Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models
Abstract
:1. Animal Models in Research
2. Glycogen Storage Diseases
2.1. Introduction
2.2. Animal Models
2.3. Types of GSD
2.3.1. GSD Type 0 (GSD-0; Aglycogenosis)
Introduction
- (a)
- GSD-0a is caused by pathogenic mutations in both alleles of the GYS2 gene (in humans located to chromosome 12p12.2). Deficiency in GS-L leads to a significant reduction in liver glycogen content as dietary carbohydrate is metabolized to ultimately produce lactate rather than being stored as glycogen [16]. During infancy patients frequently present with early morning somnolence and fatigue, sometimes accompanied with convulsions related to ketotic hypoglycemia. Hyperglycemia, glycosuria, and hyperlactic acidemia commonly occur during the post-pandrial period, which alternate with hypoglycemia and hyperketonemia during fasting. GSD-0a symptoms are those directly related with hypoglycemia and include nausea, vomiting, lethargy, pale appearance, and sometimes, seizures episodes in the morning before breakfast. Although in some patients there might be some degree of developmental delay, most affected children present normal development and are not cognitively affected. Short stature and osteopenia have also been reported [12,16]. The relatively benign course of this disease in comparison to other hepatic glycogenosis might be explained as both gluconeogenesis and fatty acid oxidation are not affected [12].
- (b)
- GSD-0b is caused by pathogenic mutations in both alleles of the GYS1 gene (in humans located to chromosome 19q13.3). Only two families with GSD-0b have been reported [21,22]. Patients presented with a clear reduction of glycogen levels in the skeletal and cardiac-muscle, increased cardiac mass, predominance of oxidative fibers in skeletal muscle tissue, severely reduced capacity to sustain muscle work and normal to high glucose clearance [21]. Additionally, these two families showed case of spontaneous abortions, stillbirth and early death [22].
Mouse Model for GSD-0b
2.3.2. GSD Type I (GSD-I; von Gierke Disease)
Introduction
- (a)
- GSD-Ia is caused by a defect of the G6PC subunit and constitutes the most prevalent form of GSD-I, representing approximately 80% of all cases [29,30]. Patients present with fasting hypoglycemia, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, lactic acidemia and growth retardation [27,232,233]. Main symptoms and signs (particularly in the morning or before feeding) are tremors, irritability, hyperventilation, cyanosis, apnea, convulsions, sweating, pallor, cerebral edema or dysfunction, coma, finally resulting in death [12]. Nose bleeding frequently occurs due to impaired platelet function, as well as rickets, anemia and diarrhea worsens with age [12]. Liver shows an enlargement at birth or shortly thereafter, causing an abdominal protuberance due to the massive hepatomegaly. Furthermore, steatosis can develop and xanthoma might be found on extensor surfaces as elbows and knees, sometimes accompanied with enlargement of kidneys. Hyperuricemia occurs due to both decreased renal clearance and increased production of urate. Hyperlipidemia occurs as a result of increased synthesis of triglycerides, VLDL and LDL, and decreased peripheral lipolysis [23]. Patients might develop long-term complications, such as hepatic adenomas, renal dysfunction, osteoporosis, gout or pancreatitis [12].
- (b)
- GSD-Ib is caused by a defect of G6PT subunit [29,30]. Patients with GSD-Ib have similar symptoms to those of patients with GSD-Ia. In addition, they have other characteristic alterations, mainly neutropenia and neutrophil dysfunction, which predispose to recurrent infections usually during the first year of life [12,16]. Affected children are prone to suffer recurrent oral mucosal ulceration, gingivitis, rapidly progressive periodontal disease, otitis and severe infections [16]. The SLC37A4 gene is expressed in hematopoietic progenitor cells, which might explain the presence of neutropenia and frequent infections [12]. Neutropenia and neutrophil dysfunction usually leads to inflammatory bowel disease (Crohn-like) with fever, diarrhea and perioral and anal ulcers, a very common symptom of GSD-Ib [12,16]. Long-term complications can also develop, such as kidney disease in the form of renal calculi and progressive renal disease, splenomegaly and hepatocellular adenoma (HCA) [12].
- (c)
Animal Models for GSD-Ia
- (a)
- Canine model
- (b)
- Mouse models
Mouse Models for GSD-Ib
Evaluated Treatments in Animal Models
- (a)
- Gene therapy for GSD-Ia
- (b)
- Gene therapy for GSD-Ib
- (c)
- RNAi approach
2.3.3. GSD Type II (GSD-II; Pompe Disease)
Introduction
Animal Models
- (a)
- Cattle models
- (b)
- Canine model
- (c)
- Mouse models
- (d)
- Quail models
Evaluated Treatments in Animal Models
- (a)
- ERT
- (b)
- Gene therapy
- (c)
- Other treaments
2.3.4. GSD Type III (GSD-III; Cori Disease)
Introduction
Animal Models
- (a)
- Canine model
- (b)
- Mouse models
Evaluated Treatments in Animal Models
2.3.5. GSD Type IV (GSD-IV; Andersen Disease)
Introduction
Animal Models
- (a)
- Horse model
- (b)
- Cat model
- (c)
- Mouse models
Evaluated Treatments in Animal Models
2.3.6. GSD Type V (GSD-V; McArdle Disease)
Introduction
Animal Models
- (a)
- Bovine model
- (b)
- Ovine model
- (c)
- Mouse model
- (d)
- Zebrafish model
Evaluated Treatments in the Animal Models
- (a)
- Compounds inducing re-expression of the (fetal) Pygb/Pygl isoforms
- (b)
- Gene therapy
- (c)
- Read-through compounds
2.3.7. GSD Type VI (GSD-VI; Hers Disease)
Introduction
Mouse Model
2.3.8. GSD Type VII (GSD-VII; Tarui Disease)
Introduction
Animal Models
- (a)
- Canine models
- (b)
- Mouse model
2.3.9. GSD Type XV (GSD-XV)
Introduction
Mouse Model
3. Critical Discussion
4. Conclusions
- Although animal models show some differences with respect to their counterpart human disease phenotype, such as higher tissular glycogen accumulation or premature death (the latter not reported in some human GSDs), they recapitulate most of the characteristics of human disease. Consequently, researchers should take into consideration the specific phenotypic particularities of these animals when working with them.
- Animal models allow a deeper study of the features of the disease, since they allow to measure more parameters, to take more biopsies or to perform behavioral studies, methods that are quite invasive and they are not possible to test in humans (e.g., to obtain and compare biopsies of different muscles and liver and therefore to have a more accurate characterization of the disease).
- Animal models are a necessary preclinical step to evaluate the efficacy and safety of possible treatments and therapies before they are testing in humans. Even though not all the promising treatments in animals could be of benefit for GSDs patients, these animal models may be the main (if not the only) approach to develop new therapies for improving the lives of patients or curing GSDs.
Author Contributions
Funding
Conflicts of Interest
References
- Robinson, N.B.; Krieger, K.; Khan, F.M.; Huffman, W.; Chang, M.; Naik, A.; Yongle, R.; Hameed, I.; Krieger, K.; Girardi, L.N.; et al. The current state of animal models in research: A review. Int. J. Surg. 2019, 72, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Wise, P. Claude Bernard: Beyond the controversy. J. Soc. Biol. 2009, 203, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Bloch, H. Francois Magendie, Claude Bernard, and the interrelation of science, history, and philosophy. South. Med. J. 1989, 82, 1259–1261. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, A.C.; Crim, M.J.; Franklin, C.L. A brief history of animal modeling. Mo. Med. 2013, 110, 201–205. [Google Scholar] [PubMed]
- Arunachalam, C.; Woywodt, A. Turbid urine and beef-eating rabbits: Claude Bernard (1813-78)-a founder of modern physiology. NDT Plus 2010, 3, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Sabin, A.B. Oral poliovirus vaccine. History of its development and prospects for eradication of poliomyelitis. JAMA 1965, 194, 872–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A. Advances in insulin therapy: A review of insulin degludec. J. Fam. Pract. 2012, 61, S28–S31. [Google Scholar]
- Zak, O.; O′Reilly, T. Animal models in the evaluation of antimicrobial agents. Antimicrob. Agents Chemother. 1991, 35, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Loeb, J.M.; Hendee, W.R.; Smith, S.J.; Schwartz, M.R. Human vs animal rights. In defense of animal research. JAMA 1989, 262, 2716–2720. [Google Scholar] [CrossRef]
- Moro, C.A.; Hanna-Rose, W. Animal Model Contributions to Congenital Metabolic Disease. Adv. Exp. Med. Biol. 2020, 1236, 225–244. [Google Scholar] [CrossRef]
- National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Available online: http://www.ncbi.nlm.nih.gov/books/NBK54050/ (accessed on 10 November 2020).
- Ozen, H. Glycogen storage diseases: New perspectives. World J. Gastroenterol. 2007, 13, 2541–2553. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Bruno, C. Glycogen storage diseases of muscle. Curr. Opin. Neurol. 1998, 11, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Wolfsdorf, J.I.; Holm, I.A.; Weinstein, D.A. Glycogen storage diseases. Phenotypic, genetic, and biochemical characteristics, and therapy. Endocrinol. Metab. Clin. N. Am. 1999, 28, 801–823. [Google Scholar] [CrossRef]
- Wolfsdorf, J.I.; Weinstein, D.A. Glycogen storage diseases. Rev. Endocr. Metab. Disord. 2003, 4, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.; Wartchow, E.; Mierau, G. Glycogen storage diseases: A brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct. Pathol. 2011, 35, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Vissing, J.; Quistorff, B.; Haller, R.G. Effect of fuels on exercise capacity in muscle phosphoglycerate mutase deficiency. Arch. Neurol. 2005, 62, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Mamoune, A.; Bahuau, M.; Hamel, Y.; Serre, V.; Pelosi, M.; Habarou, F.; Nguyen Morel, M.A.; Boisson, B.; Vergnaud, S.; Viou, M.T.; et al. A thermolabile aldolase A mutant causes fever-induced recurrent rhabdomyolysis without hemolytic anemia. PLoS Genet. 2014, 10, e1004711. [Google Scholar] [CrossRef] [Green Version]
- Musumeci, O.; Brady, S.; Rodolico, C.; Ciranni, A.; Montagnese, F.; Aguennouz, M.; Kirk, R.; Allen, E.; Godfrey, R.; Romeo, S.; et al. Recurrent rhabdomyolysis due to muscle beta-enolase deficiency: Very rare or underestimated? J. Neurol. 2014, 261, 2424–2428. [Google Scholar] [CrossRef]
- Lewis, G.M.; Spencer-Peet, J.; Stewart, K.M. Infantile Hypoglycaemia due to Inherited Deficiency of Glycogen Synthetase in Liver. Arch. Dis. Child. 1963, 38, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Kollberg, G.; Tulinius, M.; Gilljam, T.; Ostman-Smith, I.; Forsander, G.; Jotorp, P.; Oldfors, A.; Holme, E. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N. Engl. J. Med. 2007, 357, 1507–1514. [Google Scholar] [CrossRef] [Green Version]
- Cameron, J.M.; Levandovskiy, V.; MacKay, N.; Utgikar, R.; Ackerley, C.; Chiasson, D.; Halliday, W.; Raiman, J.; Robinson, B.H. Identification of a novel mutation in GYS1 (muscle-specific glycogen synthase) resulting in sudden cardiac death, that is diagnosable from skin fibroblasts. Mol. Genet. Metab. 2009, 98, 378–382. [Google Scholar] [CrossRef]
- Hendriksz, C.; Gissen, P. Glycogen storage disease. Paediatr. Child. Heal. UK 2015, 25, 139–144. [Google Scholar] [CrossRef]
- Burchell, A. Molecular pathology of glucose-6-phosphatase. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1990, 4, 2978–2988. [Google Scholar] [CrossRef]
