T Cell Subpopulations in the Physiopathology of Fibromyalgia: Evidence and Perspectives
Abstract
:1. Background
2. Inflammatory Mediators and Innate Immunity in the Generation of Pain in Fibromyalgia
3. Role of T Cells in Fibromyalgia: Literature Data
4. T Cell Mediated Immune Response in Fibromyalgia: New Perspectives
5. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Clauw, D.J. Fibromyalgia: A clinical review. JAMA 2014, 311, 1547–1555. [Google Scholar] [CrossRef]
- Costantini, R.; Affaitati, G.; Wesselmann, U.; Czakanski, P.; Giamberardino, M.A. Visceral pain as a triggering factor for fibromyalgia symptoms in comorbid patients. Pain 2017, 158, 1925–1937. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, I.; Eisner, C.; Richter, P.; Huge, V.; Beyer, A.; Chouker, A.; Schelling, G.; Thiel, M. Lymphocyte subsets and the role of TH1/TH2 balance in stressed chronic pain patients. Neuroimmunomodulation 2007, 14, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bote, M.E.; Garcia, J.J.; Hinchado, M.D.; Ortega, E. Fibromyalgia: Anti-inflammatory and stress responses after acute moderate exercise. PLoS ONE 2013, 8, e74524. [Google Scholar] [CrossRef] [PubMed]
- Bote, M.E.; Garcia, J.J.; Hinchado, M.D.; Ortega, E. Inflammatory/stress feedback dysregulation in women with fibromyalgia. Neuroimmunomodulation 2012, 19, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Tsilioni, I.; Bawazeer, M. Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome. Front. Cell. Neurosci. 2019, 13, 353. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Tsilioni, I.; Arbetman, L.; Panagiotidou, S.; Stewart, J.M.; Gleason, R.M.; Russell, I.J. Fibromyalgia syndrome in need of effective treatments. J. Pharmacol. Exp. Ther. 2015, 355, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.S.; Correa, H.; Silva, G.C.; Campos, F.S.; Baiao, F.R.; Ribeiro, L.S.; Faria, A.M.; d’Avila Reis, D. May genetic factors in fibromyalgia help to identify patients with differentially altered frequencies of immune cells? Clin. Exp. Immunol. 2008, 154, 346–352. [Google Scholar] [CrossRef]
- Nugraha, B.; Korallus, C.; Kielstein, H.; Gutenbrunner, C. CD3+CD56+natural killer T cells in fibromyalgia syndrome patients: Association with the intensity of depression. Clin. Exp. Rheumatol. 2013, 31, S9–S15. [Google Scholar]
- Uceyler, N.; Hauser, W.; Sommer, C. Systematic review with meta-analysis: Cytokines in fibromyalgia syndrome. BMC Musculoskelet. Disord. 2011, 12, 245. [Google Scholar] [CrossRef] [Green Version]
- Filiano, A.J.; Xu, Y.; Tustison, N.J.; Marsh, R.L.; Baker, W.; Smirnov, I.; Overall, C.C.; Gadani, S.P.; Turner, S.D.; Weng, Z.; et al. Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour. Nature 2016, 535, 425–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 2016, 353, 766–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totsch, S.K.; Sorge, R.E. Immune System Involvement in Specific Pain Conditions. Mol. Pain 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Eller-Smith, O.C.; Nicol, A.L.; Christianson, J.A. Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions. Front. Cell. Neurosci. 2018, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Bazzichi, L.; Rossi, A.; Massimetti, G.; Giannaccini, G.; Giuliano, T.; De Feo, F.; Ciapparelli, A.; Dell’Osso, L.; Bombardieri, S. Cytokine patterns in fibromyalgia and their correlation with clinical manifestations. Clin. Exp. Rheumatol. 2007, 25, 225–230. [Google Scholar] [PubMed]
- Tsilioni, I.; Russell, I.J.; Stewart, J.M.; Gleason, R.M.; Theoharides, T.C. Neuropeptides CRH, SP, HK-1, and Inflammatory Cytokines IL-6 and TNF Are Increased in Serum of Patients with Fibromyalgia Syndrome, Implicating Mast Cells. J. Pharmacol. Exp. Ther. 2016, 356, 664–672. [Google Scholar] [CrossRef] [Green Version]
