In Vitro Tissue Culture in Brachypodium: Applications and Challenges
Abstract
:1. Introduction
2. Refining the Transformation of Brachypodium
2.1. Callus Induction
2.2. Particle Bombardment
2.3. Agrobacterium-Mediated Transformation
2.4. Protoplast-Based Assays
3. Applications of Brachypodium Transformation in Functional Genetics
4. Gene Editing in Brachypodium Species
5. Factors That Affect the in Vitro Propagation of Grasses
Author Contributions
Funding
Conflicts of Interest
References
- Koornneef, M.; Meinke, D. The development of Arabidopsis as a model plant. Plant. J. 2010, 61, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Brkljacic, J.; Grotewold, E.; Scholl, R.; Mockler, T.; Garvin, D.F.; Vain, P.; Brutnell, T.; Sibout, R.; Bevan, M.; Budak, H.; et al. Brachypodium as a model for the grasses: Today and the future. Plant. Physiol. 2011, 157, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draper, J.; Mur, L.A.; Jenkins, G.; Ghosh-Biswas, G.C.; Bablak, P.; Hasterok, R.; Routledge, A.P. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant. Physiol. 2001, 127, 1539–1555. [Google Scholar] [CrossRef] [PubMed]
- Schippmann, U. Revision of the European species of the genus Brachypodium Palisot De Beauvois Poaceae. Boissiera 1991, 45, 1–250. [Google Scholar]
- Garvin, D.F.; Gu, Y.Q.; Hasterok, R.; Hazen, S.P.; Jenkins, G.; Mockler, T.C.; Mur, L.A.J.; Vogel, J.P. Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop. Sci. 2008, 48. [Google Scholar] [CrossRef]
- International Brachypodium, I. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463, 763–768. [Google Scholar] [CrossRef]
- King, J.; Thomas, A.; James, C.; King, I.; Armstead, I. A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis. BMC Genom. 2013, 14, 437. [Google Scholar] [CrossRef] [Green Version]
- Vain, P. Brachypodium as a model system for grass research. J. Cereal Sci 2011, 54, 1–7. [Google Scholar] [CrossRef]
- Chochois, V.; Vogel, J.P.; Watt, M. Application of Brachypodium to the genetic improvement of wheat roots. J. Exp. Bot. 2012, 63, 3467–3474. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.R.; Pattathil, S.; Hahn, M.G.; York, W.S.; O’Neill, M.A. Comparison of arabinoxylan structure in bioenergy and model grasses. Ind. Biotech. 2012, 8, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Rancour, D.M.; Marita, J.M.; Hatfield, R.D. Cell wall composition throughout development for the model grass Brachypodium distachyon. Front. Plant. Sci. 2012, 3, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholthof, K.B.G.; Irigoyen, S.; Catalan, P.; Mandadi, K.K. Brachypodium: A monocot grass model genus for plant biology. Plant. Cell 2018, 30, 1673–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolny, E.; Hasterok, R. Comparative cytogenetic analysis of the genomes of the model grass Brachypodium distachyon and its close relatives. Ann. Bot 2009, 104, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Vogel, J.; Hill, T. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant. Cell Rep. 2008, 27, 471–478. [Google Scholar] [CrossRef]
- Girin, T.; David, L.C.; Chardin, C.; Sibout, R.; Krapp, A.; Ferrario-Mery, S.; Daniel-Vedele, F. Brachypodium: A promising hub between model species and cereals. J. Exp. Bot. 2014, 65, 5683–5696. [Google Scholar] [CrossRef] [Green Version]
- Watt, M.; Schneebeli, K.; Dong, P.; Wilson, I.W. The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Funct Plant. Biol. 2009, 36, 960–969. [Google Scholar] [CrossRef] [Green Version]
- Verelst, W.; Bertolini, E.; De Bodt, S.; Vandepoele, K.; Demeulenaere, M.; Pe, M.E.; Inze, D. Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Mol. Plant. 2013, 6, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Contreras, I.K.; Zamora-Hernandez, T.; Huerta-Heredia, A.A.; Capataz-Tafur, J.; Barrera-Figueroa, B.E.; Juntawong, P.; Pena-Castro, J.M. Transcriptomic analysis of submergence-tolerant and sensitive Brachypodium distachyon ecotypes reveals oxidative stress as a major tolerance factor. Sci. Rep. 2016, 6, 27686. [Google Scholar] [CrossRef] [Green Version]
- Laudencia-Chingcuanco, D.L.; Vensel, W.H. Globulins are the main seed storage proteins in Brachypodium distachyon. Appl. Genet. 2008, 117, 555–563. [Google Scholar] [CrossRef]