- Froissart, R.; Piraud, M.; Boudjemline, A.M.; Vianey-Saban, C.; Petit, F.; Hubert-Buron, A.; Eberschweiler, P.T.; Gajdos, V.; Labrune, P. Glucose-6-phosphatase deficiency. Orphanet J. Rare Dis. 2011, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specht, A.; Fiske, L.; Erger, K.; Cossette, T.; Verstegen, J.; Campbell-Thompson, M.; Struck, M.B.; Lee, Y.M.; Chou, J.Y.; Byrne, B.J.; et al. Glycogen storage disease type Ia in canines: A model for human metabolic and genetic liver disease. J. Biomed. Biotechnol. 2011, 2011, 646257. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.Y.; Matern, D.; Mansfield, B.C.; Chen, Y.T. Type I glycogen storage diseases: Disorders of the glucose-6-phosphatase complex. Curr. Mol. Med. 2002, 2, 121–143. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Burchell, A. Glycogen Storage Diseases. In The Metabolic Basis of Inherited Disease; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
- Rake, J.P.; Visser, G.; Labrune, P.; Leonard, J.V.; Ullrich, K.; Smit, G.P. European Study on Glycogen Storage Disease Type, I. Guidelines for management of glycogen storage disease type I—European Study on Glycogen Storage Disease Type I (ESGSD I). Eur. J. Pediatrics 2002, 161 (Suppl. 1), S112–S119. [Google Scholar] [CrossRef]
- Rake, J.P.; Visser, G.; Labrune, P.; Leonard, J.V.; Ullrich, K.; Smit, G.P. Glycogen storage disease type I: Diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur. J. Pediatrics 2002, 161 (Suppl. 1), S20–S34. [Google Scholar] [CrossRef]
- Lim, J.A.; Li, L.; Raben, N. Pompe disease: From pathophysiology to therapy and back again. Front. Aging Neurosci. 2014, 6, 177. [Google Scholar] [CrossRef] [Green Version]
- Meena, N.K.; Raben, N. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules 2020, 10, 1339. [Google Scholar] [CrossRef]
- Nascimbeni, A.C.; Fanin, M.; Masiero, E.; Angelini, C.; Sandri, M. Impaired autophagy contributes to muscle atrophy in glycogen storage disease type II patients. Autophagy 2012, 8, 1697–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishnani, P.S.; Hwu, W.L.; Mandel, H.; Nicolino, M.; Yong, F.; Corzo, D.; Infantile-Onset Pompe Disease Natural History Study Group. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J. Pediatrics 2006, 148, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Kohler, L.; Puertollano, R.; Raben, N. Pompe Disease: From Basic Science to Therapy. Neurother. J. Am. Soc. Exp. Neurother. 2018, 15, 928–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parenti, G.; Fecarotta, S.; La Marca, G.; Rossi, B.; Ascione, S.; Donati, M.A.; Morandi, L.O.; Ravaglia, S.; Pichiecchio, A.; Ombrone, D.; et al. A chaperone enhances blood alpha-glucosidase activity in Pompe disease patients treated with enzyme replacement therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 2004–2012. [Google Scholar] [CrossRef] [Green Version]
- Ebbink, B.J.; Poelman, E.; Aarsen, F.K.; Plug, I.; Regal, L.; Muentjes, C.; van der Beek, N.; Lequin, M.H.; van der Ploeg, A.T.; van den Hout, J.M.P. Classic infantile Pompe patients approaching adulthood: A cohort study on consequences for the brain. Dev. Med. Child. Neurol. 2018, 60, 579–586. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, J.L.; Gumlaw, N.K.; Zhang, J.; Bercury, S.D.; Ziegler, R.J.; Lee, K.; Kudo, M.; Canfield, W.M.; Edmunds, T.; et al. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol. Ther. J. Am. Soc. Gene Ther. 2009, 17, 954–963. [Google Scholar] [CrossRef]
- Tiels, P.; Baranova, E.; Piens, K.; De Visscher, C.; Pynaert, G.; Nerinckx, W.; Stout, J.; Fudalej, F.; Hulpiau, P.; Tannler, S.; et al. A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat. Biotechnol. 2012, 30, 1225–1231. [Google Scholar] [CrossRef]
- Maga, J.A.; Zhou, J.; Kambampati, R.; Peng, S.; Wang, X.; Bohnsack, R.N.; Thomm, A.; Golata, S.; Tom, P.; Dahms, N.M.; et al. Glycosylation-independent lysosomal targeting of acid alpha-glucosidase enhances muscle glycogen clearance in pompe mice. J. Biol. Chem. 2013, 288, 1428–1438. [Google Scholar] [CrossRef] [Green Version]
- Pena, L.D.M.; Barohn, R.J.; Byrne, B.J.; Desnuelle, C.; Goker-Alpan, O.; Ladha, S.; Laforet, P.; Mengel, K.E.; Pestronk, A.; Pouget, J.; et al. Safety, tolerability, pharmacokinetics, pharmacodynamics, and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naive and alglucosidase alfa-treated patients with late-onset Pompe disease: A phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscul. Disord. Nmd. 2019, 29, 167–186. [Google Scholar] [CrossRef] [Green Version]
- Porto, C.; Ferrara, M.C.; Meli, M.; Acampora, E.; Avolio, V.; Rosa, M.; Cobucci-Ponzano, B.; Colombo, G.; Moracci, M.; Andria, G.; et al. Pharmacological enhancement of alpha-glucosidase by the allosteric chaperone N-acetylcysteine. Mol. Ther. J. Am. Soc. Gene Ther. 2012, 20, 2201–2211. [Google Scholar] [CrossRef] [Green Version]
- Porto, C.; Cardone, M.; Fontana, F.; Rossi, B.; Tuzzi, M.R.; Tarallo, A.; Barone, M.V.; Andria, G.; Parenti, G. The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol. Ther. J. Am. Soc. Gene Ther. 2009, 17, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Koeberl, D.D.; Li, S.; Dai, J.; Thurberg, B.L.; Bali, D.; Kishnani, P.S. Beta2 Agonists enhance the efficacy of simultaneous enzyme replacement therapy in murine Pompe disease. Mol. Genet. Metab. 2012, 105, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, B.K.; Collins, S.W.; Conlon, T.J.; Mah, C.S.; Lawson, L.A.; Martin, A.D.; Fuller, D.D.; Cleaver, B.D.; Clement, N.; Phillips, D.; et al. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: Initial safety and ventilatory outcomes. Hum. Gene Ther. 2013, 24, 630–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, P.I.; Collins, S.; Mah, C.C.; Smith, B.; Conlon, T.; Martin, S.D.; Corti, M.; Cleaver, B.; Islam, S.; Lawson, L.A. Phase I/II trial of diaphragm delivery of recombinant adeno-associated virus acid alpha-glucosidase (rAAaV1-CMV-GAA) gene vector in patients with Pompe disease. Hum. Gene Ther. Clin. Dev. 2014, 25, 134–163. [Google Scholar] [CrossRef]
- Corti, M.; Liberati, C.; Smith, B.K.; Lawson, L.A.; Tuna, I.S.; Conlon, T.J.; Coleman, K.E.; Islam, S.; Herzog, R.W.; Fuller, D.D.; et al. Safety of Intradiaphragmatic Delivery of Adeno-Associated Virus-Mediated Alpha-Glucosidase (rAAV1-CMV-hGAA) Gene Therapy in Children Affected by Pompe Disease. Hum. Gene Ther. Clin. Dev. 2017, 28, 208–218. [Google Scholar] [CrossRef]
- Kishnani, P.S.; Koeberl, D.D. Liver depot gene therapy for Pompe disease. Ann. Transl. Med. 2019, 7, 288. [Google Scholar] [CrossRef]
- Liu, K.M.; Wu, J.Y.; Chen, Y.T. Mouse model of glycogen storage disease type III. Mol. Genet. Metab. 2014, 111, 467–476. [Google Scholar] [CrossRef]
- Taylor, C.; Cox, A.J.; Kernohan, J.C.; Cohen, P. Debranching enzyme from rabbit skeletal muscle. Purification, properties and physiological role. Eur. J. Biochem. 1975, 51, 105–115. [Google Scholar] [CrossRef]
- Nakayama, A.; Yamamoto, K.; Tabata, S. Identification of the catalytic residues of bifunctional glycogen debranching enzyme. J. Biol. Chem. 2001, 276, 28824–28828. [Google Scholar] [CrossRef] [Green Version]
- Illingworth, B.; Cori, G.T. Structure of glycogens and amylopectins. III. Normal and abnormal human glycogen. J. Biol. Chem. 1952, 199, 653–660. [Google Scholar]
- Illingworth, B.; Cori, G.T.; Cori, C.F. Amylo-1, 6-glucosidase in muscle tissue in generalized glycogen storage disease. J. Biol. Chem. 1956, 218, 123–129. [Google Scholar] [PubMed]
- Van Hoof, F.; Hers, H.G. The subgroups of type 3 glycogenosis. Eur. J. Biochem. 1967, 2, 265–270. [Google Scholar] [CrossRef]
- Kishnani, P.S.; Austin, S.L.; Arn, P.; Bali, D.S.; Boney, A.; Case, L.E.; Chung, W.K.; Desai, D.M.; El-Gharbawy, A.; Haller, R.; et al. Glycogen storage disease type III diagnosis and management guidelines. Genet. Med. Off. J. Am. Coll. Med. Genet. 2010, 12, 446–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiMauro, S.; Lamperti, C. Muscle glycogenoses. Muscle Nerve 2001, 24, 984–999. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, M.; De Candia, E.; Ballarin, S.; Vecchio, F.M.; Servidei, S.; Annese, R.; Landolfi, R.; Rossi, L. Hepatocellular carcinoma complicating liver cirrhosis in type IIIa glycogen storage disease. J. Clin. Gastroenterol. 2000, 31, 80–82. [Google Scholar] [CrossRef]
- Labrune, P.; Trioche, P.; Duvaltier, I.; Chevalier, P.; Odievre, M. Hepatocellular adenomas in glycogen storage disease type I and III: A series of 43 patients and review of the literature. J. Pediatric Gastroenterol. Nutr. 1997, 24, 276–279. [Google Scholar] [CrossRef]
- Demo, E.; Frush, D.; Gottfried, M.; Koepke, J.; Boney, A.; Bali, D.; Chen, Y.T.; Kishnani, P.S. Glycogen storage disease type III-hepatocellular carcinoma a long-term complication? J. Hepatol. 2007, 46, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Sentner, C.P.; Hoogeveen, I.J.; Weinstein, D.A.; Santer, R.; Murphy, E.; McKiernan, P.J.; Steuerwald, U.; Beauchamp, N.J.; Taybert, J.; Laforet, P.; et al. Glycogen storage disease type III: Diagnosis, genotype, management, clinical course and outcome. J. Inherit. Metab. Dis. 2016, 39, 697–704. [Google Scholar] [CrossRef] [Green Version]
- DiMauro, S.; Hartwig, G.B.; Hays, A.; Eastwood, A.B.; Franco, R.; Olarte, M.; Chang, M.; Roses, A.D.; Fetell, M.; Schoenfeldt, R.S.; et al. Debrancher deficiency: Neuromuscular disorder in 5 adults. Ann. Neurol. 1979, 5, 422–436. [Google Scholar] [CrossRef]
- Pearson, C.M. Glycogen metabolism and storage diseases of types III, IV and V. Am. J. Clin. Pathol. 1968, 50, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Vertilus, S.M.; Austin, S.L.; Foster, K.S.; Boyette, K.E.; Bali, D.S.; Li, J.S.; Kishnani, P.S.; Wechsler, S.B. Echocardiographic manifestations of Glycogen Storage Disease III: Increase in wall thickness and left ventricular mass over time. Genet. Med. Off. J. Am. Coll. Med. Genet. 2010, 12, 413–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sentner, C.P.; Caliskan, K.; Vletter, W.B.; Smit, G.P. Heart Failure Due to Severe Hypertrophic Cardiomyopathy Reversed by Low Calorie, High Protein Dietary Adjustments in a Glycogen Storage Disease Type IIIa Patient. Jimd Rep. 2012, 5, 13–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.J.; Leonard, J.V. The hepatic glycogen storage diseases--problems beyond childhood. J. Inherit. Metab. Dis. 1995, 18, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Moses, S.W.; Parvari, R. The variable presentations of glycogen storage disease type IV: A review of clinical, enzymatic and molecular studies. Curr. Mol. Med. 2002, 2, 177–188. [Google Scholar] [CrossRef]
- McArdle, B. Myopathy due to a defect in muscle glycogen breakdown. Clin. Sci. 1951, 10, 13–35. [Google Scholar]
- Tsujino, S.; Shanske, S.; Nonaka, I.; DiMauro, S. The molecular genetic basis of myophosphorylase deficiency (McArdle′s disease). Muscle Nerve. Suppl. 1995, 3, S23–S27. [Google Scholar] [CrossRef]
- Nogales-Gadea, G.; Santalla, A.; Brull, A.; de Luna, N.; Lucia, A.; Pinos, T. The pathogenomics of McArdle disease—Genes, enzymes, models, and therapeutic implications. J. Inherit. Metab. Dis. 2015, 38, 221–230. [Google Scholar] [CrossRef]
- Nogales-Gadea, G.; Brull, A.; Santalla, A.; Andreu, A.L.; Arenas, J.; Martin, M.A.; Lucia, A.; de Luna, N.; Pinos, T. McArdle Disease: Update of Reported Mutations and Polymorphisms in the PYGM Gene. Hum. Mutat. 2015, 36, 669–678. [Google Scholar] [CrossRef]
- Santalla, A.; Nogales-Gadea, G.; Encinar, A.B.; Vieitez, I.; Gonzalez-Quintana, A.; Serrano-Lorenzo, P.; Consuegra, I.G.; Asensio, S.; Ballester-Lopez, A.; Pintos-Morell, G.; et al. Genotypic and phenotypic features of all Spanish patients with McArdle disease: A 2016 update. BMC Genom. 2017, 18, 819. [Google Scholar] [CrossRef] [Green Version]
- Quinlivan, R.; Buckley, J.; James, M.; Twist, A.; Ball, S.; Duno, M.; Vissing, J.; Bruno, C.; Cassandrini, D.; Roberts, M.; et al. McArdle disease: A clinical review. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1182–1188. [Google Scholar] [CrossRef]
- Lucia, A.; Nogales-Gadea, G.; Perez, M.; Martin, M.A.; Andreu, A.L.; Arenas, J. McArdle disease: What do neurologists need to know? Nat. Clin. Practice. Neurol. 2008, 4, 568–577. [Google Scholar] [CrossRef] [PubMed]
- MacLean, D.; Vissing, J.; Vissing, S.F.; Haller, R.G. Oral branched-chain amino acids do not improve exercise capacity in McArdle disease. Neurology 1998, 51, 1456–1459. [Google Scholar] [CrossRef] [PubMed]
- Day, T.J.; Mastaglia, F.L. Depot-glucagon in the treatment of McArdle’s disease. Aust. N. Z. J. Med. 1985, 15, 748–750. [Google Scholar] [PubMed]