- McLean, S.A.; Williams, D.A.; Stein, P.K.; Harris, R.E.; Lyden, A.K.; Whalen, G.; Park, K.M.; Liberzon, I.; Sen, A.; Gracely, R.H.; et al. Cerebrospinal fluid corticotropin-releasing factor concentration is associated with pain but not fatigue symptoms in patients with fibromyalgia. Neuropsychopharmacology 2006, 31, 2776–2782. [Google Scholar] [CrossRef]
- Nishiyori, M.; Ueda, H. Prolonged gabapentin analgesia in an experimental mouse model of fibromyalgia. Mol. Pain 2008, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Bardin, L.; Malfetes, N.; Newman-Tancredi, A.; Depoortere, R. Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: Relevance to human stress-associated painful pathologies. Behav. Brain Res. 2009, 205, 360–366. [Google Scholar] [CrossRef]
- Chen, X.; Green, P.G.; Levine, J.D. Stress enhances muscle nociceptor activity in the rat. Neuroscience 2011, 185, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Andres-Rodriguez, L.; Borras, X. Machine Learning to Understand the Immune-Inflammatory Pathways in Fibromyalgia. Int. J. Mol. Sci. 2019, 20, 4231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, R.L.; Jones, K.D.; Bennett, R.M.; Ward, R.L.; Druker, B.J.; Wood, L.J. Preliminary Evidence of Increased Pain and Elevated Cytokines in Fibromyalgia Patients with Defective Growth Hormone Response to Exercise. Open Immunol. J. 2010, 3, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadetoff, D.; Lampa, J.; Westman, M.; Andersson, M.; Kosek, E. Evidence of central inflammation in fibromyalgia-increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. 2012, 242, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Pinto, I.; Agmon-Levin, N.; Howard, A.; Shoenfeld, Y. Fibromyalgia and cytokines. Immunol. Lett. 2014, 161, 200–203. [Google Scholar] [CrossRef]
- Abbadie, C. Chemokines, chemokine receptors and pain. Trends Immunol. 2005, 26, 529–534. [Google Scholar] [CrossRef]
- Charo, I.F.; Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. N Engl. J. Med. 2006, 354, 610–621. [Google Scholar] [CrossRef]
- Romero-Sanchez, C.; Tsou, H.K.; Jan, M.S.; Wong, R.H.; Chang, I.C.; Londono, J.; Valle-Onate, R.; Howe, H.S.; Yu, D.; Leung, B.P.; et al. Serum monocyte chemotactic protein-1 concentrations distinguish patients with ankylosing spondylitis from patients with mechanical low back pain. J. Spinal Disord. Tech. 2011, 24, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Pernambuco, A.P.; Schetino, L.P.; Alvim, C.C.; Murad, C.M.; Viana, R.S.; Carvalho, L.S.; Reis, D.A. Increased levels of IL-17A in patients with fibromyalgia. Clin. Exp. Rheumatol. 2013, 31, S60–S63. [Google Scholar]
- Liu, Y.; Ho, R.C.; Mak, A. The role of interleukin (IL)-17 in anxiety and depression of patients with rheumatoid arthritis. Int. J. Rheum. Dis. 2012, 15, 183–187. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Y.; Lao, L.; Saito, R.; Li, A.; Backman, C.M.; Berman, B.M.; Ren, K.; Wei, P.K.; Zhang, R.X. Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain 2013, 154, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, J.; Loggia, M.L.; Cahalan, C.; Garcia, R.G.; Vangel, M.G.; Wasan, A.D.; Edwards, R.R.; Napadow, V. Fibromyalgia is characterized by altered frontal and cerebellar structural covariance brain networks. Neuroimage Clin. 2015, 7, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Kissel, C.L.; Kovacs, K.J.; Larson, A.A. Evidence for the modulation of nociception in mice by central mast cells. Eur. J. Pain 2017, 21, 1743–1755. [Google Scholar] [CrossRef] [PubMed]
