi, S.; Gessi, S.; Romagnoli, R.; Baraldi, P.G.; Borea, P.A.; Varani, K. Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety. Neuropharmacology 2016, 111, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Lang, U.E.; Lang, F.; Richter, K.; Vallon, V.; Lipp, H.-P.; Schnermann, J.; Wolfer, D.P. Emotional instability but intact spatial cognition in adenosine receptor 1 knock out mice. Behav. Brain Res. 2003, 145, 179–188. [Google Scholar] [CrossRef]
- Dixon, A.K.; Gubitz, A.K.; Sirinathsinghji, D.J.; Richardson, P.J.; Freeman, T.C. Tissue distribution of adenosine receptor mRNAs in the rat. Br. J. Pharmacol. 1996, 118, 1461–1468. [Google Scholar] [CrossRef] [Green Version]
- Ciruela, F.; Ferre, S.; Casadó, V.; Cortes, A.; Cunha, R.A.; Lluis, C.; Franco, R. Heterodimeric adenosine receptors: A device to regulate neurotransmitter release. Cell. Mol. Life Sci. 2006, 63, 2427–2431. [Google Scholar] [CrossRef] [Green Version]
- Gysbers, J.W.; Guarnieri, S.; Mariggiò, M.A.; Pietrangelo, T.; Fanò, G.; Rathbone, M. Extracellular guanosine 5′ triphosphate enhances nerve growth factor-induced neurite outgrowth via increases in intracellular calcium. Neuroscience 2000, 96, 817–824. [Google Scholar] [CrossRef]
- Traversa, U.; Bombi, G.; Di Iorio, P.; Ciccarelli, R.; Werstiuk, E.S.; Rathbone, M.P. Specific [(3)H]-guanosine binding sites in rat brain membranes. Br. J. Pharmacol. 2002, 135, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Zuccarini, M.; Giuliani, P.; Frinchi, M.; Mudò, G.; Serio, R.M.; Belluardo, N.; Buccella, S.; Carluccio, M.; Condorelli, D.F.; Caciagli, F.; et al. Uncovering the Signaling Pathway behind Extracellular Guanine-Induced Activation of NO System: New Perspectives in Memory-Related Disorders. Front. Pharmacol. 2018, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Wengert, M.; Adão-Novaes, J.; Leão-Ferreira, L.; Caruso-Neves, C. Guanine-induced inhibition of renal Na+-ATPase activity: Evidence for the involvement of the Gi protein-coupled receptor. Arch. Biochem. Biophys. 2011, 513, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Ciccarelli, R.; Di, I.P.; D’Alimonte, I.; Giuliani, P.; Florio, T.; Caciagli, F.; Middlemiss, P.J.; Rathbone, M.P. Cultured astrocyte proliferation induced by extracellular guanosine involves endogenous adenosine and is raised by the co-presence of microglia. Glia 2000, 29, 202–211. [Google Scholar] [CrossRef]
- Thomaz, D.T.; Dal-Cim, T.A.; Martins, W.C.; Cunha, M.P.; Lanznaster, D.; De Bem, A.F.; Tasca, C.I. Guanosine prevents nitroxidative stress and recovers mitochondrial membrane potential disruption in hippocampal slices subjected to oxygen/glucose deprivation. Purinergic Signal. 2016, 12, 707–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, K.A.; Dal-Cim, T.A.; Lopes, F.G.; Nedel, C.B.; Tasca, C.I. Guanosine promotes cytotoxicity via adenosine receptors and induces apoptosis in temozolomide-treated A172 glioma cells. Purinergic Signal. 2017, 13, 305–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinadé, E.R.; Schmidt, A.P.; Frizzo, M.E.; Portela, L.V.; Soares, F.A.A.; Schwalm, F.D.; Elisabetsky, E.; Izquierdo, I.; Souza, D.O. Effects of chronic administered guanosine on behavioral parameters and brain glutamate uptake in rats. J. Neurosci. Res. 2005, 79, 248–253. [Google Scholar] [CrossRef] [PubMed]
- El Yacoubi, M.; Costentin, J.; Vaugeois, J.-M. Adenosine A2A receptors and depression. Neurology 2003, 61 (Suppl. 6), S82–S87. [Google Scholar] [CrossRef]
- Schmidt, A.P.; Böhmer, A.; Schallenberger, C.; Antunes, C.; Tavares, R.; Wofchuk, S.; Elisabetsky, E.; Souza, D.O. Mechanisms involved in the antinociception induced by systemic administration of guanosine in mice. Br. J. Pharmacol. 2010, 159, 1247–1263. [Google Scholar] [CrossRef] [Green Version]
- López-Cruz, L.; Salamone, J.D.; Correa, M. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Front. Pharmacol. 2018, 9, 526. [Google Scholar] [CrossRef]
- Müller, C.E.; Scior, T. Adenosine receptors and their modulators. Pharm. Acta Helv. 1993, 68, 77–111. [Google Scholar] [CrossRef]
- Childers, S.R.; Li, X.; Xiao, R.; Eisenach, J.C. Allosteric modulation of adenosine A1 receptor coupling to G-proteins in brain. J. Neurochem. 2005, 93, 715–723. [Google Scholar] [CrossRef]
