Assessment of a 18F-Phenylboronic Acid Radiotracer for Imaging Boron in Maize
Abstract
:1. Introduction
2. Results
2.1. Synthesis of an [18F]FPBA Radiotracer
2.2. [18F]FPBA localizes to the Primary Root and Lateral Root Initation Sites in Maize and Translocates to the Shoot Where It Localizes to Leaf Edges
2.3. FPBA and PBA Elicit Similar Phenotypic Responses
2.3.1. Germination of Maize kernels in PBA and FPBA
2.3.2. FPBA Induces Rootless Arabidopsis Seedlings
2.4. Mimicking of B Deficiency Symptoms by PBA/FPBA
2.4.1. Co-Treatment of PBA/FPBA and BA Decreases the PBA/FPBA-Induced Inhibition of Primary Root Length in Maize
2.4.2. The B Deficient Mutants Zmtls1 and Zmrte Are Slightly More Sensitive to PBA Treatment Compared to their Normal Siblings
2.4.3. FPBA Treatment Causes Enhanced Cellular B Levels in Roots
2.4.4. [18F]FPBA Binds cis-Diol Groups
3. Discussion
3.1. Development of a PBA-Based B Radiotracer in Plants
3.2. [18F]FPBA Localizes to the Root Tips and Lateral Roots in Maize and Translocates to the Shoot Where It Localizes to Leaf Edges
3.3. Induction of B Deficiency Symptoms by FPBA/PBA
4. Materials and Methods
4.1. [18F]FPBA Radiotracer Production
4.2. Radiotracer Administration to Plants
4.3. Autoradiography
4.4. Chemical Kinetics on Maize Root Development
4.5. Boron Measurements in Maize Roots
4.6. Glucose Tracer Binding Across pH
4.7. Chemical Treatment of Arabidopsis Thaliana Siliques
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
o C | Degrees Celsius |
t1/2 | Half life |
Arabidopsis | Arabidopsis thaliana |
B033- | Borate anion |
B | Boron |
BA | Boric acid |
C | Carbon |
CO2 | Carbon dioxide |
[xY] | Radioactive element Y |
FPBA | 4-Fluoro-phenylboronic acid |
H | Hydrogen |
HPLC | High performance liquid chromatography |
ICP-MS | Inductively coupled plasma mass spectrometry |
ICP-OES | Inductively coupled plasma optical emission spectrometry |
O | Oxygen |
PBA | Phenylboronic acid |
TLC | Thin Layer chromatography |
tls1 | tassel-less1 |
rte | rotten ear |
Zm | Zea mays |
References
- Warington, K. The Effect of Boric Acid and Borax on the Broad Bean and certain other Plants. Ann. Bot. 1923, 37, 629–672. [Google Scholar] [CrossRef]
- Waqar, A.; Munir, H.Z.; Sukhdev, S.M.; Abid, N.; Saifullah, N. Saifullah Boron Deficiency in Soils and Crops: A Review. In Crop Plant; Goyal, A., Ed.; InTech: London, UK, 2012; pp. 77–114. ISBN 978-953-51-0527-5. [Google Scholar]
- Pizzorno, L. Nothing Boring About Boron. Integr. Med. (Encinitas) 2015, 14, 35–48. [Google Scholar] [PubMed]
- Shorrocks, V.M. The occurrence and correction of boron deficiency. In Boron in Soils and Plants: Reviews; Dell, B., Brown, P.H., Bell, R.W., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 121–148. ISBN 978-94-010-6352-4. [Google Scholar]
- Matthes, M.; Robil, J.; McSteen, P. From Element to Development: The power of the essential micronutrient boron to shape morphological processes in plants. J. Exp. Bot. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, T.; Matsunaga, T. Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr. Res. 1996, 284, 1–9. [Google Scholar] [CrossRef]