- Alfonso Romero-Sandoval, E.; Sweitzer, S. Nonneuronal central mechanisms of pain: Glia and immune response. Prog. Mol. Biol. Transl. Sci. 2015, 131, 325–358. [Google Scholar] [CrossRef] [PubMed]
- Heron, A.; Dubayle, D. A focus on mast cells and pain. J. Neuroimmunol. 2013, 264, 1–7. [Google Scholar] [CrossRef]
- Chatterjea, D.; Martinov, T. Mast cells: Versatile gatekeepers of pain. Mol. Immunol. 2015, 63, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torresani, C.; Bellafiore, S.; De Panfilis, G. Chronic urticaria is usually associated with fibromyalgia syndrome. Acta Derm. Venereol. 2009, 89, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Blanco, I.; Beritze, N.; Arguelles, M.; Carcaba, V.; Fernandez, F.; Janciauskiene, S.; Oikonomopoulou, K.; de Serres, F.J.; Fernandez-Bustillo, E.; Hollenberg, M.D. Abnormal overexpression of mastocytes in skin biopsies of fibromyalgia patients. Clin. Rheumatol. 2010, 29, 1403–1412. [Google Scholar] [CrossRef]
- Zhang, Z.; Cherryholmes, G.; Mao, A.; Marek, C.; Longmate, J.; Kalos, M.; Amand, R.P.; Shively, J.E. High plasma levels of MCP-1 and eotaxin provide evidence for an immunological basis of fibromyalgia. Exp. Biol. Med. (Maywood) 2008, 233, 1171–1180. [Google Scholar] [CrossRef]
- Alvarez, P.; Green, P.G.; Levine, J.D. Role for monocyte chemoattractant protein-1 in the induction of chronic muscle pain in the rat. Pain 2014, 155, 1161–1167. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.M.; Drewes, C.C.; Silva, C.R.; Trevisan, G.; Boschen, S.L.; Moreira, C.G.; de Almeida Cabrini, D.; Da Cunha, C.; Ferreira, J. Involvement of mast cells in a mouse model of postoperative pain. Eur. J. Pharmacol. 2011, 672, 88–95. [Google Scholar] [CrossRef]
- Aguzzi, A.; Barres, B.A.; Bennett, M.L. Microglia: Scapegoat, saboteur, or something else? Science 2013, 339, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Kawahara, K.; Hohjoh, H.; Inazumi, T.; Tsuchiya, S.; Sugimoto, Y. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim. Biophys. Acta 2015, 1851, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Ryabkova, V.A.; Churilov, L.P.; Shoenfeld, Y. Neuroimmunology: What Role for Autoimmunity, Neuroinflammation, and Small Fiber Neuropathy in Fibromyalgia, Chronic Fatigue Syndrome, and Adverse Events after Human Papillomavirus Vaccination? Int. J. Mol. Sci. 2019, 20, 5164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backryd, E.; Tanum, L.; Lind, A.L.; Larsson, A.; Gordh, T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J. Pain Res. 2017, 10, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, H.; Zhang, X.; Wang, Y.; Zhou, X.; Qian, Y.; Zhang, S. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation. Mol. Neurobiol. 2017, 54, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Dong, H.; Xu, Y.; Zhang, S. Induction of Microglial Activation by Mediators Released from Mast Cells. Cell. Physiol. Biochem. 2016, 38, 1520–1531. [Google Scholar] [CrossRef]
- Reu, P.; Khosravi, A.; Bernard, S.; Mold, J.E.; Salehpour, M.; Alkass, K.; Perl, S.; Tisdale, J.; Possnert, G.; Druid, H.; et al. The Lifespan and Turnover of Microglia in the Human Brain. Cell Rep. 2017, 20, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Groh, J.; Martini, R. Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: Understanding pathogenesis and chances for treatment. Gila 2017, 65, 1407–1422. [Google Scholar] [CrossRef]