- Guillon, F.; Bouchet, B.; Jamme, F.; Robert, P.; Quemener, B.; Barron, C.; Larre, C.; Dumas, P.; Saulnier, L. Brachypodium distachyon grain: Characterization of endosperm cell walls. J. Exp. Bot. 2011, 62, 1001–1015. [Google Scholar] [CrossRef] [Green Version]
- Larre, C.; Penninck, S.; Bouchet, B.; Lollier, V.; Tranquet, O.; Denery-Papini, S.; Guillon, F.; Rogniaux, H. Brachypodium distachyon grain: Identification and subcellular localization of storage proteins. J. Exp. Bot. 2010, 61, 1771–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Munz, J.; Cass, C.; Zienkiewicz, A.; Kong, Q.; Ma, W.; Sanjaya; Sedbrook, J.; Benning, C. Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues. Plant. Physiol. 2015, 169, 1836–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, D.; Beckmann, M.; Enot, D.P.; Overy, D.P.; Rios, Z.C.; Gilbert, M.; Talbot, N.; Draper, J. Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nat. Protoc. 2008, 3, 435–445. [Google Scholar] [CrossRef]
- Fitzgerald, T.L.; Powell, J.J.; Schneebeli, K.; Hsia, M.M.; Gardiner, D.M.; Bragg, J.N.; McIntyre, C.L.; Manners, J.M.; Ayliffe, M.; Watt, M.; et al. Brachypodium as an emerging model for cereal-pathogen interactions. Ann. Bot. 2015, 115, 717–731. [Google Scholar] [CrossRef]
- Sanford, J.C. Biolistic plant transformation. Physiol. Plant. 1990, 79, 206–209. [Google Scholar] [CrossRef]
- Sood, P.; Bhattacharya, A.; Sood, A. Problems and possibilities of monocot transformation. Biol. Plant. 2011, 55, 1–15. [Google Scholar] [CrossRef]
- Kiran, K.S.; Pooja, B.-M.; Thorpe, T.A. Genetic transformation technology: Status and problems. Vitr. Cell. Dev. Biol. Plant. 2005, 41, 102–112. [Google Scholar]
- Torres, K.C. Callus Induction in Grasses; Springer: Boston, MA, USA, 1989. [Google Scholar] [CrossRef]
- Maramorosch, K. Advances in Cell Culture; Academic Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Vasil, V.; Castillo, A.; Fromm, M.; Vasil, I.K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat. Biotechnol. 1992, 10, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Lemaux, P.G. Generation of large numbers of independently transformed fertile barley plants. Plant. Physiol. 1994, 104, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Visarada, K.B.R.S.; Sailaja, M.; Sarma, N.P. Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Biol. Plant. 2002, 45, 495–502. [Google Scholar] [CrossRef]
- Christiansen, P.; Andersen, C.H.; Didion, T.; Folling, M.; Nielsen, K.K. A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant. Cell Rep. 2005, 23, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Vogel, J.P.; Garvin, D.F.; Leong, O.M.; Hayden, D.M. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant. Cell Tiss. Org. 2006, 84, s11240–s005. [Google Scholar] [CrossRef]
- Pacurar, D.I.; Thordal-Christensen, H.; Nielsen, K.K.; Lenk, I. A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium Distachyon. Transgenic Res. 2008, 17, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Vain, P.; Worland, B.; Thole, V.; McKenzie, N.; Alves, S.C.; Opanowicz, M.; Fish, L.J.; Bevan, M.W.; Snape, J.W. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant. Biotechnol J. 2008, 6, 236–245. [Google Scholar] [CrossRef]
- Alves, S.C.; Worland, B.; Thole, V.; Snape, J.W.; Bevan, M.W.; Vain, P. A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat. Protoc. 2009, 4, 638–649. [Google Scholar] [CrossRef]
- Lee, M.B.; Jeon, W.B.; Kim, D.Y.; Bold, O.; Hong, M.J.; Lee, Y.J.; Park, J.H.; Seo, Y.W. Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21 with two binary vectors containing hygromycin resistance and GUS reporter gene. J. Crop. Sci. 2011, 14, 233–238. [Google Scholar] [CrossRef]
- Bragg, J.N.; Wu, J.; Gordon, S.P.; Guttman, M.E.; Thilmony, R.; Lazo, G.R.; Gu, Y.Q.; Vogel, J.P. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection. Plos ONE 2012, 7, e41916. [Google Scholar] [CrossRef] [Green Version]
- Thole, V.; Peraldi, A.; Worland, B.; Nicholson, P.; Doonan, J.H.; Vain, P. T-DNA mutagenesis in Brachypodium distachyon. J. Exp. Bot. 2012, 63, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Fursova, O.; Pogorelko, G.; Zabotina, O.A. An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall. Ann. Bot. 2012, 110, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Steinwand, M.A.; Young, H.A.; Bragg, J.N.; Tobias, C.M.; Vogel, J.P. Brachypodium sylvaticum, a model for perennial grasses: Transformation and inbred line development. Plos ONE 2013, 8, e75180. [Google Scholar] [CrossRef]