- Poels, P.J.; Braakhekke, J.P.; Joosten, E.M.; Stegeman, D.F. Dantrolene sodium does influence the second-wind phenomenon in McArdle’s disease. Electrophysiological evidence during exercise in a double-blind placebo-controlled, cross-over study in 5 patients. J. Neurol. Sci. 1990, 100, 108–112. [Google Scholar] [CrossRef]
- Lane, R.J.; Turnbull, D.M.; Welch, J.L.; Walton, J. A double-blind, placebo-controlled, crossover study of verapamil in exertional muscle pain. Muscle Nerve 1986, 9, 635–641. [Google Scholar] [CrossRef]
- Phoenix, J.; Hopkins, P.; Bartram, C.; Beynon, R.J.; Quinlivan, R.C.; Edwards, R.H. Effect of vitamin B6 supplementation in McArdle′s disease: A strategic case study. Neuromuscul. Disord. Nmd 1998, 8, 210–212. [Google Scholar] [CrossRef]
- Sato, S.; Ohi, T.; Nishino, I.; Sugie, H. Confirmation of the efficacy of vitamin B6 supplementation for McArdle disease by follow-up muscle biopsy. Muscle Nerve 2012, 45, 436–440. [Google Scholar] [CrossRef]
- Steele, I.C.; Patterson, V.H.; Nicholls, D.P. A double blind, placebo controlled, crossover trial of D-ribose in McArdle’s disease. J. Neurol. Sci. 1996, 136, 174–177. [Google Scholar] [CrossRef]
- Madsen, K.L.; Laforet, P.; Buch, A.E.; Stemmerik, M.G.; Ottolenghi, C.; Hatem, S.N.; Raaschou-Pedersen, D.T.; Poulsen, N.S.; Atencio, M.; Luton, M.P.; et al. No effect of triheptanoin on exercise performance in McArdle disease. Ann. Clin. Transl. Neurol. 2019, 6, 1949–1960. [Google Scholar] [CrossRef] [Green Version]
- Scalco, R.S.; Stemmerik, M.; Lokken, N.; Vissing, C.R.; Madsen, K.L.; Michalak, Z.; Pattni, J.; Godfrey, R.; Samandouras, G.; Bassett, P.; et al. Results of an open label feasibility study of sodium valproate in people with McArdle disease. Neuromuscul. Disord. Nmd 2020, 30, 734–741. [Google Scholar] [CrossRef]
- Vorgerd, M.; Grehl, T.; Jager, M.; Muller, K.; Freitag, G.; Patzold, T.; Bruns, N.; Fabian, K.; Tegenthoff, M.; Mortier, W.; et al. Creatine therapy in myophosphorylase deficiency (McArdle disease): A placebo-controlled crossover trial. Arch. Neurol. 2000, 57, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Vorgerd, M.; Zange, J.; Kley, R.; Grehl, T.; Husing, A.; Jager, M.; Muller, K.; Schroder, R.; Mortier, W.; Fabian, K.; et al. Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: Double-blind, placebo-controlled crossover study. Arch. Neurol. 2002, 59, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vissing, J.; Haller, R.G. The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N. Engl. J. Med. 2003, 349, 2503–2509. [Google Scholar] [CrossRef]
- Burwinkel, B.; Bakker, H.D.; Herschkovitz, E.; Moses, S.W.; Shin, Y.S.; Kilimann, M.W. Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI. Am. J. Hum. Genet. 1998, 62, 785–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aeppli, T.R.; Rymen, D.; Allegri, G.; Bode, P.K.; Haberle, J. Glycogen storage disease type VI: Clinical course and molecular background. Eur. J. Pediatrics 2020, 179, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Hers, H.G. Enzymatic studies of hepatic fragments; application to the classification of glycogenoses. Rev. Int. D′Hepatol. 1959, 9, 35–55. [Google Scholar]
- Roscher, A.; Patel, J.; Hewson, S.; Nagy, L.; Feigenbaum, A.; Kronick, J.; Raiman, J.; Schulze, A.; Siriwardena, K.; Mercimek-Mahmutoglu, S. The natural history of glycogen storage disease types VI and IX: Long-term outcome from the largest metabolic center in Canada. Mol. Genet. Metab. 2014, 113, 171–176. [Google Scholar] [CrossRef]
- Beauchamp, N.J.; Taybert, J.; Champion, M.P.; Layet, V.; Heinz-Erian, P.; Dalton, A.; Tanner, M.S.; Pronicka, E.; Sharrard, M.J. High frequency of missense mutations in glycogen storage disease type VI. J. Inherit. Metab. Dis. 2007, 30, 722–734. [Google Scholar] [CrossRef]
- Kishnani, P.S.; Goldstein, J.; Austin, S.L.; Arn, P.; Bachrach, B.; Bali, D.S.; Chung, W.K.; El-Gharbawy, A.; Brown, L.M.; Kahler, S.; et al. Diagnosis and management of glycogen storage diseases type VI and IX: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. Off. J. Am. Coll. Med. Genet. 2019, 21, 772–789. [Google Scholar] [CrossRef] [Green Version]
- Manzia, T.M.; Angelico, R.; Toti, L.; Cillis, A.; Ciano, P.; Orlando, G.; Anselmo, A.; Angelico, M.; Tisone, G. Glycogen storage disease type Ia and VI associated with hepatocellular carcinoma: Two case reports. Transplant. Proc. 2011, 43, 1181–1183. [Google Scholar] [CrossRef]
- Nakai, A.; Shigematsu, Y.; Takano, T.; Kikawa, Y.; Sudo, M. Uncooked cornstarch treatment for hepatic phosphorylase kinase deficiency. Eur. J. Pediatrics 1994, 153, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Tarui, S.; Okuno, G.; Ikura, Y.; Tanaka, T.; Suda, M.; Nishikawa, M. Phosphofructokinase Deficiency in Skeletal Muscle. A New Type of Glycogenosis. Biochem. Biophys. Res. Commun. 1965, 19, 517–523. [Google Scholar] [CrossRef]
- Haller, R.G.; Lewis, S.F. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N. Engl. J. Med. 1991, 324, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Kahn, A.; Weil, D.; Cottreau, D.; Dreyfus, J.C. Muscle phosphofructokinase deficiency in man: Expression of the defect in blood cells and cultured fibroblasts. Ann. Hum. Genet. 1981, 45, 5–14. [Google Scholar] [CrossRef]
- Dunaway, G.A.; Kasten, T.P.; Sebo, T.; Trapp, R. Analysis of the phosphofructokinase subunits and isoenzymes in human tissues. Biochem. J. 1988, 251, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Agamanolis, D.P.; Askari, A.D.; Di Mauro, S.; Hays, A.; Kumar, K.; Lipton, M.; Raynor, A. Muscle phosphofructokinase deficiency: Two cases with unusual polysaccharide accumulation and immunologically active enzyme protein. Muscle Nerve 1980, 3, 456–467. [Google Scholar] [CrossRef]
- Nakajima, H.; Raben, N.; Hamaguchi, T.; Yamasaki, T. Phosphofructokinase deficiency; past, present and future. Curr. Mol. Med. 2002, 2, 197–212. [Google Scholar] [CrossRef]
- Toscano, A.; Musumeci, O. Tarui disease and distal glycogenoses: Clinical and genetic update. Acta Myol. Myopathies Cardiomyopathies Off. J. Mediterr. Soc. Myol. 2007, 26, 105–107. [Google Scholar]
- Moslemi, A.R.; Lindberg, C.; Nilsson, J.; Tajsharghi, H.; Andersson, B.; Oldfors, A. Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N. Engl. J. Med. 2010, 362, 1203–1210. [Google Scholar] [CrossRef]
- Barbetti, F.; Rocchi, M.; Bossolasco, M.; Cordera, R.; Sbraccia, P.; Finelli, P.; Consalez, G.G. The human skeletal muscle glycogenin gene: cDNA, tissue expression and chromosomal localization. Biochem. Biophys. Res. Commun. 1996, 220, 72–77. [Google Scholar] [CrossRef]
- Mu, J.; Skurat, A.V.; Roach, P.J. Glycogenin-2, a novel self-glucosylating protein involved in liver glycogen biosynthesis. J. Biol. Chem. 1997, 272, 27589–27597. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Schroeder, J.; Skurat, A.V.; Roach, P.J. Do rodents have a gene encoding glycogenin-2, the liver isoform of the self-glucosylating initiator of glycogen synthesis? Iubmb Life 2001, 51, 87–91. [Google Scholar] [CrossRef]
- Krag, T.O.; Ruiz-Ruiz, C.; Vissing, J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J. Clin. Endocrinol. Metab. 2017, 102, 2690–2700. [Google Scholar] [CrossRef] [Green Version]
- Pederson, B.A.; Chen, H.; Schroeder, J.M.; Shou, W.; DePaoli-Roach, A.A.; Roach, P.J. Abnormal cardiac development in the absence of heart glycogen. Mol. Cell. Biol. 2004, 24, 7179–7187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pederson, B.A.; Cope, C.R.; Schroeder, J.M.; Smith, M.W.; Irimia, J.M.; Thurberg, B.L.; DePaoli-Roach, A.A.; Roach, P.J. Exercise capacity of mice genetically lacking muscle glycogen synthase: In mice, muscle glycogen is not essential for exercise. J. Biol. Chem. 2005, 280, 17260–17265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pederson, B.A.; Schroeder, J.M.; Parker, G.E.; Smith, M.W.; DePaoli-Roach, A.A.; Roach, P.J. Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes 2005, 54, 3466–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brix, A.E.; Howerth, E.W.; McConkie-Rosell, A.; Peterson, D.; Egnor, D.; Wells, M.R.; Chen, Y.T. Glycogen storage disease type Ia in two littermate Maltese puppies. Vet. Pathol. 1995, 32, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Bao, Y.; Wu, J.Y.; Brix, A.E.; Lin, J.L.; Chen, Y.T. Isolation and nucleotide sequence of canine glucose-6-phosphatase mRNA: Identification of mutation in puppies with glycogen storage disease type Ia. Biochem. Mol. Med. 1997, 61, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Beaty, R.M.; Jackson, M.; Peterson, D.; Bird, A.; Brown, T.; Benjamin, D.K., Jr.; Juopperi, T.; Kishnani, P.; Boney, A.; Chen, Y.T.; et al. Delivery of glucose-6-phosphatase in a canine model for glycogen storage disease, type Ia, with adeno-associated virus (AAV) vectors. Gene Ther. 2002, 9, 1015–1022. [Google Scholar] [CrossRef]
- Koeberl, D.D.; Pinto, C.; Sun, B.; Li, S.; Kozink, D.M.; Benjamin, D.K., Jr.; Demaster, A.K.; Kruse, M.A.; Vaughn, V.; Hillman, S.; et al. AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia. Mol. Ther. J. Am. Soc. Gene Ther. 2008, 16, 665–672. [Google Scholar] [CrossRef]
- Weinstein, D.A.; Correia, C.E.; Conlon, T.; Specht, A.; Verstegen, J.; Onclin-Verstegen, K.; Campbell-Thompson, M.; Dhaliwal, G.; Mirian, L.; Cossette, H.; et al. Adeno-associated virus-mediated correction of a canine model of glycogen storage disease type Ia. Hum. Gene Ther. 2010, 21, 903–910. [Google Scholar] [CrossRef] [Green Version]
- Crane, B.; Luo, X.; Demaster, A.; Williams, K.D.; Kozink, D.M.; Zhang, P.; Brown, T.T.; Pinto, C.R.; Oka, K.; Sun, F.; et al. Rescue administration of a helper-dependent adenovirus vector with long-term efficacy in dogs with glycogen storage disease type Ia. Gene Ther. 2012, 19, 443–452. [Google Scholar] [CrossRef]
- Brooks, E.D.; Landau, D.J.; Everitt, J.I.; Brown, T.T.; Grady, K.M.; Waskowicz, L.; Bass, C.R.; D′Angelo, J.; Asfaw, Y.G.; Williams, K.; et al. Long-term complications of glycogen storage disease type Ia in the canine model treated with gene replacement therapy. J. Inherit. Metab. Dis. 2018, 41, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Faulkner, E.; VanCamp, S.; Jackson, M.; Brown, T.; Boney, A.; Koeberl, D.; Chen, Y.T. Canine model and genomic structural organization of glycogen storage disease type Ia (GSD Ia). Vet. Pathol. 2001, 38, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Lei, K.J.; Chen, H.; Pan, C.J.; Ward, J.M.; Mosinger, B., Jr.; Lee, E.J.; Westphal, H.; Mansfield, B.C.; Chou, J.Y. Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Nat. Genet. 1996, 13, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salganik, S.V.; Weinstein, D.A.; Shupe, T.D.; Salganik, M.; Pintilie, D.G.; Petersen, B.E. A detailed characterization of the adult mouse model of glycogen storage disease Ia. Laboratory investigation. A J. Tech. Methods Pathol. 2009, 89, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Zingone, A.; Hiraiwa, H.; Pan, C.J.; Lin, B.; Chen, H.; Ward, J.M.; Chou, J.Y. Correction of glycogen storage disease type 1a in a mouse model by gene therapy. J. Biol. Chem. 2000, 275, 828–832. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.S.; Pan, C.J.; Shieh, J.J.; Ghosh, A.; Chen, L.Y.; Mansfield, B.C.; Ward, J.M.; Byrne, B.J.; Chou, J.Y. Sustained hepatic and renal glucose-6-phosphatase expression corrects glycogen storage disease type Ia in mice. Hum. Mol. Genet. 2002, 11, 2155–2164. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.Y.; Mansfield, B.C. Gene therapy for type I glycogen storage diseases. Curr. Gene Ther. 2007, 7, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Allamarvdasht, M.; Pan, C.J.; Sun, M.S.; Mansfield, B.C.; Byrne, B.J.; Chou, J.Y. Long-term correction of murine glycogen storage disease type Ia by recombinant adeno-associated virus-1-mediated gene transfer. Gene Ther. 2006, 13, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Koeberl, D.D.; Sun, B.D.; Damodaran, T.V.; Brown, T.; Millington, D.S.; Benjamin, D.K., Jr.; Bird, A.; Schneider, A.; Hillman, S.; Jackson, M.; et al. Early, sustained efficacy of adeno-associated virus vector-mediated gene therapy in glycogen storage disease type Ia. Gene Ther. 2006, 13, 1281–1289. [Google Scholar] [CrossRef]