- Wang, W.; Ji, P.; Riopelle, R.J.; Dow, K.E. Functional expression of corticotropin-releasing hormone (CRH) receptor 1 in cultured rat microglia. J. Neurochem. 2002, 80, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Thonhoff, J.R.; Simpson, E.P.; Appel, S.H. Neuroinflammatory mechanisms in amyotrophic lateral sclerosis pathogenesis. Curr. Opin. Neurol. 2018, 31, 635–639. [Google Scholar] [CrossRef]
- Hansson, E. Long-term pain, neuroinflammation and glial activation. Scand. J. Pain 2010, 1, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyk, L.; Maitre, M.; Leste-Lasserre, T.; Clark, S.; Cota, D.; Oliet, S.H.R.; Fenelon, V.S. Sequential alteration of microglia and astrocytes in the rat thalamus following spinal nerve ligation. J. Neuroinflammation 2018, 15, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaper, S.D.; Facci, L.; Zusso, M.; Giusti, P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front. Cell. Neurosci. 2018, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Edwards, T.N.; Liu, A.W.; Hirai, T.; Jones, M.R.; Wu, J.; Li, Y.; Zhang, S.; Ho, J.; Davis, B.M.; et al. Cutaneous TRPV1(+) Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell 2019, 178, 919–932. [Google Scholar] [CrossRef]
- Sotzny, F.; Blanco, J.; Capelli, E.; Castro-Marrero, J.; Steiner, S.; Murovska, M.; Scheibenbogen, C.; European Network on, M.C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome—Evidence for an autoimmune disease. Autoimmun. Rev. 2018, 17, 601–609. [Google Scholar] [CrossRef]
- Ganor, Y.; Besser, M.; Ben-Zakay, N.; Unger, T.; Levite, M. Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J. Immunol. 2003, 170, 4362–4372. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Kiguchi, N.; Fukazawa, Y.; Saika, F.; Maeda, T.; Kishioka, S. Macrophage-T cell interactions mediate neuropathic pain through the glucocorticoid-induced tumor necrosis factor ligand system. J. Biol. Chem. 2015, 290, 12603–12613. [Google Scholar] [CrossRef] [Green Version]
- Draleau, K.; Maddula, S.; Slaiby, A.; Nutile-McMenemy, N.; De Leo, J.; Cao, L. Phenotypic Identification of Spinal Cord-Infiltrating CD4(+) T Lymphocytes in a Murine Model of Neuropathic Pain. J. Pain Relief 2014. [Google Scholar] [CrossRef] [Green Version]
- Sorge, R.E.; Mapplebeck, J.C.; Rosen, S.; Beggs, S.; Taves, S.; Alexander, J.K.; Martin, L.J.; Austin, J.S.; Sotocinal, S.G.; Chen, D.; et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 2015, 18, 1081–1083. [Google Scholar] [CrossRef] [Green Version]
- Hader, N.; Rimon, D.; Kinarty, A.; Lahat, N. Altered interleukin-2 secretion in patients with primary fibromyalgia syndrome. Arthritis Rheum. 1991, 34, 866–872. [Google Scholar] [CrossRef]
- Hernanz, W.; Valenzuela, A.; Quijada, J.; Garcia, A.; de la Iglesia, J.L.; Gutierrez, A.; Povedano, J.; Moreno, I.; Sanchez, B. Lymphocyte subpopulations in patients with primary fibromyalgia. J. Rheumatol. 1994, 21, 2122–2124. [Google Scholar]
- Russell, I.J.; Vipraio, G.A.; Michalek, J.E.; Craig, F.E.; Kang, Y.K.; Richards, A.B. Lymphocyte markers and natural killer cell activity in fibromyalgia syndrome: Effects of low-dose, sublingual use of human interferon-alpha. J. Interferon Cytokine Res. 1999, 19, 969–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanklin, D.R.; Stevens, M.V.; Hall, M.F.; Smalley, D.L. Environmental immunogens and T-cell-mediated responses in fibromyalgia: Evidence for immune dysregulation and determinants of granuloma formation. Exp. Mol. Pathol. 2000, 69, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.; Dadar, M.; Aaseth, J. Delayed-type hypersensitivity to metals in connective tissue diseases and fibromyalgia. Environ. Res. 2018, 161, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, V. Metals as a common trigger of inflammation resulting in non-specific symptoms: Diagnosis and treatment. Isr. Med. Assoc. J. 2014, 16, 753–758. [Google Scholar]