- Himuro, Y.; Ishiyama, K.; Mori, F.; Gondo, T.; Takahashi, F.; Shinozaki, K.; Kobayashi, M.; Akashi, R. Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model Brachypodium distachyon. J. Plant. Physiol. 2014, 171, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.; Bragg, J.; Hernandez, B.T.; Vogel, J.P.; Thilmony, R. Use of Agrobacterium rhizogenes Strain 18r12v and Paromomycin Selection for Transformation of Brachypodium distachyon and Brachypodium sylvaticum. Front. Plant. Sci. 2016, 7, 716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Wang, J.; Miao, L.; Xi, M.; Wang, Q.; Wang, K. Optimization of mature embryo-based tissue culture and Agrobacterium-mediated transformation in model grass Brachypodium distachyon. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Bablak, P.; Draper, J.; Davey, M.R.; Lynch, P.T. Plant regeneration and micropropagation of Brachypodium distachyon. Plant. Cell Tiss. Org. 1995, 42, 97–107. [Google Scholar] [CrossRef]
- Jeon, W.B.; Lee, M.B.; Kim, D.Y.; Hong, M.J.; Lee, Y.J.; Seo, Y.W. Efficient phosphinothricin mediated selection of callus derived from Brachypodium mature seed. Korean J. Breed. Sci. 2010, 42, 351–356. [Google Scholar]
- Hammami, R.; Cuadrado, A.; Friero, E.; Jouve, N.; Soler, C.; Gonzalez, J.M. Callus induction and plant regeneration from immature embryos of Brachypodium distachyon with different chromosome numbers. Biol. Plant. 2011, 55, 797–800. [Google Scholar] [CrossRef]
- Behpouri, A.; Perochon, A.; Doohan, F.M.; Ng, C.K.-Y. Optimizing callus induction and proliferation for Agrobacterium-mediated transformation of Brachypodium distachyon. Cereal Res. Comun. 2018, 46, 221–231. [Google Scholar] [CrossRef]
- Hunt, D.; Chambers, J.P.; Behpouri, A.; Kelly, S.P.; Whelan, L.; Pietrzykowska, M.; Downey, F.; McCabe, P.F.; Ng, C.K.-Y. Brachypodium distachyon Cell Suspension Cultures: Establishment and Utilisation. Cereal Res. Commun. 2013. [Google Scholar] [CrossRef]
- Hodges, T.K.; Kamo, K.K.; Imbrie, C.W.; Becwar, M.R. Genotype specificity of somatic embryogenesis and regeneration in maize. Bio. Technol. 1986, 4, 219–223. [Google Scholar] [CrossRef]
- Betekhtin, A.; Rojek, M.; Nowak, K.; Pinski, A.; Milewska-Hendel, A.; Kurczynska, E.; Doonan, J.H.; Hasterok, R. Cell wall epitopes and endoploidy as reporters of embryogenic potential in Brachypodium distachyon callus culture. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [Green Version]
- Sogutmaz Ozdemir, B.; Budak, H. Application of tissue culture and transformation techniques in model species Brachypodium distachyon. Methods Mol. Biol. 2018, 1667, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Catalan, P.; Muller, J.; Hasterok, R.; Jenkins, G.; Mur, L.A.; Langdon, T.; Betekhtin, A.; Siwinska, D.; Pimentel, M.; Lopez-Alvarez, D. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann. Bot. 2012, 109, 385–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svitashev, S.K.; Somers, D.A. Characterization of transgene loci in plants using FISH: A picture is worth a thousand words. Plant. Cell Tiss. Org. 2002, 69. [Google Scholar] [CrossRef]
- Kohli, A.; Twyman, R.M.; Abranches, R.; Wegel, E.; Stoger, E.; Christou, P. Transgene integration, organization and interaction in plants. Plant. Mol. Biol. 2003, 52, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Zheng, P.; Marmey, P.; Zhang, S.; Tian, W.; Chen, S.; Beachy, R.N.; Fauquet, C. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 2001, 7. [Google Scholar] [CrossRef]
- Travella, S.; Ross, S.M.; Harden, J.; Everett, C.; Snape, J.W.; Harwood, W.A. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant. Cell Rep. 2005, 23, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Thole, V.; Alves, S.C.; Worland, B.; Bevan, M.W.; Vain, P. A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants. Nat. Protoc. 2009, 4, 650–661. [Google Scholar] [CrossRef]
- Thole, V.; Vain, P. Agrobacterium-mediated transformation of Brachypodium distachyon. Methods Mol. Biol. 2012, 847, 137–149. [Google Scholar] [CrossRef]
- Available online: http://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium (accessed on 3 February 2020).