- Di Liberto, V.; Fuxe, K.; Frinchi, M.; Verdi, V.; Fuxe, K.; Belluardo, N.; Mudò, G. Existence of muscarinic acetylcholine receptor (mAChR) and fibroblast growth factor receptor (FGFR) heteroreceptor complexes and their enhancement of neurite outgrowth in neural hippocampal cultures. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017, 1861, 235–245. [Google Scholar] [CrossRef]
- Borroto-Escuela, D.O.; Romero-Fernandez, W.; Mudó, G.; Pérez-Alea, M.; Ciruela, F.; Tarakanov, A.O.; Narvaez, M.; Di Liberto, V.; Agnati, L.F.; Belluardo, N.; et al. Fibroblast Growth Factor Receptor 1–5-Hydroxytryptamine 1A Heteroreceptor Complexes and Their Enhancement of Hippocampal Plasticity. Biol. Psychiatry 2012, 71, 84–91. [Google Scholar] [CrossRef]
- Fuxe, K.; Agnati, L.F.; Fuxe, K. The impact of receptor-receptor interactions in heteroreceptor complexes on brain plasticity. Expert Rev. Neurother. 2014, 14, 719–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gysbers, J.W.; Rathbone, M.P. Guanosine enhances NGF-stimulated neurite outgrowth in PC12 cells. NeuroReport 1992, 3, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, P.; Ballerini, P.; Traversa, U.; Nicoletti, F.; D’Alimonte, I.; Kleywegt, S.; Werstiuk, E.S.; Rathbone, M.P.; Caciagli, F.; Ciccarelli, R. The antiapoptotic effect of guanosine is mediated by the activation of the PI 3-kinase/AKT/PKB pathway in cultured rat astrocytes. Glia 2004, 46, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Grillo, M.; Di Liberto, V.; Garozzo, R.; Mudò, G.; Caciagli, F.; Condorelli, D.F.; Ciruela, F.; Belluardo, N. Brain expression and 3H-guanosine binding analysis of novel G protein-coupled receptor for guanosine (GPR23/LPA4). Acta Physiol. 2012, 206 (Suppl. 692), P4.19. [Google Scholar]
- Borroto-Escuela, D.O.; Brito, I.; Romero-Fernandez, W.; Di Palma, M.; Oflijan, J.; Skieterska, K.; Duchou, J.; Van, C.K.; Suarez-Boomgaard, D.; Rivera, A.; et al. The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int. J. Mol. Sci. 2014, 15, 8570–8590. [Google Scholar] [CrossRef] [PubMed]
- Ciruela, F. Guanosine behind the scene. J. Neurochem. 2013, 126, 425–427. [Google Scholar] [CrossRef]
- Prediger, R.D.; Batista, L.C.; Takahashi, R.N. Adenosine A1 receptors modulate the anxiolytic-like effect of ethanol in the elevated plus-maze in mice. Eur. J. Pharmacol. 2004, 499, 147–154. [Google Scholar] [CrossRef]
- Di Liberto, V.; Frinchi, M.; Verdi, V.; Vitale, A.; Plescia, F.; Cannizzaro, C.; Massenti, M.F.; Belluardo, N.; Mudò, G. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex. Psychopharmacology 2017, 234, 559–573. [Google Scholar] [CrossRef]
- El Yacoubi, M.; Ledent, C.; Menard, J.F.; Parmentier, M.; Costentin, J.; Vaugeois, J.M. The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors. Br. J. Pharmacol. 2000, 129, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Prediger, R.D.S.; da Silva, G.E.; Batista, L.C.; Bittencourt, A.L.; Takahashi, R.N. Activation of Adenosine A1 Receptors Reduces Anxiety-Like Behavior During Acute Ethanol Withdrawal (Hangover) in Mice. Neuropsychopharmacology 2006, 31, 2210–2220. [Google Scholar] [CrossRef] [Green Version]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frinchi, M.; Verdi, V.; Plescia, F.; Ciruela, F.; Grillo, M.; Garozzo, R.; Condorelli, D.F.; Di Iorio, P.; Caciagli, F.; Ciccarelli, R.; et al. Guanosine-Mediated Anxiolytic-Like Effect: Interplay with Adenosine A1 and A2A Receptors. Int. J. Mol. Sci. 2020, 21, 9281. https://doi.org/10.3390/ijms21239281
Frinchi M, Verdi V, Plescia F, Ciruela F, Grillo M, Garozzo R, Condorelli DF, Di Iorio P, Caciagli F, Ciccarelli R, et al. Guanosine-Mediated Anxiolytic-Like Effect: Interplay with Adenosine A1 and A2A Receptors. International Journal of Molecular Sciences. 2020; 21(23):9281. https://doi.org/10.3390/ijms21239281
Chicago/Turabian StyleFrinchi, Monica, Vincenzo Verdi, Fulvio Plescia, Francisco Ciruela, Maria Grillo, Roberta Garozzo, Daniele F. Condorelli, Patrizia Di Iorio, Francesco Caciagli, Renata Ciccarelli, and et al. 2020. "Guanosine-Mediated Anxiolytic-Like Effect: Interplay with Adenosine A1 and A2A Receptors" International Journal of Molecular Sciences 21, no. 23: 9281. https://doi.org/10.3390/ijms21239281