- Stejskal, V.; Ockert, K.; Bjorklund, G. Metal-induced inflammation triggers fibromyalgia in metal-allergic patients. Neuro Endocrinol. Lett. 2013, 34, 559–565. [Google Scholar]
- Pigatto, P.D.; Minoia, C.; Ronchi, A.; Brambilla, L.; Ferrucci, S.M.; Spadari, F.; Passoni, M.; Somalvico, F.; Bombeccari, G.P.; Guzzi, G. Allergological and toxicological aspects in a multiple chemical sensitivity cohort. Oxid. Med. Cell. Longev. 2013, 2013, 356235. [Google Scholar] [CrossRef] [Green Version]
- Boscarino, J.A. Posttraumatic stress disorder and physical illness: Results from clinical and epidemiologic studies. Ann. N. Y. Acad. Sci. 2004, 1032, 141–153. [Google Scholar] [CrossRef]
- Tagoe, C.E.; Zezon, A.; Khattri, S. Rheumatic manifestations of autoimmune thyroid disease: The other autoimmune disease. J. Rheumatol. 2012, 39, 1125–1129. [Google Scholar] [CrossRef]
- Garcia, J.J.; Cidoncha, A.; Bote, M.E.; Hinchado, M.D.; Ortega, E. Altered profile of chemokines in fibromyalgia patients. Ann. Clin. Biochem. 2014, 51, 576–581. [Google Scholar] [CrossRef]
- Imamura, M.; Targino, R.A.; Hsing, W.T.; Imamura, S.; Azevedo, R.S.; Boas, L.S.; Tozetto-Mendoza, T.R.; Alfieri, F.M.; Filippo, T.R.; Battistella, L.R. Concentration of cytokines in patients with osteoarthritis of the knee and fibromyalgia. Clin. Interv. Aging 2014, 9, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, C.; Konno, T.; Wakao, R.; Fujita, H.; Fujita, H.; Wakao, H. Mucosal-associated invariant T cell is a potential marker to distinguish fibromyalgia syndrome from arthritis. PLoS ONE 2015, 10, e0121124. [Google Scholar] [CrossRef]
- Guggino, G.; Schinocca, C.; Lo Pizzo, M.; Di Liberto, D.; Garbo, D.; Raimondo, S.; Alessandro, R.; Brighina, F.; Ruscitti, P.; Giacomelli, R.; et al. T helper 1 response is correlated with widespread pain, fatigue, sleeping disorders and the quality of life in patients with fibromyalgia and is modulated by hyperbaric oxygen therapy. Clin. Exp. Rheumatol. 2019, 37, 81–89. [Google Scholar]
- Katchan, V.; David, P.; Shoenfeld, Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun. Rev. 2016, 15, 513–528. [Google Scholar] [CrossRef]
- Katz, D.; Katz, I.; Porat-Katz, B.S.; Shoenfeld, Y. Medical cannabis: Another piece in the mosaic of autoimmunity? Clin. Pharmacol. Ther. 2017, 101, 230–238. [Google Scholar] [CrossRef]
- Bonaccorso, S.; Lin, A.H.; Verkerk, R.; Van Hunsel, F.; Libbrecht, I.; Scharpe, S.; DeClerck, L.; Biondi, M.; Janca, A.; Maes, M. Immune markers in fibromyalgia: Comparison with major depressed patients and normal volunteers. J. Affect. Disord. 1998, 48, 75–82. [Google Scholar] [CrossRef]
- Buskila, D.; Atzeni, F.; Sarzi-Puttini, P. Etiology of fibromyalgia: The possible role of infection and vaccination. Autoimmun. Rev. 2008, 8, 41–43. [Google Scholar] [CrossRef]
- Pridgen, W.L.; Duffy, C.; Gendreau, J.F.; Gendreau, R.M. A famciclovir + celecoxib combination treatment is safe and efficacious in the treatment of fibromyalgia. J. Pain Res. 2017, 10, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Khoo, T.; Proudman, S.; Limaye, V. Silicone breast implants and depression, fibromyalgia and chronic fatigue syndrome in a rheumatology clinic population. Clin. Rheumatol. 2019, 38, 1271–1276. [Google Scholar] [CrossRef]
- Wolfe, F.; Walitt, B.; Perrot, S.; Rasker, J.J.; Hauser, W. Fibromyalgia diagnosis and biased assessment: Sex, prevalence and bias. PLoS ONE 2018, 13, e0203755. [Google Scholar] [CrossRef] [Green Version]