- Kobayashi, M.; Matoh, T.; Azuma, J. Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester Bonds in Higher Plant Cell Walls. Plant Physiol. 1996, 110, 1017–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, M.A.; Warrenfeltz, D.; Kates, K.; Pellerin, P.; Doco, T.; Darvill, A.G.; Albersheim, P. Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-linked by a Borate Ester: In vitro conditions fo the formation and hydrolysis of the dimer. J. Biol. Chem. 1996, 271, 22923–22930. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, M.A.; Eberhard, S.; Albersheim, P.; Darvill, A.G. Requirement of Borate Cross-Linking of Cell Wall Rhamnogalacturonan II for Arabidopsis Growth. Science 2001, 294, 846–849. [Google Scholar] [CrossRef]
- Goldbach, H.E.; Wimmer, M.A.; Findeklee, P. Discussion Paper: Boron - How can the Critical Level be Defined? J. Plant Nutr. Soil Sci. 2000, 115–121. [Google Scholar] [CrossRef]
- Blevins, D.G.; Lukaszewski, K.M. Boron in plant structure and function. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1998, 49, 481–500. [Google Scholar] [CrossRef] [Green Version]
- Power, P.P.; Woods, W.G. The chemistry of boron and its speciation in plants. Plant Soil 1997, 193, 1–13. [Google Scholar] [CrossRef]
- Dell, B.; Huang, L. Physiological response of plants to low boron. Plant Soil 1997, 193, 103–120. [Google Scholar] [CrossRef]
- Steeves, T.A.; Sussex, I.M. Patterns in Plant Development, 2nd ed.; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Camacho-Cristóbal, J.J.; Martín-Rejano, E.M.; Herrera-Rodríguez, M.B.; Navarro-Gochicoa, M.T.; Rexach, J.; González-Fontes, A. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. J. Exp. Bot. 2015, 66, 3831–3840. [Google Scholar] [CrossRef] [PubMed]
- Eltinge, E.T. Effect of boron deficiency upon the structure of Zea Mays. Plant Physiol. 1936, 11, 765–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lordkaew, S.; Dell, B.; Jamjod, S.; Rerkasem, B. Boron deficiency in maize. Plant Soil 2011, 342, 207–220. [Google Scholar] [CrossRef]
- Josten, P.; Kutschera, U. The Micronutrient Boron Causes the Development of Adventitious Roots in Sunflower Cuttings. Ann. Bot. 1999, 84, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Landi, M.; Margaritopoulou, T.; Papadakis, I.E.; Araniti, F. Boron toxicity in higher plants: An update. Planta 2019, 250, 1011–1032. [Google Scholar] [CrossRef] [Green Version]
- Yoshinari, A.; Takano, J. Insights into the Mechanisms Underlying Boron Homeostasis in Plants. Front. Plant Sci. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, K.; Yasumori, M.; Imai, T.; Naito, S.; Matsunaga, T.; Oda, H.; Hayashi, H.; Chino, M.; Fujiwara, T. bor1-1, an Arabidopsis thaliana Mutant That Requires a High Level of Boron. Plant Physiol. 1997, 115, 901–906. [Google Scholar] [CrossRef] [Green Version]
- Takano, J.; Wada, M.; Ludewig, U.; Schaaf, G.; von Wirén, N.; Fujiwara, T. The Arabidopsis Major Intrinsic Protein NIP5;1 Is Essential for Efficient Boron Uptake and Plant Development under Boron Limitation. Plant Cell 2006, 18, 1498–1509. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, M.; Wakuta, S.; Kamiyo, J.; Fujiwara, T.; Takano, J. Establishment of genetically encoded biosensors for cytosolic boric acid in plant cells. Plant J. 2018, 763–774. [Google Scholar] [CrossRef]