- Yiu, W.H.; Lee, Y.M.; Peng, W.T.; Pan, C.J.; Mead, P.A.; Mansfield, B.C.; Chou, J.Y. Complete normalization of hepatic G6PC deficiency in murine glycogen storage disease type Ia using gene therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2010, 18, 1076–1084. [Google Scholar] [CrossRef]
- Kim, G.Y.; Lee, Y.M.; Kwon, J.H.; Cho, J.H.; Pan, C.J.; Starost, M.F.; Mansfield, B.C.; Chou, J.Y. Glycogen storage disease type Ia mice with less than 2% of normal hepatic glucose-6-phosphatase-alpha activity restored are at risk of developing hepatic tumors. Mol. Genet. Metab. 2017, 120, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Cho, J.H.; Arnaoutova, I.; Mansfield, B.C.; Chou, J.Y. An evolutionary approach to optimizing glucose-6-phosphatase-alpha enzymatic activity for gene therapy of glycogen storage disease type Ia. J. Inherit. Metab. Dis. 2019, 42, 470–479. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, C.; Arnaoutova, I.; Anduaga, J.; Starost, M.F.; Mansfield, B.C.; Chou, J.Y. Gene therapy using a novel G6PC-S298C variant enhances the long-term efficacy for treating glycogen storage disease type Ia. Biochem. Biophys. Res. Commun. 2020, 527, 824–830. [Google Scholar] [CrossRef]
- Mutel, E.; Abdul-Wahed, A.; Ramamonjisoa, N.; Stefanutti, A.; Houberdon, I.; Cavassila, S.; Pilleul, F.; Beuf, O.; Gautier-Stein, A.; Penhoat, A.; et al. Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas. J. Hepatol. 2011, 54, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Clar, J.; Gri, B.; Calderaro, J.; Birling, M.C.; Herault, Y.; Smit, G.P.; Mithieux, G.; Rajas, F. Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy. Kidney Int. 2014, 86, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Penhoat, A.; Mutel, E.; Amigo-Correig, M.; Pillot, B.; Stefanutti, A.; Rajas, F.; Mithieux, G. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol. Behav. 2011, 105, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Y.; Shieh, J.J.; Lin, B.; Pan, C.J.; Gao, J.L.; Murphy, P.M.; Roe, T.F.; Moses, S.; Ward, J.M.; Lee, E.J.; et al. Impaired glucose homeostasis, neutrophil trafficking and function in mice lacking the glucose-6-phosphate transporter. Hum. Mol. Genet. 2003, 12, 2547–2558. [Google Scholar] [CrossRef]
- Yiu, W.H.; Pan, C.J.; Allamarvdasht, M.; Kim, S.Y.; Chou, J.Y. Glucose-6-phosphate transporter gene therapy corrects metabolic and myeloid abnormalities in glycogen storage disease type Ib mice. Gene Ther. 2007, 14, 219–226. [Google Scholar] [CrossRef]
- Yiu, W.H.; Pan, C.J.; Mead, P.A.; Starost, M.F.; Mansfield, B.C.; Chou, J.Y. Normoglycemia alone is insufficient to prevent long-term complications of hepatocellular adenoma in glycogen storage disease type Ib mice. J. Hepatol. 2009, 51, 909–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.H.; Lee, Y.M.; Cho, J.H.; Kim, G.Y.; Anduaga, J.; Starost, M.F.; Mansfield, B.C.; Chou, J.Y. Liver-directed gene therapy for murine glycogen storage disease type Ib. Hum. Mol. Genet. 2017, 26, 4395–4405. [Google Scholar] [CrossRef] [Green Version]
- Raggi, F.; Pissavino, A.L.; Resaz, R.; Segalerba, D.; Puglisi, A.; Vanni, C.; Antonini, F.; Del Zotto, G.; Gamberucci, A.; Marcolongo, P.; et al. Development and characterization of an inducible mouse model for glycogen storage disease type Ib. J. Inherit. Metab. Dis. 2018, 41, 1015–1025. [Google Scholar] [CrossRef]
- Richards, R.B.; Edwards, J.R.; Cook, R.D.; White, R.R. Bovine generalyzed glycogenosis. Neuropathol Appl Neurobiol 1977, 3, 45–56. [Google Scholar] [CrossRef]
- Dorling, P.R.; Howell, J.M.; Gawthorne, J.M. Skeletal-muscle alpha-glucosidases in bovine generalized glycogenosis type II. Biochem. J. 1981, 198, 409–412. [Google Scholar] [CrossRef]
- Citek, J.; Rehout, V.; Vecerek, L.; Hajkova, J. Genotyping glycogen storage disease type II and type V in cattle reared in the Czech Republic. J. Vet. Med. Aphysiologypathologyclin. Med. 2007, 54, 257–259. [Google Scholar] [CrossRef]
- Dennis, J.A.; Moran, C.; Healy, P.J. The bovine alpha-glucosidase gene: Coding region, genomic structure, and mutations that cause bovine generalized glycogenosis. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2000, 11, 206–212. [Google Scholar] [CrossRef]
- Healy, P.J.; Sewell, C.A.; Nieper, R.E.; Whittle, R.J.; Reichmann, K.G. Control of generalised glycogenosis in a Brahman herd. Aust. Vet. J. 1987, 64, 278–280. [Google Scholar] [CrossRef]
- Reichmann, K.G.; Twist, J.O.; Thistlethwaite, E.J. Clinical, diagnostic and biochemical features of generalised glycogenosis type II in Brahman cattle. Aust. Vet. J. 1993, 70, 405–408. [Google Scholar] [CrossRef]
- Mostafa, I.E. A case of glycogenic cardiomegaly in a dog. Acta Vet. Scand. 1970, 11, 197–208. [Google Scholar]
- Walvoort, H.C.; Slee, R.G.; Sluis, K.J.; Koster, J.F.; Reuser, A.J. Biochemical genetics of the Lapland dog model of glycogen storage disease type II (acid alpha-glucosidase deficiency). Am. J. Med. Genet. 1984, 19, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Walvoort, H.C. Glycogen storage disease type II in the Lapland dog. Vet. Q. 1985, 7, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Seppala, E.H.; Reuser, A.J.; Lohi, H. A nonsense mutation in the acid alpha-glucosidase gene causes Pompe disease in Finnish and Swedish Lapphunds. PLoS ONE 2013, 8, e56825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raben, N.; Nagaraju, K.; Lee, E.; Kessler, P.; Byrne, B.; Lee, L.; LaMarca, M.; King, C.; Ward, J.; Sauer, B.; et al. Targeted disruption of the acid alpha-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II. J. Biol. Chem. 1998, 273, 19086–19092. [Google Scholar] [CrossRef] [Green Version]
- Puzzo, F.; Colella, P.; Biferi, M.G.; Bali, D.; Paulk, N.K.; Vidal, P.; Collaud, F.; Simon-Sola, M.; Charles, S.; Hardet, R.; et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid alpha-glucosidase. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Cagin, U.; Puzzo, F.; Gomez, M.J.; Moya-Nilges, M.; Sellier, P.; Abad, C.; Van Wittenberghe, L.; Daniele, N.; Guerchet, N.; Gjata, B.; et al. Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid alpha-Glucosidase. Mol. Ther. J. Am. Soc. Gene Ther. 2020, 28, 2056–2072. [Google Scholar] [CrossRef]
- Lim, J.A.; Li, L.; Kakhlon, O.; Myerowitz, R.; Raben, N. Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease. Autophagy 2015, 11, 385–402. [Google Scholar] [CrossRef] [Green Version]
- Raben, N.; Nagaraju, K.; Lee, E.; Plotz, P. Modulation of disease severity in mice with targeted disruption of the acid alpha-glucosidase gene. Neuromuscul. Disord. Nmd. 2000, 10, 283–291. [Google Scholar] [CrossRef]
- Colella, P.; Sellier, P.; Gomez, M.J.; Biferi, M.G.; Tanniou, G.; Guerchet, N.; Cohen-Tannoudji, M.; Moya-Nilges, M.; van Wittenberghe, L.; Daniele, N.; et al. Gene therapy with secreted acid alpha-glucosidase rescues Pompe disease in a novel mouse model with early-onset spinal cord and respiratory defects. EBioMedicine 2020, 61, 103052. [Google Scholar] [CrossRef]
- Ziegler, R.J.; Bercury, S.D.; Fidler, J.; Zhao, M.A.; Foley, J.; Taksir, T.V.; Ryan, S.; Hodges, B.L.; Scheule, R.K.; Shihabuddin, L.S.; et al. Ability of adeno-associated virus serotype 8-mediated hepatic expression of acid alpha-glucosidase to correct the biochemical and motor function deficits of presymptomatic and symptomatic Pompe mice. Hum. Gene Ther. 2008, 19, 609–621. [Google Scholar] [CrossRef]
- Schneider, J.L.; Dingman, R.K.; Balu-Iyer, S.V. Lipidic Nanoparticles Comprising Phosphatidylinositol Mitigate Immunogenicity and Improve Efficacy of Recombinant Human Acid Alpha-Glucosidase in a Murine Model of Pompe Disease. J. Pharm. Sci. 2018, 107, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Doerfler, P.A.; Nayak, S.; Herzog, R.W.; Morel, L.; Byrne, B.J. BAFF blockade prevents anti-drug antibody formation in a mouse model of Pompe disease. Clin. Immunol. 2015, 158, 140–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraites, T.J., Jr.; Schleissing, M.R.; Shanely, R.A.; Walter, G.A.; Cloutier, D.A.; Zolotukhin, I.; Pauly, D.F.; Raben, N.; Plotz, P.H.; Powers, S.K.; et al. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol. Ther. J. Am. Soc. Gene Ther. 2002, 5, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhang, H.; Franco, L.M.; Brown, T.; Bird, A.; Schneider, A.; Koeberl, D.D. Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol. Ther. J. Am. Soc. Gene Ther. 2005, 11, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Mah, C.S.; Falk, D.J.; Germain, S.A.; Kelley, J.S.; Lewis, M.A.; Cloutier, D.A.; DeRuisseau, L.R.; Conlon, T.J.; Cresawn, K.O.; Fraites, T.J., Jr.; et al. Gel-mediated delivery of AAV1 vectors corrects ventilatory function in Pompe mice with established disease. Mol. Ther. J. Am. Soc. Gene Ther. 2010, 18, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmallah, M.K.; Falk, D.J.; Nayak, S.; Federico, R.A.; Sandhu, M.S.; Poirier, A.; Byrne, B.J.; Fuller, D.D. Sustained correction of motoneuron histopathology following intramuscular delivery of AAV in pompe mice. Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Young, S.P.; Li, P.; Di, C.; Brown, T.; Salva, M.Z.; Li, S.; Bird, A.; Yan, Z.; Auten, R.; et al. Correction of multiple striated muscles in murine Pompe disease through adeno-associated virus-mediated gene therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2008, 16, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Falk, D.J.; Soustek, M.S.; Todd, A.G.; Mah, C.S.; Cloutier, D.A.; Kelley, J.S.; Clement, N.; Fuller, D.D.; Byrne, B.J. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice. Mol. Ther. Methods Clin. Dev. 2015, 2, 15007. [Google Scholar] [CrossRef]
- Falk, D.J.; Mah, C.S.; Soustek, M.S.; Lee, K.Z.; Elmallah, M.K.; Cloutier, D.A.; Fuller, D.D.; Byrne, B.J. Intrapleural administration of AAV9 improves neural and cardiorespiratory function in Pompe disease. Mol. Ther. J. Am. Soc. Gene Ther. 2013, 21, 1661–1667. [Google Scholar] [CrossRef] [Green Version]
- Keeler, A.M.; Zieger, M.; Todeasa, S.H.; McCall, A.L.; Gifford, J.C.; Birsak, S.; Choudhury, S.R.; Byrne, B.J.; Sena-Esteves, M.; ElMallah, M.K. Systemic Delivery of AAVB1-GAA Clears Glycogen and Prolongs Survival in a Mouse Model of Pompe Disease. Hum. Gene Ther. 2019, 30, 57–68. [Google Scholar] [CrossRef]
- Han, S.O.; Li, S.; Bird, A.; Koeberl, D. Synergistic Efficacy from Gene Therapy with Coreceptor Blockade and a beta2-Agonist in Murine Pompe Disease. Hum. Gene Ther. 2015, 26, 743–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerfler, P.A.; Todd, A.G.; Clement, N.; Falk, D.J.; Nayak, S.; Herzog, R.W.; Byrne, B.J. Copackaged AAV9 Vectors Promote Simultaneous Immune Tolerance and Phenotypic Correction of Pompe Disease. Hum. Gene Ther. 2016, 27, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Colella, P.; Mingozzi, F. Gene Therapy for Pompe Disease: The Time is now. Hum. Gene Ther. 2019, 30, 1245–1262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, B.; Osada, T.; Rodriguiz, R.; Yang, X.Y.; Luo, X.; Kemper, A.R.; Clay, T.M.; Koeberl, D.D. Immunodominant liver-specific expression suppresses transgene-directed immune responses in murine pompe disease. Hum. Gene Ther. 2012, 23, 460–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.; Zhang, H.; Bird, A.; Li, S.; Young, S.P.; Koeberl, D.D. Impaired clearance of accumulated lysosomal glycogen in advanced Pompe disease despite high-level vector-mediated transgene expression. J. Gene Med. 2009, 11, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Bird, A.; Young, S.P.; Kishnani, P.S.; Chen, Y.T.; Koeberl, D.D. Enhanced response to enzyme replacement therapy in Pompe disease after the induction of immune tolerance. Am. J. Hum. Genet. 2007, 81, 1042–1049. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Sun, B.; Nilsson, M.I.; Bird, A.; Tarnopolsky, M.A.; Thurberg, B.L.; Bali, D.; Koeberl, D.D. Adjunctive beta2-agonists reverse neuromuscular involvement in murine Pompe disease. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013, 27, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Han, S.O.; Li, S.; Everitt, J.I.; Koeberl, D.D. Salmeterol with Liver Depot Gene Therapy Enhances the Skeletal Muscle Response in Murine Pompe Disease. Hum. Gene Ther. 2019, 30, 855–864. [Google Scholar] [CrossRef]