- Branco, J.C.; Tavares, V.; Abreu, I.; Correia, M.M.; Caetano, J.A.M. HLA Studies in Fibromyalgia. J. Musculoskelet. Pain 1996, 4, 21–27. [Google Scholar] [CrossRef]
- Horven, S.; Stiles, T.C.; Holst, A.; Moen, T. HLA antigens in primary fibromyalgia syndrome. J. Rheumatol. 1992, 19, 1269–1270. [Google Scholar]
- Biasi, G.; Fioravanti, A.; Galeazzi, M.; Marcolongo, R. Absence of correlation between HLA antigens and fibromyalgia syndrome in Italian patients. Ann. Ital. Med. Int. 1994, 9, 228–230. [Google Scholar]
- Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 2005, 5, 243–251. [Google Scholar] [CrossRef]
- Padgett, D.A.; Glaser, R. How stress influences the immune response. Trends Immunol. 2003, 24, 444–448. [Google Scholar] [CrossRef]
- Fan, K.Q.; Li, Y.Y.; Wang, H.L.; Mao, X.T.; Guo, J.X.; Wang, F.; Huang, L.J.; Li, Y.N.; Ma, X.Y.; Gao, Z.J.; et al. Stress-Induced Metabolic Disorder in Peripheral CD4(+) T Cells Leads to Anxiety-like Behavior. Cell 2019, 179, 864–879. [Google Scholar] [CrossRef]
- Bourin, M.; Petit-Demouliere, B.; Dhonnchadha, B.N.; Hascoet, M. Animal models of anxiety in mice. Fundam. Clin. Pharmacol. 2007, 21, 567–574. [Google Scholar] [CrossRef]
- Campos, A.C.; Fogaca, M.V.; Aguiar, D.C.; Guimaraes, F.S. Animal models of anxiety disorders and stress. Braz. J. Psychiatry 2013, 35, S101–S111. [Google Scholar] [CrossRef] [Green Version]
- Steimer, T. Animal models of anxiety disorders in rats and mice: Some conceptual issues. Dialogues Clin. Neurosci. 2011, 13, 495–506. [Google Scholar]
- Beurel, E.; Harrington, L.E.; Jope, R.S. Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol. Psychiatry 2013, 73, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Beurel, E.; Lowell, J.A. Th17 cells in depression. Brain Behav. Immun. 2018, 69, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.M.; Michael, K.C.; Klaus, J.; Mert, A.; Romano-Verthelyi, A.; Sand, J.; Tonelli, L.H. Dissociation between sickness behavior and emotionality during lipopolysaccharide challenge in lymphocyte deficient Rag2(-/-) mice. Behav. Brain Res. 2015, 278, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, S.M.; Sand, J.; Francis, T.C.; Nagaraju, A.; Michael, K.C.; Keegan, A.D.; Kusnecov, A.; Gould, T.D.; Tonelli, L.H. Immune status influences fear and anxiety responses in mice after acute stress exposure. Brain Behav. Immun. 2014, 38, 192–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattazzi, L.; Piras, G.; Ono, M.; Deacon, R.; Pariante, C.M.; D’Acquisto, F. CD4(+) but not CD8(+) T cells revert the impaired emotional behavior of immunocompromised RAG-1-deficient mice. Transl. Psychiatry 2013, 3, e280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyajima, M.; Zhang, B.; Sugiura, Y.; Sonomura, K.; Guerrini, M.M.; Tsutsui, Y.; Maruya, M.; Vogelzang, A.; Chamoto, K.; Honda, K.; et al. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nat. Immunol. 2017, 18, 1342–1352. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Enhancing versus Suppressive Effects of Stress on Immune Function: Implications for Immunoprotection versus Immunopathology. Allergy Asthma Clin. Immunol. 2008, 4, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Dragos, D.; Tanasescu, M.D. The effect of stress on the defense systems. J. Med. Life 2010, 3, 10–18. [Google Scholar]
- Gao, Z.; Li, Y.; Wang, F.; Huang, T.; Fan, K.; Zhang, Y.; Zhong, J.; Cao, Q.; Chao, T.; Jia, J.; et al. Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability. Nat. Commun. 2017, 8, 1805. [Google Scholar] [CrossRef] [Green Version]