- Vunsh, R. Methods for functional transgenics: Development of highly efficient transformation protocol in Brachypodium and its suitability for advancing Brachypodium transgenics. Methods Mol. Biol. 2018, 1667, 101–117. [Google Scholar] [CrossRef]
- Zombori, Z.; Szécsényi, M.; Györgyey, J. Different approaches for Agrobacterium-mediated genetic transformation of Brachypodium distachyon, a new model plant for temperate grasses. Acta Biol. Szeged. 2011, 55, 193–195. [Google Scholar]
- Hong, S.; Seo, P.J.; Cho, S.; Park, C.M. Preparation of leaf mesophyll protoplasts for transient gene expression in Brachypodium distachyon. J. Plant. Biol. 2012, 390, s12374–s012. [Google Scholar] [CrossRef]
- Jung, H.; Yan, J.; Zhai, Z.; Vatamaniuk, O.K. Gene functional analysis using protoplast transient assays. Methods Mol. Biol. 2015, 432–452. [Google Scholar] [CrossRef]
- Jung, H.I.; Gayomba, S.R.; Yan, J.; Vatamaniuk, O.K. Brachypodium distachyon as a model system for studies of copper transport in cereal crops. Front. Plant. Sci. 2014, 5, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mur, L.A.; Allainguillaume, J.; Catalan, P.; Hasterok, R.; Jenkins, G.; Lesniewska, K.; Thomas, I.; Vogel, J. Exploiting the Brachypodium Tool Box in cereal and grass research. New Phytol. 2011, 191, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Thole, V.; Worland, B.; Wright, J.; Bevan, M.W.; Vain, P. Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21. Plant. Biotechnol. J. 2010, 8, 734–747. [Google Scholar] [CrossRef]
- Hsia, M.M.; O’Malley, R.; Cartwright, A.; Nieu, R.; Gordon, S.P.; Kelly, S.; Williams, T.G.; Wood, D.F.; Zhao, Y.; Bragg, J.; et al. Sequencing and functional validation of the JGI Brachypodium distachyon T-DNA collection. Plant. J. 2017, 91, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium-t-dna-collection/ (accessed on 3 February 2020).
- Karimi, M.; Inze, D.; Van Lijsebettens, M.; Hilson, P. Gateway vectors for transformation of cereals. Trends Plant. Sci. 2013, 18, 1–4. [Google Scholar] [CrossRef]
- Soda, N.; Verma, L.; Giri, J. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances. Plant. Physiol. Biochem. 2018, 131, 2–11. [Google Scholar] [CrossRef]
- Nemudryi, A.A.; Valetdinova, K.R.; Medvedev, S.P.; Zakian, S.M. TALEN and CRISPR/Cas genome editing systems: Tools of discovery. Acta Nat. 2014, 6, 19–40. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, Y.; Chen, K.; Liang, Z.; Li, J.; Zhang, Y.; Zhang, K.; Liu, J.; Voytas, D.F.; Zheng, X.; et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant. 2013, 6, 1365–1368. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, D.L.; Elton, S.; Ticchiarelli, F.; Hsia, M.M.; Vogel, J.P.; Leyser, O. Cross-species functional diversity within the PIN auxin efflux protein family. Elife 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, P.; Lenk, I.; Jensen, C.S.; Petersen, K.; Andersen, C.H.; Didion, T.; Nielsen, K.K. Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant. Plant. Sci. 2006, 170, 1020–1025. [Google Scholar] [CrossRef]
- Vain, P.; Thole, V.; Worland, B.; Opanowicz, M.; Bush, M.S.; Doonan, J.H. A T-DNA mutation in the RNA helicase eIF4A confers a dose-dependent dwarfing phenotype in Brachypodium distachyon. Plant. J. 2011, 66, 929–940. [Google Scholar] [CrossRef]
- Seo, P.J.; Hong, S.-Y.; Ryu, J.Y.; Jeong, E.-Y.; Kim, S.-G.; Baldwin, I.T.; Park, C.-M. Targeted inactivation of transcription factors by overexpression of their truncated forms in plants. Plant. J. 2012, 72, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Handakumbura, P.P.; Matos, D.A.; Osmont, K.S.; Harrington, M.J.; Heo, K.; Kafle, K.; Kim, S.H.; Baskin, T.I.; Hazen, S.P. Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. Bmc Plant. Biol. 2013, 13, 131. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Villalobos, D.; Sankar, M.; Ljung, K.; Hardtke, C.S. Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots. Plos Genet. 2013, 9, e1003564. [Google Scholar] [CrossRef]