- Franco, L.M.; Sun, B.; Yang, X.; Bird, A.; Zhang, H.; Schneider, A.; Brown, T.; Young, S.P.; Clay, T.M.; Amalfitano, A.; et al. Evasion of immune responses to introduced human acid alpha-glucosidase by liver-restricted expression in glycogen storage disease type II. Mol. Ther. J. Am. Soc. Gene Ther. 2005, 12, 876–884. [Google Scholar] [CrossRef]
- Bond, J.E.; Kishnani, P.S.; Koeberl, D.D. Immunomodulatory, liver depot gene therapy for Pompe disease. Cell. Immunol. 2019, 342, 103737. [Google Scholar] [CrossRef]
- Colella, P.; Sellier, P.; Costa Verdera, H.; Puzzo, F.; van Wittenberghe, L.; Guerchet, N.; Daniele, N.; Gjata, B.; Marmier, S.; Charles, S.; et al. AAV Gene Transfer with Tandem Promoter Design Prevents Anti-transgene Immunity and Provides Persistent Efficacy in Neonate Pompe Mice. Mol. Therapy. Methods Clin. Dev. 2019, 12, 85–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.C.; Hwu, W.L.; Muramatsu, S.I.; Falk, D.J.; Byrne, B.J.; Cheng, C.H.; Shih, N.C.; Chang, K.L.; Tsai, L.K.; Chien, Y.H. A Neuron-Specific Gene Therapy Relieves Motor Deficits in Pompe Disease Mice. Mol. Neurobiol. 2018, 55, 5299–5309. [Google Scholar] [CrossRef] [PubMed]
- Hordeaux, J.; Dubreil, L.; Robveille, C.; Deniaud, J.; Pascal, Q.; Dequeant, B.; Pailloux, J.; Lagalice, L.; Ledevin, M.; Babarit, C.; et al. Long-term neurologic and cardiac correction by intrathecal gene therapy in Pompe disease. Acta Neuropathol. Commun. 2017, 5, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanna, R.; Flanagan, J.J.; Feng, J.; Soska, R.; Frascella, M.; Pellegrino, L.J.; Lun, Y.; Guillen, D.; Lockhart, D.J.; Valenzano, K.J. The pharmacological chaperone AT2220 increases recombinant human acid alpha-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. PLoS ONE 2012, 7, e40776. [Google Scholar] [CrossRef] [Green Version]
- Parenti, G. Treating lysosomal storage diseases with pharmacological chaperones: From concept to clinics. Embo Mol. Med. 2009, 1, 268–279. [Google Scholar] [CrossRef]
- Stok, M.; de Boer, H.; Huston, M.W.; Jacobs, E.H.; Roovers, O.; Visser, T.P.; Jahr, H.; Duncker, D.J.; van Deel, E.D.; Reuser, A.J.J.; et al. Lentiviral Hematopoietic Stem Cell Gene Therapy Corrects Murine Pompe Disease. Mol. Ther. Methods Clin. Dev. 2020, 17, 1014–1025. [Google Scholar] [CrossRef]
- van Til, N.P.; Stok, M.; Aerts Kaya, F.S.; de Waard, M.C.; Farahbakhshian, E.; Visser, T.P.; Kroos, M.A.; Jacobs, E.H.; Willart, M.A.; van der Wegen, P.; et al. Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. Blood 2010, 115, 5329–5337. [Google Scholar] [CrossRef]
- Kyosen, S.O.; Iizuka, S.; Kobayashi, H.; Kimura, T.; Fukuda, T.; Shen, J.; Shimada, Y.; Ida, H.; Eto, Y.; Ohashi, T. Neonatal gene transfer using lentiviral vector for murine Pompe disease: Long-term expression and glycogen reduction. Gene Ther. 2010, 17, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Shemesh, A.; Wang, Y.; Yang, Y.; Yang, G.S.; Johnson, D.E.; Backer, J.M.; Pessin, J.E.; Zong, H. Suppression of mTORC1 activation in acid-alpha-glucosidase-deficient cells and mice is ameliorated by leucine supplementation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1251–R1259. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, G.J.; van Gestel, T.J.M.; In ′t Groen, S.L.M.; de Jong, B.; Boomaars, B.; Tarallo, A.; Cardone, M.; Parenti, G.; van der Ploeg, A.T.; Pijnappel, W. Satellite cells maintain regenerative capacity but fail to repair disease-associated muscle damage in mice with Pompe disease. Acta Neuropathol. Commun. 2018, 6, 119. [Google Scholar] [CrossRef] [Green Version]
- Raben, N.; Hill, V.; Shea, L.; Takikita, S.; Baum, R.; Mizushima, N.; Ralston, E.; Plotz, P. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 2008, 17, 3897–3908. [Google Scholar] [CrossRef] [Green Version]
- Mizushima, N.; Ohsumi, Y.; Yoshimori, T. Autophagosome formation in mammalian cells. Cell Struct. Funct. 2002, 27, 421–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raben, N.; Schreiner, C.; Baum, R.; Takikita, S.; Xu, S.; Xie, T.; Myerowitz, R.; Komatsu, M.; Van der Meulen, J.H.; Nagaraju, K.; et al. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder--murine Pompe disease. Autophagy 2010, 6, 1078–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijvoet, A.G.; van de Kamp, E.H.; Kroos, M.A.; Ding, J.H.; Yang, B.Z.; Visser, P.; Bakker, C.E.; Verbeet, M.P.; Oostra, B.A.; Reuser, A.J.; et al. Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Hum. Mol. Genet. 1998, 7, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Kuroda, S.; Mizutani, M.; Kiuchi, Y.; Suzuki, K.; Ono, T. Generalized glycogen storage disease in Japanese quail (Coturnix coturnix japonica). Vet. Pathol. 1983, 20, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Nonaka, I.; Sugita, H. Japanese quail and human acid maltase deficiency: A comparative study. Brain Dev. 1991, 13, 247–255. [Google Scholar] [CrossRef]
- Kikuchi, T.; Yang, H.W.; Pennybacker, M.; Ichihara, N.; Mizutani, M.; Van Hove, J.L.; Chen, Y.T. Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase-deficient quail. J. Clin. Investig. 1998, 101, 827–833. [Google Scholar] [CrossRef]
- Suhara, Y.; Ishiura, S.; Tsukahara, T.; Sugita, H. Mature 98,000-dalton acid alpha-glucosidase is deficient in Japanese quails with acid maltase deficiency. Muscle Nerve 1989, 12, 670–678. [Google Scholar] [CrossRef]
- Gregory, B.L.; Shelton, G.D.; Bali, D.S.; Chen, Y.T.; Fyfe, J.C. Glycogen storage disease type IIIa in curly-coated retrievers. J. Vet. Intern. Med. 2007, 21, 40–46. [Google Scholar] [CrossRef]
- Yi, H.; Thurberg, B.L.; Curtis, S.; Austin, S.; Fyfe, J.; Koeberl, D.D.; Kishnani, P.S.; Sun, B. Characterization of a canine model of glycogen storage disease type IIIa. Dis. Models Mech. 2012, 5, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Brooks, E.D.; Yi, H.; Austin, S.L.; Thurberg, B.L.; Young, S.P.; Fyfe, J.C.; Kishnani, P.S.; Sun, B. Natural Progression of Canine Glycogen Storage Disease Type IIIa. Comp. Med. 2016, 66, 41–51. [Google Scholar] [PubMed]
- Pagliarani, S.; Lucchiari, S.; Ulzi, G.; Violano, R.; Ripolone, M.; Bordoni, A.; Nizzardo, M.; Gatti, S.; Corti, S.; Moggio, M.; et al. Glycogen storage disease type III: A novel Agl knockout mouse model. Biochim. Et Biophys. Acta 2014, 1842, 2318–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, P.; Pagliarani, S.; Colella, P.; Costa Verdera, H.; Jauze, L.; Gjorgjieva, M.; Puzzo, F.; Marmier, S.; Collaud, F.; Simon Sola, M.; et al. Rescue of GSDIII Phenotype with Gene Transfer Requires Liver- and Muscle-Targeted GDE Expression. Mol. Ther. J. Am. Soc. Gene Ther. 2018, 26, 890–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.A.; Choi, S.J.; Gao, F.; Kishnani, P.S.; Sun, B. A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme. Mol. Ther. Methods Clin. Dev. 2020, 18, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Valberg, S.J.; Ward, T.L.; Rush, B.; Kinde, H.; Hiraragi, H.; Nahey, D.; Fyfe, J.; Mickelson, J.R. Glycogen branching enzyme deficiency in quarter horse foals. J. Vet. Intern. Med. 2001, 15, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, J.C.; Kurzhals, R.L.; Hawkins, M.G.; Wang, P.; Yuhki, N.; Giger, U.; Van Winkle, T.J.; Haskins, M.E.; Patterson, D.F.; Henthorn, P.S. A complex rearrangement in Gbe1 causes both perinatal hypoglycemic collapse and late-juvenile-onset neuromuscular degeneration in glycogen storage disease type IV of Norwegian forest cats. Mol. Genet. Metab. 2007, 90, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Akman, H.O.; Sheiko, T.; Tay, S.K.; Finegold, M.J.; Dimauro, S.; Craigen, W.J. Generation of a novel mouse model that recapitulates early and adult onset glycogenosis type IV. Hum. Mol. Genet. 2011, 20, 4430–4439. [Google Scholar] [CrossRef] [Green Version]
- Orhan Akman, H.; Emmanuele, V.; Kurt, Y.G.; Kurt, B.; Sheiko, T.; DiMauro, S.; Craigen, W.J. A novel mouse model that recapitulates adult-onset glycogenosis type 4. Hum. Mol. Genet. 2015, 24, 6801–6810. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Zhang, Q.; Brooks, E.D.; Yang, C.; Thurberg, B.L.; Kishnani, P.S.; Sun, B. Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy. Hum. Gene Ther. 2017, 28, 286–294. [Google Scholar] [CrossRef]
- Angelos, S.; Valberg, S.J.; Smith, B.P.; McQuarrie, P.S.; Shanske, S.; Tsujino, S.; DiMauro, S.; Cardinet, G.H., III. Myophosphorylase deficiency associated with rhabdomyolysis and exercise intolerance in 6 related Charolais cattle. Muscle Nerve 1995, 18, 736–740. [Google Scholar] [CrossRef]
- Tsujino, S.; Shanske, S.; Valberg, S.J.; Cardinet, G.H., 3rd; Smith, B.P.; DiMauro, S. Cloning of bovine muscle glycogen phosphorylase cDNA and identification of a mutation in cattle with myophosphorylase deficiency, an animal model for McArdle’s disease. Neuromuscul. Disord. Nmd 1996, 6, 19–26. [Google Scholar] [CrossRef]
- Tan, P.; Allen, J.G.; Wilton, S.D.; Akkari, P.A.; Huxtable, C.R.; Laing, N.G. A splice-site mutation causing ovine McArdle′s disease. Neuromuscul. Disord. Nmd 1997, 7, 336–342. [Google Scholar] [CrossRef]
- Howell, J.M.; Walker, K.R.; Creed, K.E.; Dunton, E.; Davies, L.; Quinlivan, R.; Karpati, G. Phosphorylase re-expression, increase in the force of contraction and decreased fatigue following notexin-induced muscle damage and regeneration in the ovine model of McArdle disease. Neuromuscul. Disord. Nmd 2014, 24, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.M.; Dunton, E.; Creed, K.E.; Quinlivan, R.; Sewry, C. Investigating sodium valproate as a treatment for McArdle disease in sheep. Neuromuscul. Disord. Nmd 2015, 25, 111–119. [Google Scholar] [CrossRef]
- Howell, J.M.; Walker, K.R.; Davies, L.; Dunton, E.; Everaardt, A.; Laing, N.; Karpati, G. Adenovirus and adeno-associated virus-mediated delivery of human myophosphorylase cDNA and LacZ cDNA to muscle in the ovine model of McArdle’s disease: Expression and re-expression of glycogen phosphorylase. Neuromuscul. Disord. Nmd 2008, 18, 248–258. [Google Scholar] [CrossRef]
- Nogales-Gadea, G.; Pinos, T.; Lucia, A.; Arenas, J.; Camara, Y.; Brull, A.; de Luna, N.; Martin, M.A.; Garcia-Arumi, E.; Marti, R.; et al. Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease. Brain A J. Neurol. 2012, 135, 2048–2057. [Google Scholar] [CrossRef] [Green Version]
- Brull, A.; de Luna, N.; Blanco-Grau, A.; Lucia, A.; Martin, M.A.; Arenas, J.; Marti, R.; Andreu, A.L.; Pinos, T. Phenotype consequences of myophosphorylase dysfunction: Insights from the McArdle mouse model. J. Physiol. 2015, 593, 2693–2706. [Google Scholar] [CrossRef] [Green Version]
- Krag, T.O.; Pinos, T.; Nielsen, T.L.; Brull, A.; Andreu, A.L.; Vissing, J. Differential Muscle Involvement in Mice and Humans Affected by McArdle Disease. J. Neuropathol. Exp. Neurol. 2016, 75, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Real-Martinez, A.; Brull, A.; Huerta, J.; Tarrasó, G.; Lucia, A.; Martin, M.; Arenas, J.; Andreu, A.L.; Nogales-Gadea, G.; Vissing, J.; et al. Low survival rate and muscle fiber-dependent aging effects in the McArdle disease mouse model. Sci. Rep. 2019, 9, 1–4. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Nogales-Gadea, G.; Garcia-Consuegra, I.; Pareja-Galeano, H.; Rufian-Vazquez, L.; Perez, L.M.; Andreu, A.L.; Arenas, J.; Martin, M.A.; Pinos, T.; et al. Muscle Signaling in Exercise Intolerance: Insights from the McArdle Mouse Model. Med. Sci. Sports Exerc. 2016, 48, 1448–1458. [Google Scholar] [CrossRef]