- Durbak, A.R.; Phillips, K.A.; Pike, S.; O’Neill, M.A.; Mares, J.; Gallavotti, A.; Malcomber, S.T.; Gassmann, W.; McSteen, P. Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 2014, 26, 2978–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, M.; Tabi, Z.; Galli, M.; Malcomber, S.; Buck, A.; Muszynski, M.; Gallavotti, A. The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. Plant Cell 2014, 26, 2962–2977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, M.; Liu, Q.; Menello, C.; Galli, M.; Gallavotti, A. The Combined Action of Duplicated Boron Transporters Is Required for Maize Growth in Boron-Deficient Conditions. Genetics 2017, 206, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Bassil, E.; Hu, H.; Brown, P.H. Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiol. 2004, 136, 3383–3395. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Gao, S.; Zhang, W.; Xing, Y.; Cao, Q.; Qin, L. Addition of Phenylboronic Acid to Malus domestica Pollen Tubes Alters Calcium Dynamics, Disrupts Actin Filaments and Affects Cell Wall Architecture. PLoS ONE 2016, 11, e0149232. [Google Scholar] [CrossRef]
- Matthes, M.; Torres-Ruiz, R.A. Boronic acid treatment phenocopies monopteros by affecting PIN1 membrane stability and polar auxin transport in Arabidopsis thaliana embryos. Development 2016, 143, 4053–4062. [Google Scholar] [CrossRef] [Green Version]
- Matthes, M.; Torres-Ruiz, R.A. Boronic acids as tools to study (plant) developmental processes? Plant Signal Behav. 2017, 12, e1321190. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, D.; Sheikh, A.A.; Batabyal, K.; Mandal, B. Boron Estimation in Soil, Plant, and Water Samples using Spectrophotometric Methods. Commun. Soil Sci. Plant Anal. 2014, 45, 1538–1550. [Google Scholar] [CrossRef]
- Kaulich, B.; Gianoncelli, A.; Beran, A.; Eichert, D.; Kreft, I.; Pongrac, P.; Regvar, M.; Vogel-Mikuš, K.; Kiskinova, M. Low-energy X-ray fluorescence microscopy opening new opportunities for bio-related research. J. R. Soc. Interface 2009, 6, S641–S647. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Brockman, J.D.; Guthrie, J.M.; Lever, S.Z. Analysis and imaging of boron distribution in maize by quantitative neutron capture radiography. Appl. Radiat. Isot. 2018, 140, 252–261. [Google Scholar] [CrossRef]
- Thellier, M.; Ripoll, C. Neutron Capture Radiography: Neutron Capture Radiography:a technique for isotopic labelling and analytical imaging with a few stable isotopes. Sci. World J. 2006, 6, 671–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nudat 2. Available online: https://www.nndc.bnl.gov/nudat2/reCenter.jsp?z=4&n=4 (accessed on 24 July 2019).
- Mossine, A.V.; Brooks, A.F.; Makaravage, K.J.; Miller, J.M.; Ichiishi, N.; Sanford, M.S.; Scott, P.J.H. Synthesis of [18F]Arenes via the Copper-Mediated [18F]Fluorination of Boronic Acids. Org. Lett. 2015, 17, 5780–5783. [Google Scholar] [CrossRef]
- Qu, W.; Robert, C.A.M.; Erb, M.; Hibbard, B.E.; Paven, M.; Gleede, T.; Riehl, B.; Kersting, L.; Cankaya, A.S.; Kunert, A.T.; et al. Dynamic Precision Phenotyping Reveals Mechanism of Crop Tolerance to Root Herbivory. Plant Physiol. 2016, 172, 776–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran, C.; Arce-Johnson, P.; Aquea, F. Methylboronic acid fertilization alleviates boron deficiency symptoms in Arabidopsis thaliana. Planta 2018, 248, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Loomis, W.D.; Durst, R.W. Chemistry and biology of boron. Biofactors 1992, 3, 229–239. [Google Scholar] [PubMed]
- Mach, R.H. Development of 18F- and 11C-Labeled Radiopharmaceuticals. In Continuing Education for Nuclear Pharmacists and Nuclear Medicine Professionals; Jeffrey Norenberg, UNM College of Pharmacy: Albuquerque, NM, USA, 2008; Volume 14, pp. 1–22. [Google Scholar]