- Wu, L.; Liu, D.; Wu, J.; Zhang, R.; Qin, Z.; Liu, D.; Li, A.; Fu, D.; Zhai, W.; Mao, L. Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon. Plant. Cell 2013, 25, 4363–4377. [Google Scholar] [CrossRef] [Green Version]
- Trabucco, G.M.; Matos, D.A.; Lee, S.J.; Saathoff, A.J.; Priest, H.D.; Mockler, T.C.; Sarath, G.; Hazen, S.P. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. Bmc Biotechnol. 2013, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Lv, B.; Nitcher, R.; Han, X.; Wang, S.; Ni, F.; Li, K.; Pearce, S.; Wu, J.; Dubcovsky, J.; Fu, D. Characterization of FLOWERING LOCUS T1 (FT1) gene in Brachypodium and wheat. Plos ONE 2014, 9, e94171. [Google Scholar] [CrossRef] [Green Version]
- Ream, T.S.; Woods, D.P.; Schwartz, C.J.; Sanabria, C.P.; Mahoy, J.A.; Walters, E.M.; Kaeppler, H.F.; Amasino, R.M. Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon. Plant. Physiol. 2014, 164, 694–709. [Google Scholar] [CrossRef] [Green Version]
- Woods, D.P.; Ream, T.S.; Minevich, G.; Hobert, O.; Amasino, R.M. PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon. Genetics 2014, 198, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Rancour, D.M.; Hatfield, R.D.; Marita, J.M.; Rohr, N.A.; Schmitz, R.J. Cell wall composition and digestibility alterations in Brachypodium distachyon achieved through reduced expression of the UDP-arabinopyranose mutase. Front. Plant. Sci. 2015, 6, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raissig, M.T.; Matos, J.L.; Anleu Gil, M.X.; Kornfeld, A.; Bettadapur, A.; Abrash, E.; Allison, H.R.; Badgley, G.; Vogel, J.P.; Berry, J.A.; et al. Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science 2017, 355, 1215–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Schuren, A.; Voiniciuc, C.; Bragg, J.; Ljung, K.; Vogel, J.; Pauly, M.; Hardtke, C.S. Broad spectrum developmental role of Brachypodium AUX1. New Phytol. 2018, 219, 1216–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, L.M.; Lyu, B.; Turner, R.; Li, C.; Chen, F.; Han, X.; Fu, D.; Dubcovsky, J. FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals. J. Exp. Bot. 2019, 70, 193–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, D.; Dong, Y.; Bouche, F.; Bednarek, R.; Rowe, M.; Ream, T.; Amasino, R. A florigen paralog is required for short-day vernalization in a pooid grass. Elife 2019, 8. [Google Scholar] [CrossRef]
- Qin, Z.; Bai, Y.; Muhammad, S.; Wu, X.; Deng, P.; Wu, J.; An, H.; Wu, L. Divergent roles of FT-like 9 in flowering transition under different day lengths in Brachypodium distachyon. Nat. Commun. 2019, 10, 812. [Google Scholar] [CrossRef] [Green Version]
- Mur, L.A.; Xu, R.; Casson, S.A.; Stoddart, W.M.; Routledge, A.P.; Draper, J. Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses. Mol. Plant. Pathol. 2004, 5, 267–280. [Google Scholar] [CrossRef]
- Pogorelko, G.; Lionetti, V.; Fursova, O.; Sundaram, R.M.; Qi, M.; Whitham, S.A.; Bogdanove, A.J.; Bellincampi, D.; Zabotina, O.A. Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. Plant. Physiol. 2013, 162, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.Y.; Hong, S.Y.; Jo, S.H.; Woo, J.C.; Lee, S.; Park, C.M. Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon. Bmc Plant. Biol. 2014, 14, 15. [Google Scholar] [CrossRef] [Green Version]