- de Luna, N.; Brull, A.; Guiu, J.M.; Lucia, A.; Martin, M.A.; Arenas, J.; Marti, R.; Andreu, A.L.; Pinos, T. Sodium valproate increases the brain isoform of glycogen phosphorylase: Looking for a compensation mechanism in McArdle disease using a mouse primary skeletal-muscle culture in vitro. Dis. Models Mech. 2015, 8, 467–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, E.L.; Taylor, R.L.; Clayton, J.S.; Goullee, H.; Dilworth, K.L.; Pinos, T.; Brull, A.; Alexander, I.E.; Lisowski, L.; Ravenscroft, G.; et al. Systemic AAV8-mediated delivery of a functional copy of muscle glycogen phosphorylase (Pygm) ameliorates disease in a murine model of McArdle disease. Hum. Mol. Genet. 2019. [Google Scholar] [CrossRef] [PubMed]
- Migocka-Patrzalek, M.; Lewicka, A.; Elias, M.; Daczewska, M. The effect of muscle glycogen phosphorylase (Pygm) knockdown on zebrafish morphology. Int. J. Biochem. Cell Biol. 2020, 118, 105658. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.H.; Cho, J.H.; Estrella, A.; Smyth, J.A.; Wu, R.; Chengsupanimit, T.; Brown, L.M.; Weinstein, D.A.; Lee, Y.M. Liver Glycogen Phosphorylase Deficiency Leads to Profibrogenic Phenotype in a Murine Model of Glycogen Storage Disease Type VI. Hepatol. Commun. 2019, 3, 1544–1555. [Google Scholar] [CrossRef] [Green Version]
- Vora, S.; Giger, U.; Turchen, S.; Harvey, J.W. Characterization of the enzymatic lesion in inherited phosphofructokinase deficiency in the dog: An animal analogue of human glycogen storage disease type VII. Proc. Natl. Acad. Sci. USA 1985, 82, 8109–8113. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.F.; Stedman, H.; Rajpurohit, Y.; Henthorn, P.S.; Wolfe, J.H.; Patterson, D.F.; Giger, U. Molecular basis of canine muscle type phosphofructokinase deficiency. J. Biol. Chem. 1996, 271, 20070–20074. [Google Scholar] [CrossRef] [Green Version]
- Mhaskar, Y.; Harvey, J.W.; Dunaway, G.A. Developmental changes of 6-phosphofructo-1-kinase subunit levels in erythrocytes from normal dogs and dogs affected by glycogen storage disease type VII. Comp. Biochem. Physiol. B Comp. Biochem. 1992, 101, 303–307. [Google Scholar] [CrossRef]
- Harvey, J.W.; Pate, M.G.; Mhaskar, Y.; Dunaway, G.A. Characterization of phosphofructokinase-deficient canine erythrocytes. J. Inherit. Metab. Dis. 1992, 15, 747–759. [Google Scholar] [CrossRef] [PubMed]
- Giger, U.; Harvey, J.W.; Yamaguchi, R.A.; McNulty, P.K.; Chiapella, A.; Beutler, E. Inherited phosphofructokinase deficiency in dogs with hyperventilation-induced hemolysis: Increased in vitro and in vivo alkaline fragility of erythrocytes. Blood 1985, 65, 345–351. [Google Scholar] [CrossRef]
- Gerber, K.; Harvey, J.W.; D’Agorne, S.; Wood, J.; Giger, U. Hemolysis, myopathy, and cardiac disease associated with hereditary phosphofructokinase deficiency in two Whippets. Vet. Clin. Pathol. 2009, 38, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.W.; Sussman, W.A.; Pate, M.G. Effect of 2,3-diphosphoglycerate concentration on the alkaline fragility of phosphofructokinase-deficient canine erythrocytes. Comp. Biochem. Physiol. B Comp. Biochem. 1988, 89, 105–109. [Google Scholar] [CrossRef]
- Giger, U.; Kelly, A.M.; Teno, P.S. Biochemical studies of canine muscle phosphofructokinase deficiency. Enzyme 1988, 40, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Hillstrom, A.; Tvedten, H.; Rowe, A.; Giger, U. Hereditary phosphofructokinase deficiency in wachtelhunds. J. Am. Anim. Hosp. Assoc. 2011, 47, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Inal Gultekin, G.; Raj, K.; Lehman, S.; Hillstrom, A.; Giger, U. Missense mutation in PFKM associated with muscle-type phosphofructokinase deficiency in the Wachtelhund dog. Mol. Cell. Probes 2012, 26, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.; Pujol, A.; Ruzo, A.; Riu, E.; Ruberte, J.; Arbos, A.; Serafin, A.; Albella, B.; Feliu, J.E.; Bosch, F. Phosphofructo-1-kinase deficiency leads to a severe cardiac and hematological disorder in addition to skeletal muscle glycogenosis. PLoS Genet. 2009, 5, e1000615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Testoni, G.; Duran, J.; Garcia-Rocha, M.; Vilaplana, F.; Serrano, A.L.; Sebastian, D.; Lopez-Soldado, I.; Sullivan, M.A.; Slebe, F.; Vilaseca, M.; et al. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment. Cell Metab. 2017, 26, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Roach, P.J.; Depaoli-Roach, A.A.; Hurley, T.D.; Tagliabracci, V.S. Glycogen and its metabolism: Some new developments and old themes. Biochem. J. 2012, 441, 763–787. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Shieh, J.J.; Pan, C.J.; Sun, M.S.; Chou, J.Y. The catalytic center of glucose-6-phosphatase. HIS176 is the nucleophile forming the phosphohistidine-enzyme intermediate during catalysis. J. Biol. Chem. 2002, 277, 32837–32842. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.J.; Lei, K.J.; Annabi, B.; Hemrika, W.; Chou, J.Y. Transmembrane topology of glucose-6-phosphatase. J. Biol. Chem. 1998, 273, 6144–6148. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.Y.; Jun, H.S.; Mansfield, B.C. Glycogen storage disease type I and G6Pase-beta deficiency: Etiology and therapy. Nat. Rev. Endocrinol. 2010, 6, 676–688. [Google Scholar] [CrossRef]
- Chou, J.Y.; Jun, H.S.; Mansfield, B.C. Type I glycogen storage diseases: Disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes. J. Inherit. Metab. Dis. 2015, 38, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Moses, S.W. Historical highlights and unsolved problems in glycogen storage disease type 1. Eur. J. Pediatrics 2002, 161 (Suppl. 1), S2–S9. [Google Scholar] [CrossRef]
- van Schaftingen, E.; Gerin, I. The glucose-6-phosphatase system. Biochem. J. 2002, 362, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Cornblath, M.; Sidbury, J.B. Cornstarch therapy in type I glycogen-storage disease. N. Engl. J. Med. 1984, 310, 171–175. [Google Scholar] [CrossRef]
- Calderaro, J.; Labrune, P.; Morcrette, G.; Rebouissou, S.; Franco, D.; Prevot, S.; Quaglia, A.; Bedossa, P.; Libbrecht, L.; Terracciano, L.; et al. Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I. J. Hepatol. 2013, 58, 350–357. [Google Scholar] [CrossRef]
- Franco, L.M.; Krishnamurthy, V.; Bali, D.; Weinstein, D.A.; Arn, P.; Clary, B.; Boney, A.; Sullivan, J.; Frush, D.P.; Chen, Y.T.; et al. Hepatocellular carcinoma in glycogen storage disease type Ia: A case series. J. Inherit. Metab. Dis. 2005, 28, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Zingone, A.; Seidel, J.; Aloj, L.; Caraco, C.; Vaquero, J.J.; Jagoda, E.M.; Chou, J.Y.; Green, M.V.; Eckelman, W.C. Monitoring the correction of glycogen storage disease type 1a in a mouse model using [(18)F]FDG and a dedicated animal scanner. Life Sci. 2002, 71, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Pursell, N.; Gierut, J.; Zhou, W.; Dills, M.; Diwanji, R.; Gjorgjieva, M.; Saxena, U.; Yang, J.S.; Shah, A.; Venkat, N.; et al. Inhibition of Glycogen Synthase II with RNAi Prevents Liver Injury in Mouse Models of Glycogen Storage Diseases. Mol. Ther. J. Am. Soc. Gene Ther. 2018, 26, 1771–1782. [Google Scholar] [CrossRef] [Green Version]
- Tarraso, G.; Real-Martinez, A.; Pares, M.; Romero-Cortadellas, L.; Puigros, L.; Moya, L.; de Luna, N.; Brull, A.; Martin, M.A.; Arenas, J.; et al. Absence of p.R50X Pygm read-through in McArdle disease cellular models. Dis. Models Mech. 2020, 13. [Google Scholar] [CrossRef] [Green Version]
- Slonim, A.E.; Bulone, L.; Ritz, S.; Goldberg, T.; Chen, A.; Martiniuk, F. Identification of two subtypes of infantile acid maltase deficiency. J. Pediatrics 2000, 137, 283–285. [Google Scholar] [CrossRef]
- Chan, J.; Desai, A.K.; Kazi, Z.B.; Corey, K.; Austin, S.; Hobson-Webb, L.D.; Case, L.E.; Jones, H.N.; Kishnani, P.S. The emerging phenotype of late-onset Pompe disease: A systematic literature review. Mol. Genet. Metab. 2017, 120, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Beckemeyer, A.A. New therapeutic approaches for Pompe disease: Enzyme replacement therapy and beyond. Pediatric Endocrinol. Rev. Per. 2014, 12 (Suppl. 1), 114–124. [Google Scholar]
- Huang, J.Y.; Kan, S.H.; Sandfeld, E.K.; Dalton, N.D.; Rangel, A.D.; Chan, Y.; Davis-Turak, J.; Neumann, J.; Wang, R.Y. CRISPR-Cas9 generated Pompe knock-in murine model exhibits early-onset hypertrophic cardiomyopathy and skeletal muscle weakness. Sci. Rep. 2020, 10, 10321. [Google Scholar] [CrossRef] [PubMed]
- Raben, N.; Lu, N.; Nagaraju, K.; Rivera, Y.; Lee, A.; Yan, B.; Byrne, B.; Meikle, P.J.; Umapathysivam, K.; Hopwood, J.J.; et al. Conditional tissue-specific expression of the acid alpha-glucosidase (GAA) gene in the GAA knockout mice: Implications for therapy. Hum. Mol. Genet. 2001, 10, 2039–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagli, A.I.; Zori, R.T.; McCune, H.; Ivsic, T.; Maisenbacher, M.K.; Weinstein, D.A. Reversal of glycogen storage disease type IIIa-related cardiomyopathy with modification of diet. J. Inherit. Metab. Dis. 2009, 32 (Suppl. 1), S103–S106. [Google Scholar] [CrossRef]
- Valayannopoulos, V.; Bajolle, F.; Arnoux, J.B.; Dubois, S.; Sannier, N.; Baussan, C.; Petit, F.; Labrune, P.; Rabier, D.; Ottolenghi, C.; et al. Successful treatment of severe cardiomyopathy in glycogen storage disease type III With D,L-3-hydroxybutyrate, ketogenic and high-protein diet. Pediatric Res. 2011, 70, 638–641. [Google Scholar] [CrossRef] [Green Version]
- Nagasaka, H.; Hirano, K.; Ohtake, A.; Miida, T.; Takatani, T.; Murayama, K.; Yorifuji, T.; Kobayashi, K.; Kanazawa, M.; Ogawa, A.; et al. Improvements of hypertriglyceridemia and hyperlacticemia in Japanese children with glycogen storage disease type Ia by medium-chain triglyceride milk. Eur. J. Pediatrics 2007, 166, 1009–1016. [Google Scholar] [CrossRef]
- Rossi, A.; Hoogeveen, I.J.; Bastek, V.B.; de Boer, F.; Montanari, C.; Meyer, U.; Maiorana, A.; Bordugo, A.; Dianin, A.; Campana, C.; et al. Dietary lipids in glycogen storage disease type III: A systematic literature study, case studies, and future recommendations. J. Inherit. Metab. Dis. 2020, 43, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Vissing, J.; Duno, M.; Schwartz, M.; Haller, R.G. Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease. Brain A J. Neurol. 2009, 132, 1545–1552. [Google Scholar] [CrossRef]
- Hermann, T. Aminoglycoside antibiotics: Old drugs and new therapeutic approaches. Cell. Mol. Life Sci. Cmls 2007, 64, 1841–1852. [Google Scholar] [CrossRef]
- Du, L.; Damoiseaux, R.; Nahas, S.; Gao, K.; Hu, H.; Pollard, J.M.; Goldstine, J.; Jung, M.E.; Henning, S.M.; Bertoni, C.; et al. Nonaminoglycoside compounds induce readthrough of nonsense mutations. J. Exp. Med. 2009, 206, 2285–2297. [Google Scholar] [CrossRef] [PubMed]
- Simila, M.E.; Auranen, M.; Piirila, P.L. Beneficial Effects of Ketogenic Diet on Phosphofructokinase Deficiency (Glycogen Storage Disease Type VII). Front. Neurol. 2020, 11, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akman, H.O.; Aykit, Y.; Amuk, O.C.; Malfatti, E.; Romero, N.B.; Maioli, M.A.; Piras, R.; DiMauro, S.; Marrosu, G. Late-onset polyglucosan body myopathy in five patients with a homozygous mutation in GYG1. Neuromuscul. Disord. NMD 2016, 26, 16–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinicke, K.; Dimitrov, I.E.; Romain, N.; Cheshkov, S.; Ren, J.; Malloy, C.R.; Haller, R.G. Reproducibility and absolute quantification of muscle glycogen in patients with glycogen storage disease by 13C NMR spectroscopy at 7 Tesla. PLoS ONE 2014, 9, e108706. [Google Scholar] [CrossRef]
- Johnstone, A.C.; McSporran, K.D.; Kenny, J.E.; Anderson, I.L.; Macpherson, G.R.; Jolly, R.D. Myophosphorylase deficiency (glycogen storage disease Type V) in a herd of Charolais cattle in New Zealand: Confirmation by PCR-RFLP testing. N. Z. Vet. J. 2004, 52, 404–408. [Google Scholar] [CrossRef]
- Brooks, E.D.; Koeberl, D.D. Large animal models and new therapies for glycogen storage disease. J. Inherit. Metab. Dis. 2015, 38, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Girard, J.; Ferre, P.; Pegorier, J.P.; Duee, P.H. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol. Rev. 1992, 72, 507–562. [Google Scholar] [CrossRef]
- Gamble, L.J.; Matthews, Q.L. Current progress in the development of a prophylactic vaccine for HIV-1. Drug Des. Dev. Ther. 2010, 5, 9–26. [Google Scholar] [CrossRef] [Green Version]
- Mak, I.W.; Evaniew, N.; Ghert, M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 2014, 6, 114–118. [Google Scholar]