- Fragale, A.; Gabriele, L.; Stellacci, E.; Borghi, P.; Perrotti, E.; Ilari, R.; Lanciotti, A.; Remoli, A.L.; Venditti, M.; Belardelli, F.; et al. IFN regulatory factor-1 negatively regulates CD4+ CD25+ regulatory T cell differentiation by repressing Foxp3 expression. J. Immunol. 2008, 181, 1673–1682. [Google Scholar] [CrossRef] [Green Version]
- Gabriele, L.; Fragale, A.; Borghi, P.; Sestili, P.; Stellacci, E.; Venditti, M.; Schiavoni, G.; Sanchez, M.; Belardelli, F.; Battistini, A. IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features. J. Leukoc. Biol. 2006, 80, 1500–1511. [Google Scholar] [CrossRef] [Green Version]
- Buccione, C.; Fragale, A.; Polverino, F.; Ziccheddu, G.; Arico, E.; Belardelli, F.; Proietti, E. Role of interferon regulatory factor 1 in governing Treg depletion, Th1 polarization, inflammasome activation and antitumor efficacy of cyclophosphamide. Int. J. Cancer 2018, 142, 976–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gracie, D.J.; Ford, A.C. Depression, Antidepressants, and Inflammatory Bowel Disease: Implications for Future Models of Care. Gastroenterology 2019, 156, 2345–2347. [Google Scholar] [CrossRef] [PubMed]
Cell Subpopulation | Phenotype/Function | Change in FM | Effect of Treatment | Sample Size | References |
---|---|---|---|---|---|
CD4+ T cells | ConA induced IL-2 secretion | reduction | NA | 12 | Hader et al. (1991) [60] |
CD3+ T cells | CD69+, CD25+ activated | reduction | NA | 65 | Hernanz et al. (1994) [61] |
CD3+ T cells/NK cells | CD25+ | Increase | Reduction of CD4+HLADR+ by low doses IFNα | 124 (baseline) | Russel et al. (1999) [62] |
CD3+ T cells | Proliferation in response to environmental chemicals | Increase | NA | 39 | Shaklin et al. (2000) [63] |
T cells | Number | Increase and association with autoimmune disease posttraumatic stress disorder | NA | 2490 | Boscarino et al. (2004) [68], Tagoe et al. (2012) [69] |
CD8+ T cells | - | Reduction | NA | 22 | Kaufmann et al. (2007) [3] |
CD4+ T cells | CD4+CD25low, CD4+HLADR+ | Increase | NA | 75 | Carvalho et al. (2008) [8] |
NKT cells | CD3+CD56+ | Increased in patients with lower depression scores | Modulated by antidepressant54 | 96 | Nugraha et al. (2013) [9] |
T cell chemokines | CCl17, CXCL9, CCL22, CXCL11, CCL11 | Increased in serum | NA | 17 | Garcia et al. (2014) [70] |
Mucosal Associated invariant T (MAIT) | CD8 MAIT and NKp80, CCR4, CCR7, CXCR1, CD69 | Increased | Varied expression by treatment interruption | 26 | Sugimoto et al. (2015) [72] |
T cells | Apoptosis and proinflammatory cytokines secretion | - | Reduction after cannabinoids treatment | Review article | Katchan et al. (2016) [74], Katz et al. (2017) [75] |
CD4+ T cells | Th1 IFN+/TNF+ | Increased | Reduced by hyperbaric oxygen therapy | 36 | Guggino et al. (2019) [73] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banfi, G.; Diani, M.; Pigatto, P.D.; Reali, E. T Cell Subpopulations in the Physiopathology of Fibromyalgia: Evidence and Perspectives. Int. J. Mol. Sci. 2020, 21, 1186. https://doi.org/10.3390/ijms21041186
Banfi G, Diani M, Pigatto PD, Reali E. T Cell Subpopulations in the Physiopathology of Fibromyalgia: Evidence and Perspectives. International Journal of Molecular Sciences. 2020; 21(4):1186. https://doi.org/10.3390/ijms21041186
Chicago/Turabian StyleBanfi, Giuseppe, Marco Diani, Paolo D. Pigatto, and Eva Reali. 2020. "T Cell Subpopulations in the Physiopathology of Fibromyalgia: Evidence and Perspectives" International Journal of Molecular Sciences 21, no. 4: 1186. https://doi.org/10.3390/ijms21041186
APA StyleBanfi, G., Diani, M., Pigatto, P. D., & Reali, E. (2020). T Cell Subpopulations in the Physiopathology of Fibromyalgia: Evidence and Perspectives. International Journal of Molecular Sciences, 21(4), 1186. https://doi.org/10.3390/ijms21041186