- Loveland, W.; Morrisey, D.J.; Seaborg, G.T. Modern Nuclear Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes. Bioconjug. Chem. 2015, 26, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yu, M. Recent developments of the PET imaging agents for metabotropic glutamate receptor subtype 5. Curr. Top. Med. Chem. 2007, 7, 1800–1805. [Google Scholar] [CrossRef]
- Gluesenkamp, K.-H.; Kosegarten, K.; Mengel, F.; Grolig, F.; Esh, A.; Goldbach, H.E. A fluorescein boronic acid conjugate as a marker for borate binding sites in the apoplast of growing roots of Zea mays L. and Helianthus annuus L. In Boron in Soils and Plants; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1997; pp. 229–235. ISBN 978-94-011-5564-9. [Google Scholar]
- Poza-Viejo, L.; Abreu, I.; González-García, M.P.; Allauca, P.; Bonilla, I.; Bolaños, L.; Reguera, M. Boron deficiency inhibits root growth by controlling meristem activity under cytokinin regulation. Plant Sci. 2018, 270, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Nable, R.O.; Banuelos, G.S.; Paull, J.G. Boron Toxicity. In Plant and Soil; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1997; pp. 181–198. [Google Scholar]
- Yan, J.; Springsteen, G.; Deeter, S.; Wang, B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears. Tetrahedron 2004, 60, 11205–11209. [Google Scholar] [CrossRef]
- Aquea, F.; Federici, F.; Moscoso, C.; Vega, A.; Jullian, P.; Haseloff, J.; Arce-Johnson, P. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant Cell Environ. 2012, 35, 719–734. [Google Scholar] [CrossRef]
- Matthes, M.S.; Robil, J.M.; Tran, T.; Kimble, A.; McSteen, P. Increased transpiration is correlated with reduced boron deficiency symptoms in the maize tassel-less1 mutant. Physiol. Plant. 2018, 163, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Pike, S.; Matthes, M.S.; McSteen, P.; Gassmann, W. Using Xenopus laevis Oocytes to Functionally Characterize Plant Transporters. Curr. Protoc. Plant Biol. 2019, 4, e20087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Piepho, H.-P. An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons. J. Comput. Graph. Stat. 2004, 13, 456–466. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Housh, A.B.; Matthes, M.S.; Gerheart, A.; Wilder, S.L.; Kil, K.-E.; Schueller, M.; Guthrie, J.M.; McSteen, P.; Ferrieri, R. Assessment of a 18F-Phenylboronic Acid Radiotracer for Imaging Boron in Maize. Int. J. Mol. Sci. 2020, 21, 976. https://doi.org/10.3390/ijms21030976
Housh AB, Matthes MS, Gerheart A, Wilder SL, Kil K-E, Schueller M, Guthrie JM, McSteen P, Ferrieri R. Assessment of a 18F-Phenylboronic Acid Radiotracer for Imaging Boron in Maize. International Journal of Molecular Sciences. 2020; 21(3):976. https://doi.org/10.3390/ijms21030976
Chicago/Turabian StyleHoush, Alexandra B., Michaela S. Matthes, Amber Gerheart, Stacy L. Wilder, Kun-Eek Kil, Michael Schueller, James M. Guthrie, Paula McSteen, and Richard Ferrieri. 2020. "Assessment of a 18F-Phenylboronic Acid Radiotracer for Imaging Boron in Maize" International Journal of Molecular Sciences 21, no. 3: 976. https://doi.org/10.3390/ijms21030976
APA StyleHoush, A. B., Matthes, M. S., Gerheart, A., Wilder, S. L., Kil, K.-E., Schueller, M., Guthrie, J. M., McSteen, P., & Ferrieri, R. (2020). Assessment of a 18F-Phenylboronic Acid Radiotracer for Imaging Boron in Maize. International Journal of Molecular Sciences, 21(3), 976. https://doi.org/10.3390/ijms21030976