GSD Type/Name | Affected Tissue/Cells | Enzyme Deficiency | Gene Defect | Clinical Features | Animal Model | References |
---|---|---|---|---|---|---|
0a | Liver | Liver Glycogen synthase | GYS2 | Postprandial hyperglycaemia, fasting hypoglycemia, hyperketonemia. | Yes | [12,16,20] |
0b | Muscle | Muscle glycogen synthase | GYS1 | Cardiomyopathy, exercise intolerance. | Yes | [21,22] |
Ia/Von Gierke disease | Liver, kidney | Glucose-6-phosphatase (G6Pase) | G6PC | Fasting hypoglycemia, hepatomegaly, lactic acidemia, hypertriglyceridemia, hyperuricemia and growth retardation. | Yes | [15,23,24,25,26,27,28] |
Ib | Liver, kidney, leukocytes | Glucose-6-phosphate transporter T1 (G6PT) | SLC37A4 | In addition of Ia: neutropenia and neutrophil dysfunction that predispose to recurrent infections.Kidney and renal disease, splenomegaly and hepatocellular adenoma. | Yes | [12,16,29,30] |
II/Pompe disease | All (Liver, skeletal muscle, leukocytes, fibroblast, amniocytes) | α-1-4-glucosidase (Acid maltase/GAA) | GAA | Lysosomal storage disease. Cardiomyopathy, respiratory failure, muscular weakness, hypotonia. | Yes | [12,13,16,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] |
IIIa/Cori disease | Liver, skeletal and cardiac muscle | Glycogen debranching enzyme (GDE) | AGL | Hepatomegaly, fasting hypoglycemia, hyperlipidemia, muscle weakness, growth retardation, myopathy and cardiomyopathy. Osteoporosis and polycystic ovaries. | Yes | [49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] |
IIIb | Liver | Glycogen debranching enzyme (GDE) | AGL | As type IIIa but no muscle weakness. | Yes | |
IIIc | Liver, skeletal and cardiac muscle | Glycogen debranching enzyme (GDE) | AGL | Selective loss of glucosidase. | Yes | |
IIId | Liver, skeletal and cardiac muscle | Glycogen debranching enzyme (GDE) | AGL | Selective loss of transferase. | Yes | |
IV/Andersen disease | Liver, skeletal muscle | Glycogen branching enzyme (GBE) | Gbe1 | Altered growth, cognitive impairment, portal hypertension, hepatosplenomegaly and progressive liver cirrhosis. Myopathy resembling muscular dystrophy with difficulty walking and proximal limb weakness. | Yes | [16,23,66] |
V/McArdle disease | Skeletal muscle | Muscle glycogen phosphorylase enzyme | PYGM | Exercise intolerance, muscle cramps, pain, crisis of early fatigue and contracures. Rhabdomyolysis (50% of cases), hyperckemia, myoglobinuria may lead to acute renal failure. Second-wind phenomenon. | Yes | [67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85] |
VI/Hers disease | Liver | Liver Glycogen phosphorylase | PYGL | Hepatomegaly, growth retardation, hypoglycemia, ketosis as well as liver fibrosis. | Yes | [86,87,88,89,90,91,92,93] |
VII/Tarui disease | Skeletal muscle, leukocytes | Muscle Phosphofructo-1-kinase enzyme | PFKM | Exercise intolerance, muscle cramps, pain, nausea and vomiting. Hyperckemia, hyperuricaemia, reticulocytosis, and increased serum bilirubin.Haemolytic anemia. | Yes | [56,94,95,96,97,98,99,100] |
IX | Liver, Muscle | Phosphorylase-b-kinase | PHKA, PHKA2, PHKAB, PHKAG1, PHKG2, PHKD | Growth retardation, hepatomegaly. Mild hypertriglyceridemia, hypercholesterolemia, and elevated serum transaminase levels may be present. | No | [12,14] |
X | Skeletal muscle | Muscle phosphoglycerate mutase | PGAM2 | Muscle cramping, rhabdomyolysis, and myoglobinuria | No | [17] |
XII | Skeletal muscle and leukocytes | Aldolase A | ALDOA | Hemolytic anemia, rhabdomyolysis and myoglobinuria. | No | [18] |
XIII | Skeletal muscle | β-enolase | ENO3 | Exercise intolerance, myalgias and mildly hyperckemia. | No | [19] |
XV | Skeletal and cardiac muscle | glycogenin-1 | GYG1 | Muscle weakness and wasting and cardiac arryhthmias associated with PG accumulation. | Yes | [101,102,103,104,105] |
GSD Type | Animal Model | Naturally Occurring | Specific Model | Therapies Evaluated | References |
---|---|---|---|---|---|
GSD-0b | Murine model | No | Gys1-/- | Not reported | [106,107,108] |
GSD-Ia/Von Gierke | Canine model | Yes | Maltase dog | Gene therapy | [109,110,111,112,113,114,115] |
Yes | Maltase-Beagle dog | Gene therapy | [111,112,113,114,115,116] | ||
Murine model | No | G6pc-/- | Glucose therapy Gene therapy | [112,117,118,119,120,121,122,123,124,125,126,127] | |
No | L-G6pc-/- | Gene therapy RNAi approach | [128] | ||
No | K-G6pc-/- | Not reported | [129] | ||
No | I-G6pc-/- | mRNA therapy Gene therapy | [130] | ||
GSD-Ib | Murine model | No | Slc37a4-/- | Gene therapy | [131,132,133,134] |
No | TM-Slc37a4-/- | Not reported | [135] | ||
GSD-II Pompe | Cattle models | Yes | Shorthorn cattle | Not reported | [136,137] |
Yes | Brahman cattle | Not reported | [138,139,140,141] | ||
Canine model | Yes | Lapphund dog | Gene therapy | [142,143,144,145] | |
Murine model | No | 6neo/6neo | ERT Gene therapy | [146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182] | |
No | AD-6neo/6neo | Not reported | [183,184] | ||
No | AD2-6neo/6neo | Not reported | [185] | ||
No | Δ6/Δ6 | Not reported | [146,150] | ||
No | 13neo/13neo | Not reported | [186] | ||
No | Δ14neo/Δ14neo | Not reported | [150] | ||
No | GaaKODBA | Not reported | [151] | ||
No | Gaac1826dupA | Not reported | [183] | ||
Quail models | Yes | Japanese quails | ERT | [187,188,189,190] | |
GSD-III/Cori | Canine model | Yes | Curly-coated retrievers (CCR) | Not reported | [191,192,193] |
Murine model | No | AglEX5 -/- | RNAi approach | [49] | |
No | AglEX32 -/- | [194] | |||
No | AglEX6-10-/- | Gene therapy | [195] | ||
No | AglEX6-10-/-2 | Gene therapy | [196] | ||
GSD-IV/Andersen | Horse model | Yes | American Quarter Horse foals (AQHs) | Not reported | [197] |
Cat Model | Yes | Norwegian forest cats | Not reported | [198] | |
Murine Model | No | Gbe1neo/neo | Not reported | [199] | |
No | Gbe1-/- | Not reported | [199] | ||
No | Gbe1ys/ys | Gene therapy | [200,201] | ||
GSD-V/McArdle | Bovine model | Yes | Charolais cattle | Not reported | [202,203] |
Ovine model | Yes | Merino sheep | VPA treatment Gene therapy | [204,205,206,207] | |
Murine model | No | Pygmp.R50X/p.R50X | VPA treatment Read-through * Gene therapy | [208,209,210,211,212,213,214] | |
Zebrafish model | No | N.A. | Not reported | [215] | |
GSD-VI/Hers | Murine model | No | Pygl-/- | Not reported | [216] |
GSD-VII/Tauri | Canine models | Yes | English Springer Spaniel | Not reported | [217,218,219,220,221,222,223,224] |
Yes | American Cocker Spaniels | Not reported | [217,218,219,220,221,222,223,224] | ||
Yes | Whippet | Not reported | [217,218,219,220,221,222,223,224] | ||
Yes | Wachtelhunds | Not reported | [225,226] | ||
Murine model | No | Pfkm-/- | Not reported | [227] | |
GSD-XV | Murine model | No | Gyg-/- | Not reported | [228] |
Glycogenosis | Model | Major Organs Affected | Growth Impairment | Blood Analyses | Glycogen Content | Impaired Exercise Capacity | Premature Death | % of Premature Death/Cause | References |
---|---|---|---|---|---|---|---|---|---|
0b | Gys1-/- | Heart | Yes | Hypolactatemia | Absence (skeletal muscle, heart) | Endurance (fasting) | Yes/perinatal | ~90%/abnormal cardiac development | [106,107,108] |
Ia | G6pc-/- | Liver, kidney | Yes | Hypoglycemia, hyperlipidemia, hyperuricemia | Increased (~20 and ~30 f.i in liver and kidney, respectively) | Not reported | Yes/~weaning | ~90%/hypoglycemia | [112,117,118,119,120,121,122,123,124,125,126,127] |
L-G6pc-/- | Liver | No | Hypertriglyceridemia, hyperuricemia, hypercholesterolemia, hyperlactacidemia | Increased (~2–2.5 f.i in liver) | Not reported | No | N.A. | [128] | |
K-G6pc-/- | Kidney | No | Hyperuricemia | Increased (~22 f.i in kidney) | Not reported | No | N.A. | [129] | |
I-G6pc-/- | Intestine | No | None reported | None reported | Not reported | No | N.A. | [130] | |
Ib | Slc37a4-/- | Liver, kidney, bone marrow, spleen | Yes | Hypoglicemia, hyperlipidemia, hyperuricemia, hyperlactacidemia, neutropenia, leucopenia | Increased (liver, kidney) | Not reported | Yes/~weaning | ~90%/hypoglycemia | [131,132,133,134] |
TM-Slc37a4-/- | Liver, kidney, bone marrow, spleen | No | Hypertriglyceridemia, hypercholesterolemia, hyperalbuminemia, neutropenia, Increased AST | Increased (~6.5 and ~2.5–5 f.i in kidney and liver, respectively) | Not reported | No | N.A. | [135] | |
II | 6neo/6neo | Skm, heart, diaph | No | Not reported | Increased (~45, 17, 16 f.i in heart, quad and gast, respectively). Also in diaph | Yes | No | N.A. | [146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182] |
AD-6neo/6neo | Skm, heart, diaph | Yes | Not reported | Increased (~45, 11, 10 f.i in heart, quad and gast, respectively). Also in diaph | Yes | Yes | Not reported/respiratory failure | [183,184] | |
AD2-6neo/6neo | Skm, heart, diaph | Not reported | Not reported | Increased (~45, 8, 5.5 f.i in heart, quad and gast, respectively). Also in diaph | Not reported | Not reported | Not reported | [185] | |
Δ6/Δ6 | Skm, heart, diaph | No | Not reported | Increased (~360 and ~42 f.i in diaph and skm, respectively). Also in heart and brain | No | No | N.A. | [146,150] | |
13neo/13neo | Skm, heart | No | Not reported | Increased (skeletal muscle, heart) | Not reported | No | N.A. | [186] | |
Δ14neo/Δ14neo | Skm, heart, brain | No | Not reported | Increased (~320 and ~41 f.i in diaph and skm, respectively). Also in heart and brain | Yes | No | N.A. | [150] | |
Gaa KODBA | Skm, heart, diaph | No | Not reported | Increased (skm, heart diaph) | Yes | Yes/within first 6 months | ~50%/respiratory failure | [151] | |
Gaac.1826dupA | Skm, heart, diaph | Yes | Not reported | Increased (~185 and ~28 f.i. in heart and gast, respectively) | Yes | No | N.A. | [183] | |
III | AglEX5 -/- | Liver, Skm, heart | No | Hypoglycemia, Increased AST, ALT, ALP and CPK | Increased (~200, ~50, ~25, ~22 f.i in liver, diaph, heart and gast, respectively) | Yes | No | N.A. | [49] |
AglEX32 -/- | Liver, Skm, heart | No | Hypoglycemia, Increased ALT, AST, ALP | Increased (~26, ~22, ~2.5 f.i. in heart, skm, liver respectively) | Yes | Yes/within first year | Unknown | [194] | |
AglEX6-10-/- | Liver, Skm, heart, brain | No | Hypoglycemia | Increased (~8, ~3, ~3 f.i. in skm, liver, heart, respectively) | Yes | No | N.A. | [195] | |
AglEX6-10-/- 2 | Liver, Skm, heart, brain | No | Increased ALT | Increased (~150, ~50, ~30 f.i. in liver, skm, heart respectively) | Yes | No | N.A. | [196] | |
IV | Gbe1neo/neo | Liver, Skm, heart, brain | No | Hypoglycemia (slight) | Increased (liver, skm) | Not reported | Yes/within first 11 months | ~100%/unknown | [199] |
Gbe1-/- | Liver, Skm, heart | N.A | None reported | Reduced (skm) | Not reported | Yes/soon after birth | ~100%/unknown | [199] | |
Gbe1ys/ys | Liver, Skm, heart, brain | No | Hypoglycemia (slight), hyperCKemia, increased ALT and AST | Increased (~90, ~32, ~17, ~1.5, heart, skm, brain and liver, respectively | Yes | Yes/before 20 months | ~100%/unknown | [200,201] | |
V | PygmR50X/R50X | Skm | No | HyperCKemia, hyperammonemia, Hypolactatemia, hypoglycemia | Increased (~40, ~20 and ~15 f.i in TA, quad and gast, respectively) | Yes | Yes/perinatal and post-weaning | ~85%/unknown | [208,209,210,211,212,213,214] |
VI | Pygl-/- | Liver | No | Hypoglycemia, hyperketonemia, increased ALT and AST | Increased (~60 f.i in liver) | Not reported | No | N.A. | [216] |
VII | Pfkm-/- | Skm, heart, diaph, spleen | No | Hypolactatemia, hyperbilirubinemia | Increased (~8 f.i in diaph). Also increased in skm and heart | Yes | Yes/around weaning | 60%/unknown | [227] |
XV | Gyg-/- | Skm | No | Not reported | Increased (7 and 4 f.i. in heart and skm) | Decreased aerobic, increased anaerobic | Yes/perinatal | ~85%/cardio-respiratory failure | [228] |
GSD Type | Natural Occurring | Mutation | Enzyme Activity | Biochemical and Clinical Features | Glycogen Accumulation | Life Expectancy | References |
---|---|---|---|---|---|---|---|
GSD-I | Maltese canine model | G6pc p.121 M>I | G6P Levels reduced | Hypoglycemia, hepatomegaly and necropsy. Failure to thrive, liver and Kidney pale. | Hepatocytes and kidneys | 5–8 weeks | [109,110,111,112,113,114,115,116] |