- Thilmony, R.; Guttman, M.E.; Lin, J.W.; Blechl, A.E. The wheat HMW-glutenin 1Dy10 gene promoter controls endosperm expression in Brachypodium distachyon. Gm Crop. Food 2014, 5, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, C.S.; Kronstad, W.E. Tissue culture and plant regeneration from immature embryo explants of Barley, Hordeum vulgare. Appl. Genet. 1986, 71, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Makowska, K.; Oleszczuk, S. Albinism in barley androgenesis. Plant. Cell Rep. 2014, 33, 385–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, E.J.; Koehler, A.D.; Rocha, D.I.; Vieira, L.M.; Pinheiro, M.V.M.; de Matos, E.M.; da Cruz, A.C.F.; da Silva, T.C.R.; Tanaka, F.A.O.; Nogueira, F.T.S.; et al. Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon. Protoplasma 2017, 254, 2017–2034. [Google Scholar] [CrossRef]
- Betekhtin, A.; Rojek, M.; Milewska-Hendel, A.; Gawecki, R.; Karcz, J.; Kurczynska, E.; Hasterok, R. Spatial distribution of selected chemical cell wall components in the embryogenic callus of Brachypodium distachyon. PloS ONE 2016, 11, e0167426. [Google Scholar] [CrossRef]
- Verdeil, J.L.; Alemanno, L.; Niemenak, N.; Tranbarger, T.J. Pluripotent versus totipotent plant stem cells: Dependence versus autonomy? Trends Plant. Sci. 2007, 12, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Betekhtin, A.; Milewska-Hendel, A.; Chajec, L.; Rojek, M.; Nowak, K.; Kwasniewska, J.; Wolny, E.; Kurczynska, E.; Hasterok, R. 5-Azacitidine Induces cell death in a tissue culture of Brachypodium distachyon. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [Green Version]
- Mamedes-Rodrigues, T.C.; Batista, D.S.; Vieira, N.M.; Matos, E.M.; Fernandes, D.; Nunes-Nesi, A.; Cruz, C.D.; Viccini, L.F.; Nogueira, F.T.S.; Otoni, W.C. Regenerative potential, metabolic profile, and genetic stability of Brachypodium distachyon embryogenic calli as affected by successive subcultures. Protoplasma 2018, 255, 655–667. [Google Scholar] [CrossRef]
- Mendez-Hernandez, H.A.; Ledezma-Rodriguez, M.; Avilez-Montalvo, R.N.; Juarez-Gomez, Y.L.; Skeete, A.; Avilez-Montalvo, J.; De-la-Pena, C.; Loyola-Vargas, V.M. Signaling overview of plant somatic embryogenesis. Front. Plant. Sci. 2019, 10, 77. [Google Scholar] [CrossRef] [Green Version]
Genotype | Species | Target (explant) | Target Multiplication * | DNA Delivery | Marker Genes | Transformation Efficiency ** | Overall Efficiency *** | Reference |
---|---|---|---|---|---|---|---|---|
ABR100 | BH | Callus (IE) | NA | B | HPT, GUS | 5 plant lines/g of bombarded tissue | NA | [3] |
BDR018 BDR017 BDR030 | BD BS BS | Callus (IE) | NA (6 weeks) | B | BAR, GUS | 5.3% 3.8% 4.1% | NA | [33] |
Bd4-2 Bd6-1 Bd8-2 Bd10-2 Bd12-1 Bd12-1 Bd14-1 Bd14-2 Bd16-1 Bd17-2 Bd21 | BH BH BH BH BH BH BH BH BH BH BD | Callus (IS) Callus (IS) Callus (IS) Callus (IS) Callus (IS) Callus (MS) Callus (IS) Callus (IS) Callus (IS) Callus (IS) Callus (IS) | NA | Agro | HPT, GUS | 0.2% 1.9% 0.4% 2.1% 2.1% 13% 0.2% 1.3% 1.5% 13.5% 3.2% | NA | [34] |
Bd21-3 | BD | Callus (IE) | ×50 (6–7 weeks) | Agro | HPT, GUS | 22.1% | 11 | [14] |
BDR018 | BD | Callus (IE) | ×1 or less (17 days) | Agro | BAR, GUS | 55% | 0.6 or less | [35] |
Bd21Bd21-TC | BD | Callus (IE) | ×10 (4 weeks) ×16 or more (6 weeks) | Agro | HPT, GFP | 5.1% 17% | 0.5 2.7 or more | [36] |
Bd21 | BD | Callus (IE) | ×40 (6 weeks) | Agro | HPT, GFP | 20% | 8 | [37] |
Bd21 | BD | Callus (IE) | More than ×50 (7 weeks) | Agro | HPT, GUS | 15.1% | More than 7.6 | [38] |
Bd21-3 | BD | Callus (IE) | NA | Agro | HPT, GUS | 42% | NA | [39] |
Bd21 PI 220567 Bd12-1 TBd 8 ISK-P2 | BD BH BH BS BS | Callus (IE) | ×40 (6 weeks) | Agro | HPT | 20% 12.2% 6.2% 12% 20.1% | 8 4.9 2.5 4.8 8 | [40] |
Bd21 | BD | MS | - | Agro | GFP | 5% | 0.1 | [41] |
PI269842 Ain-1 | BSYL BSYL | Callus (IE) Callus (IE) | NA | Agro | HPT, GUS | 75% 22% | NA | [42] |
Bd21 | BD | Callus (IE) | NA | B | HPT, GUS | 3.4% | NA | [43] |
Bd21 Ain-1 | BD BSYL | Callus (IE) Callus (IE) | NA | Agro | HPT or NPTII, GUS | 57.5% 4.3% | NA | [44] |
Genotype | Species | DNA Delivery | Gene | Encoded Feature/Characteristic | Major Findings | Reference |
---|---|---|---|---|---|---|
Plant Growth and Development | ||||||