GSD-II Pompe | Shorthorn cattle | Gaa c.2454_2455delCA | Loss GAA ativity | Muscle weakness, respiratory distress, congestive heart failure. | Skeletal muscle, heart, and central nervous tissue | 12 months | [136,137] |
Brahman cattle | c.1057_1058delTA | Loss GAA ativity | Progressive muscular weakness | Cytoplasmic vacuolation in brain, spinal cord, skeletal muscle, myocardium and Purkinje fibers | 12 months | [138,139,140,141] | |
Lapphund dogs | Gaa c.2237G>A p.W746X | Absence GAA activity | Megaesophagus, exercise intolerance, and recurrent emesis. | Vacuoles in heart, skeletal muscle, and smooth muscle | 10–18 months | [141,142,143,144,145] | |
Japanese quails | Defect in GAA protein maturation and processing | Absence GAA activity | Progressive muscle weakness and myopathy | Vacuoles and glycogen depots in muscle and cardiac tissue. Pectoralis most affected tissue. | 18 months | [187,188,189,190] | |
GSD-III Cori | Curly-coated retrievers (CCR) | Gaa c.4223delA | GDE Levels reduced | Progressive muscle damage and hepatomegaly, precense of nudles, cirrhosis. High ALT, AST and ALP levels, slightly high CPK levels. | Cardiomyocytes, gradual increase in Liver and skeletal muscle | 11–12 years | [191,192,193] |
GSD-IV Andersen | American Quarter Horse foals (AQHs) | Gbe1 p.Y34X | GBE amount and activity reduced | Stillbirth, transient flexural limb deformities, respiratory or cardiac failure. | Skeletal muscle, liver and central nervous system | 1–18 weeks | [197] |
Norwegian forest cats | Gbe1 g. IVS11 + 1552_IVS12-1339 del6.2 kb ins334 bp | Absence GBE activity | Skeletal muscle atrophy, progressive neurological decline, generalized muscle tremors. | Skeletal muscle, Liver, cardiatic muscle, neurvous system | 1–13 months | [198] | |
GSD-V McArdle | Charolais cattle | Pygm p.W489R | GP-MM amount and activity reduced | Exercise intolerance, rhabdomyolysis, high CK levels and myoglobinuria. | Skeletal Muscle | Not reported | [202,203] |
Merino sheep | missense mutation in the 3′ splice acceptor site of intron 19 of Pygm | Absence GP-MM activity | Exercise intolerance, rhabdomyolysis | Skeletal Muscle | Not reported | [204,205,206,207] | |
GSD-VII Tarui | English Springer Spaniel | Pfkm c.2228 G>A | Absence of PFKM activity | Chronic hemolytic anemia, hemolytic crises, hemoglobinuria, hyperbilirubinuria, moderately increased serum creatine kinase activity, muscle wasting. | Skeletal muscle | 11 years | [217,218,219,220,221,222,223,224] |
American Cocker Spaniels | Pfkm c.2228 G>A | Absence of PFKM activity | Skeletal muscle | 11 years | [217,218,219,220,221,222,223,224] | ||
Whippet | Pfkm c.2228 G>A | Absence of PFKM activity | Mimics English Springer Spaniel symptoms but present cardicac and muscular abnormalities | Skeletal muscle | 4 years | [217,218,219,220,221,222,223,224] | |
Wachtelhunds | Pfkm c.550C>T | PFKM activity reduced | Exercise intolerance, hemolytic anemia, pigmenturia | Skeletal muscle | 4 years | [225,226] |
Type | Specific Model | Therapies Evaluated | Vector/Compound | Promoter | Main Effect | References |
---|---|---|---|---|---|---|
GSDIa Von Gierke disease | Canine: Maltase-Beagle dog | Gene therapy | AAV2-G6pc | Mouse albumin promoter | G6Pase activity sgnificantly increased and liver glycogen content was significantly reduced. | [111] |
AAV2/8 vector | Human G6Pc promoter (−298 to +128) | G6Pase activity was increased in liver and glycogen content reduced. Effects decrease with time. | [112,113] | |||
HDAd-G6Pc | Human apoAI promoter | Increase in liver G6Pase activity and a decrease in liver glycogen content, long-term complications such as HCA. | [114] | |||
Murine: G6pc-/- | Glucose therapy | Glucose 10% | N.A. | Failed to sustain survivla beyond weaning (21 days). | [119] | |
Gene therapy | Ad-G6pc | RSV promoter | 19% restoration of hepatic G6Pase activity and improved survival and growth. G6Pase did not transduce to kidney. | [119,120,121] | ||
~16% restoration of hepatic G6Pase activity. G6Pase did not transduce to kidney. | [119,120,121] | |||||
AAV2-G6pc | CMV/CB promoter | Tretament failed to improve the survival of treated mice after weaning due to the delayed kinetics of rAAV-mediated transgene expression | [120] | |||
Ad-G6pc | RSV promoter | ~33% restoration of G6Pase activity at 8.5 months. No hepathomegaly or nephromegaly was seen. | [120] | |||
+ | + | |||||
AAV2-G6pc | CMV/CB promoter | |||||
AAV8-G6pc | CMV/CB promoter | ~20% restoration of G6Pase activity in the liver but almost null activity in the kidneys. | [122] | |||
AAV1-G6pc | CMV/CB promoter | ~10% restoration of G6Pase mantained for 57 weeks in the liver and 7% in kidneys. No hepatomegaly or nephromegaly was observed. | [122] | |||
AAV8-G6pc | Canine G6Pc promoter | 25% G6Pase activity up to 7 months, correction of growth retardation and fasting hypoglycemia, reduction of liver glycogen content. | [123] | |||
AAV8-G6pc | Human G6Pc promoter (−298 to +128) | Hepatic G6Pase activity was recovered to almost normal levels. Lost of effects at 26w. | [112] | |||
AAV8-G6pc | Human G6Pc promoter (−2864 to −1) | Complete normalization of G6Pase activity, glycemia and glycogen and lipid storage in liver. | [124,125] | |||
Murine:L-G6pc-/- | RNAi approach | Gys2 siRNA | N.A. | Hepatic glycogen accumulation reduced due to the reduction in Gys2 mRNA levels. | [240] | |
GSDIb | Murine: Slc37a4-/- | Gene therapy | Ad-SLC37A4 | Not reported | G6PT levels restored in liver, bone marrow and spleen. Hypoglycemia was restored and glycogen accumulation was reduced but some premature deaths were observed. | [132] |
AAV8-SLC37A4 | CMV/CB promoter | Transgene was primarily delivered to liver but there was long-term complications as HCA. | [133] | |||
AAV8-SLC37A4 | Human G6Pc promoter | Correction of the metabolic abnormalities with a great efficacy. | [134] | |||
AAV8-SLC37A4 | Human SLC37A4 promoter | Correction of the metabolic abnormalities with less efficacy than the human G6Pc promoter. | [134] | |||
GSDII Pompe Disease | Japanese quail | ERT | rhGAA | N.A. | Reduced glycogen content and increase of GAA activity in all tissues. | [189] |
Murine: 6neo/6neo | ERT | rhGAA + mannose-6-P | N.A. | Improvement of muscular affection with mannose-6-phosphate helping the uptake by skeletal muscle cells. | [152] | |
rhGAA + glycosylation independent lysosomal targeting tag | N.A. | Improvement of muscular affection with the glycosilation independent lysosomal targeting target leading to an improvement of its lysosomal delivery. | [153] | |||
rhGAA + anti-B cell activating factors drugs | N.A. | Improvement of muscular affection and increase of GAA activity. | [154] | |||
Gene therapy | AAV2-GAA | CMV/CB promoter | Activity of GAA almost normal for at least 6 weeks, reduced glycogen accumulation and preserved skeletal muscle force, but the effect is confined to injected muscle. | [155] | ||
AAV2/6-GAA | MCK promoter/enhancer | Expression of GAA at approximately 100-fold increase significantly reducing the glycogen content in the injected muscle. | [156] | |||
AAV2/1-GAA | CMV promoter | Almost normal GAA activity levels, reduction in glycogen accumulation and a significant improvement in the contractility of the injected diaphragm. | [157] | |||
AAV1-GAA | CMV promoter | Persistent transgene expression in the injected muscles with muscle improvement and glycogen clearance by crosscorrection. | [158] | |||
AAV9-GAA | CMV promoter | |||||
Different AAV-GAA | Muscle promoters | Different studies showed an improvement of injected muscle with some glycogen correction. | [156,159,160,161,162,163,164,165] | |||
Different AAV-GAA | Liver promoters | Efficient liver transduction of the gene with glycogen clearance in different muscles by crosscorrection. | [147,148,152,166,167,168,169,170,171,172] | |||
AAV9-GAA | Tandem liver/muscle promoter | Persistent therapeutic efficacy allowing a crosscorrection in different target tissues. | [173] | |||
AAV8-GAA | ||||||
AAV9/3-GAA | Neuron-specific promoter | Glycogen reduction in CNS but not in muscle. | [174] | |||
AAV9-GAA | CMV/CB promoter | Glycogen reduction in CNS and in heart. | [175] | |||
AAVrh10-GAA | CMV/CB promoter | |||||
Pharmacological chaperon AT220 | rhGAA + AT2220 | N.A. | Significant increase of rhGAA levels in plasma and a glycogen reduction in heart and skeletal muscles. | [176,177] | ||
Transplantation of lentiviral vector | Codon-optimized GAA lentiviral vector | SFFV promoter | Sustained GAA activity in heart and skeletal muscle and glycogen accumulation near normal levels. | [178,179,180] | ||
Leucine supplementation | Leucine | N.A. | Chronic leucine feeding increased activity and running capacity with reduced glycogen accumulation. | [181] | ||
Satellite cell activation | BaCl2 or cardiotoxin | N.A. | Muscular regeneration but unable to repair the damage. | [182] | ||
GSDIII Cori Disease | Murine: Agl-/- | RNAi approach | Gys2 siRNA | N.A. | Silenced hepatic Gys2 expression prevented glycogen synthesis and accumulation and nodule development. | [240] |
Murine: AglEX6–10-/- | Gene therapy | AAV-GAA vector | CMV/CB promoter | Dicrease in glycogen levels in liver but not in skeletal muscle. GDE protein levels dectected in heart and skeletal muscle, but not in the liver. Not correction of Hepatomegaly. | [195] | |
+ | ||||||
AAV9-Agl | ||||||
Murine: AglEX6-10-/- 2 | Gene therapy | AAV-Pullulanase | N.A. | Reduced glycogen content and improved liver and muscle functions. | [196] | |
GSDIV Andersen Disease | Murine: Gbe1ys/ys | Gene therapy | AAV9-GBE | CMV/CB promoter | GBE activity increased and glycogen content was reduced in heart, skeletal muscle, brain and liver. | [201] |
GSDV McArdle Disease | Ovine: Merino sheep | Compounds inducing re-expression of the fetal Pygb/Pygl isoforms | Notexin (5 µg/mL) | N.A. | Re-expression of non-muscular fetal isoforms and reduction of glycogen content. | [205,206] |
VPA (0.5 g/30 mL) | N.A. | Insufficient increment of non-muscular fetal isoforms. | [206] | |||
Gene therapy | AdV5-PYGM | RSV or CMV/CB promoter | Increase of glycogen phosphorilase and reduction of glycogen accumulation in the site of injection, decreasing with time. | [207] | ||
+ | ||||||
AAV2-PYGM | ||||||
Murine:PYGM p.R50X/p.R50X | Compounds inducing re-expression of the fetal Pygb/Pygl isoforms | VPA * | N.A. | Increased expression of Pygb mRNA levels in myotubes. | [213] | |
VPA | N.A. | No significant changes in skeletal muscle glycogen content or Pygb expression were observed. | Unpublished data | |||
Gene therapy | AAV8-PYGM | CMV promoter | Pygm expression with reduced muscle glycogen content and voluntary activity restored to normal levels. | [214] | ||
Read-through treatment | RTAs * | N.A. | No read-through induction was observed with any of the agents used. | [241] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almodóvar-Payá, A.; Villarreal-Salazar, M.; de Luna, N.; Nogales-Gadea, G.; Real-Martínez, A.; Andreu, A.L.; Martín, M.A.; Arenas, J.; Lucia, A.; Vissing, J.; et al. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int. J. Mol. Sci. 2020, 21, 9621. https://doi.org/10.3390/ijms21249621
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, et al. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. International Journal of Molecular Sciences. 2020; 21(24):9621. https://doi.org/10.3390/ijms21249621
Chicago/Turabian StyleAlmodóvar-Payá, Aitana, Mónica Villarreal-Salazar, Noemí de Luna, Gisela Nogales-Gadea, Alberto Real-Martínez, Antoni L. Andreu, Miguel Angel Martín, Joaquin Arenas, Alejandro Lucia, John Vissing, and et al. 2020. "Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models" International Journal of Molecular Sciences 21, no. 24: 9621. https://doi.org/10.3390/ijms21249621
APA StyleAlmodóvar-Payá, A., Villarreal-Salazar, M., de Luna, N., Nogales-Gadea, G., Real-Martínez, A., Andreu, A. L., Martín, M. A., Arenas, J., Lucia, A., Vissing, J., Krag, T., & Pinós, T. (2020). Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. International Journal of Molecular Sciences, 21(24), 9621. https://doi.org/10.3390/ijms21249621