BDR017 BDR018 | BS BD | B | LpTFL1 (from perennial ryegrass), TFL1 (from Arabidopsis) | Floral repressors | LpTFL1 and TFL1 transgenic plants had a significant delay of flowering | [76] |
Bd21 | BD | Agro | eIF4A | RNA helicase plays a key role in mRNA translation to protein | eif4a homozygous mutant plants were slow growing and had a reduced final plant stature | [77] |
Bd21 | BD | Agro | BRI1 | Brassinosteroid receptor | bri1 mutants had a dwarf and contorted plant phenotype and an altered epidermal cell shape and architecture | [40] |
Bd21 | BD | Agro | AnGAL, AnAF, AnRAE (from Aspergillus nidulans) | Hydrolases | The transient expression of the A. nidulans hydrolases affected the B. distachyon cell wall composition; transformed plants expressing AnGAL or AnAF had a reduced content of galactose and arabinose, respectively | [41] |
Bd21 | BD | Agro, P | BdSOC1 | Transcription factor | Plants overproducing the truncated BdSOC1 forms had a delayed heading; truncated forms as well as heterodimers were mostly localised in the cytoplasm | [78] |
Bd21-3 | BD | Agro | BdCESA4, BdCESA7 | Genes involved in cellulose biosynthesis | The BdCESA4 and BdCESA7 knock-down lines had a reduced stem area, the cell wall thickness of the xylem and fibres and the amount of crystalline cellulose in the cell wall | [79] |
Bd21 Bd21-3 | BD | Agro | BdTAR2L | Gene involved in the auxin biosynthesis pathway | The Bdtar2l mutant had an elongated root phenotype | [80] |
Bd21-3 | BD | Agro | BdEIN2L1 | Regulator of ethylene signalling | bdein2l1 had an elongated root phenotype | [80] |
Bd21 | BD | Agro | miR5200 | MicroRNA that is involved in the posttranscriptional regulation of the FT genes | Artificial interruption of the miR5200 activity accelerated the flowering time in short day (SD); miR5200 overexpression delayed flowering in a long day (LD) | [81] |
Bd21-3 | BD | Agro | CAD, COMT | Genes involved in lignin biosynthesis | Transgenic plants with a downregulated transcription of BdCAD1 had a brown midrib phenotype; BdCOMT4 downregulated plants had a reduced total lignin content | [82] |
Bd21-3 | BD | Agro | FT1 | Gene involved in flowering induction | Shoots regenerated from the transgenic calli overexpressing FT1 immediately developed floral organs under LD, none of the regenerated plants produced seeds; downregulation of FT1 resulted in non-flowering B. distachyon plants | [83] |
Bd21-3 | BD | Agro | VNR1, FT | Genes involved in flowering induction | Plants overexpressing VNR1 or FT had accelerated flowering without meeting the vernalisation requirement | [84] |
Bd21-3 | BD | Agro | PHYC | Light receptor | The flowering delay in the phyC-1 mutants was compensated for by an overexpression of FT | [85] |
Bd21-3 | BD | Agro | BdRGP1 | UDP-arabinopyranose mutase | The RNAi mutant of BdRGP1 had a significant decrease of the cell wall arabinose content | [86] |
Bd21-3 | BD | Agro | BdMUTE | Transcription factor associated with guard mother cell (GMC) identity | The Bdmute mutants had dicot-like stomata, misoriented GMC divisions and aborted guard cells; the BdMUTE protein was mobile | [87] |
Bd21-3 | BD | Agro | BdCESA8 | Cellulose synthase | bdcesa8 mutants were dwarf, sterile and tended to fall over; xylem cells had irregular shapes | [69] |
Bd21-3 | BD | Agro | BdCSLF6 | Mixed linkage glucan (MLG) synthase | The bdcslf6 mutants had a reduced height and a decreased MLG content | [69] |
Bd21-3 | BD | Agro | BdWAT1 | Tonoplast protein required for the proper formation of the secondary cell wall | The bdwat1 plants were dwarf, developmentally delayed and had an irregularly shaped xylem | [69] |
Bd21-3 | BD | Agro | BdRAD51 | Gene that is important for meiosis in both ovule and pollen development | The bdrad51c plants were vegetatively wild type but completely sterile; pollen was shrunken and deformed | [69] |
Bd21-3 | BD | Agro | BdWAX2 | Gene that is important for cuticular wax biosynthesis | The bdwax2 mutants had a decreased cuticular wax and lost their hydrophobicity | [69] |
Bd21-3 | BD | Agro | BdTAB2 | Gene that is required for proper chloroplast function | The bdtab2 mutants were yellow and died shortly after germination | [48] |
Bd21-3 | BD | Agro | SoPIN1 PIN1a PIN1b | Auxin efflux carriers | The sopin1 mutants had abnormal organ initiation during the flowering phase; pin1a and pin1b had an altered stem growth | [75] |
Bd21-3 | BD | Agro | BdAUX1 | Auxin influx carrier | The Bdaux1 mutants were dwarf, infertile and had an aberrant flower development and altered root phenotype | [88] |
Bd21-3 | BD | Agro | FT2 | Gene that is involved in flowering induction | Overexpression of FT2 resulted in precocious flowering and a reduced spikelet number | [89] |
Bd21 Koz2 Bd29-1 | BD | Agro | FTL9 | Gene that is involved in flowering induction | Plants that contained an active FTL9 allele had a SD-vernalisation response | [90] |
Bd21 | BD | Agro | FTL9 | Gene an involved in flowering induction | The ftl9 mutants growing under SD flowered significantly later than the wild-type plants, the overexpression of the FLT9 gene significantly shortened the heading date under SD and led to a flowering delay under LD | [91] |
Abiotic and Biotic Stress Responses | ||||||
ABR1 | BD | B | Bdpin1 | Proteinase inhibitor that is involved in wound- and jasmonate-mediated signalling | The promoter nature of the 5′ upstream region of Bdpin1 was confirmed | [92] |
Bd21 | BD | B | AtGolS2 (from Arabidopsis) | Enzyme that is involved in the biosynthesis of the raffinose family of oligosaccharides | The AtGolS2-expressing transgenic plants under drought stress showed less degreening than the wild-type plants and had a slight direct recovery following rehydration | [43] |
Bd21-3 | Bd | Agro | AnAXE, AnRAE (from Aspergillus nidulans) | Acetyl esterases | The AnAXE transgenic plants had a decreased degree of polysaccharide acetylation and an increased resistance to Bipolaris sorokiniana | [93] |
Bd21-3 | Bd | Agro P | BdCBF1 | Transcription factors that are involved in the acclimation to low temperature process | Transgenic plants overexpressing the BdCBF1 had an enhanced resistance to drought, salt and cold | [94] |
Other functions | ||||||
Bd21-3 | BD | P | BdCOPT3 BdCOPT4 | Genes that are involved in copper transport | BdCOPT3 and BdCOPT4 were localised in the plasma membrane | [66] |
Bd21-3 | BD | Agro | 1Dy10 | HMW-glutenin gene promoter | The expression of the wheat 1Dy10 gene promoter was observed only in the endosperm of mature seeds | [95] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betekhtin, A.; Hus, K.; Rojek-Jelonek, M.; Kurczynska, E.; Nibau, C.; Doonan, J.H.; Hasterok, R. In Vitro Tissue Culture in Brachypodium: Applications and Challenges. Int. J. Mol. Sci. 2020, 21, 1037. https://doi.org/10.3390/ijms21031037
Betekhtin A, Hus K, Rojek-Jelonek M, Kurczynska E, Nibau C, Doonan JH, Hasterok R. In Vitro Tissue Culture in Brachypodium: Applications and Challenges. International Journal of Molecular Sciences. 2020; 21(3):1037. https://doi.org/10.3390/ijms21031037
Chicago/Turabian StyleBetekhtin, Alexander, Karolina Hus, Magdalena Rojek-Jelonek, Ewa Kurczynska, Candida Nibau, John H. Doonan, and Robert Hasterok. 2020. "In Vitro Tissue Culture in Brachypodium: Applications and Challenges" International Journal of Molecular Sciences 21, no. 3: 1037. https://doi.org/10.3390/ijms21031037
APA StyleBetekhtin, A., Hus, K., Rojek-Jelonek, M., Kurczynska, E., Nibau, C., Doonan, J. H., & Hasterok, R. (2020). In Vitro Tissue Culture in Brachypodium: Applications and Challenges. International Journal of Molecular Sciences, 21(3), 1037. https://doi.org/10.3390/ijms21031037