Molecular Recognition and Advances in Antibody Design and Antigenic Peptide Targeting
References
- Baron, R.; McCammon, J.A. Molecular recognition and ligand association. Annu. Rev. Phys. Chem. 2013, 64, 151–175. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, P.L.; Bonvin, A.M. On the binding affinity of macromolecular interactions: Daring to ask why proteins interact. J. R. Soc. Interface 2013, 10, 20120835. [Google Scholar] [CrossRef] [PubMed]
- Wand, A.J.; Sharp, K.A. Measuring entropy in molecular recognition by proteins. Annu. Rev. Biophys. 2018, 47, 41–61. [Google Scholar] [CrossRef] [PubMed]
- Lanier, K.A.; Petrov, A.S.; Williams, L.D. The central symbiosis of molecular biology: Molecules in mutualism. J. Mol. Evol. 2017, 85, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lanier, K.A.; Williams, L.D. The origin of life: Models and data. J. Mol. Evol. 2017, 84, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runnels, C.M.; Lanier, K.A.; Williams, J.K.; Bowman, J.C.; Petrov, A.S.; Hud, N.V.; Williams, L.D. Folding, assembly, and persistence: The essential nature and origins of biopolymers. J. Mol. Evol. 2018, 86, 598–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, T.; Kawai, T. Discrimination between self and non-self-nucleic acids by the innate immune system. Int. Rev. Cell. Mol. Biol. 2019, 344, 1–30. [Google Scholar] [PubMed]
- Wang, J.H.; Reinherz, E.L. The structural basis of alphabeta t-lineage immune recognition: Tcr docking topologies, mechanotransduction, and co-receptor function. Immunol. Rev. 2012, 250, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Casey, W. Janeway's immunobiology; WW Norton & Co: New York, NY, USA, 2016. [Google Scholar]
- Anasir, M.I.; Poh, C.L. Advances in antigenic peptide-based vaccine and neutralizing antibodies against viruses causing hand, foot, and mouth disease. Int. J. Mol. Sci. 2019, 20, 1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamaschi, G.; Fassi, E.M.A.; Romanato, A.; D'Annessa, I.; Odinolfi, M.T.; Brambilla, D.; Damin, F.; Chiari, M.; Gori, A.; Colombo, G. , et al. Computational analysis of dengue virus envelope protein (e) reveals an epitope with flavivirus immunodiagnostic potential in peptide microarrays. Int. J. Mol. Sci. 2019, 20, 1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favoino, E.; Prete, M.; Catacchio, G.; Conteduca, G.; Perosa, F. Cd20-mimotope peptides: A model to define the molecular basis of epitope spreading. Int. J. Mol. Sci. 2019, 20, 1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, T.; Naik, A.D.; Hashimoto, Y.; Menegatti, S.; Carbonell, R.G. Optimization of sequence, display, and mode of operation of igg-binding peptide ligands to develop robust, high-capacity affinity adsorbents that afford high igg product quality. Int. J. Mol. Sci. 2019, 20, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, C.C.; Choong, Y.S.; Lim, T.S. Cognizance of molecular methods for the generation of mutagenic phage display antibody libraries for affinity maturation. Int. J. Mol. Sci. 2019, 20, 1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundstrom, S.L.; Heyder, T.; Wiklundh, E.; Zhang, B.; Eklund, A.; Grunewald, J.; Zubarev, R.A. Spotlight proteomics-a igg-enrichment phenotype profiling approach with clinical implications. Int. J. Mol. Sci. 2019, 20, 2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, N.; Song, G.; Yang, H.; Lin, X.; Brown, B.; Hong, Y.; Cai, J.; Cao, C. Identifying the pathological domain of alpha- synuclein as a therapeutic for parkinson's disease. Int. J. Mol. Sci. 2019, 20, 2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trier, N.; Hansen, P.; Houen, G. Peptides, antibodies, peptide antibodies and more. Int. J. Mol. Sci. 2019, 20, 6289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdarnini, N.; Holm, B.; Hansen, P.; Rovero, P.; Houen, G.; Trier, N. Fine mapping of glutamate decarboxylase 65 epitopes reveals dependency on hydrophobic amino acids for specific interactions. Int. J. Mol. Sci. 2019, 20, 2909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houen, G.; Trier, N. Molecular Recognition and Advances in Antibody Design and Antigenic Peptide Targeting. Int. J. Mol. Sci. 2020, 21, 1405. https://doi.org/10.3390/ijms21041405
Houen G, Trier N. Molecular Recognition and Advances in Antibody Design and Antigenic Peptide Targeting. International Journal of Molecular Sciences. 2020; 21(4):1405. https://doi.org/10.3390/ijms21041405
Chicago/Turabian StyleHouen, Gunnar, and Nicole Trier. 2020. "Molecular Recognition and Advances in Antibody Design and Antigenic Peptide Targeting" International Journal of Molecular Sciences 21, no. 4: 1405. https://doi.org/10.3390/ijms21041405
APA StyleHouen, G., & Trier, N. (2020). Molecular Recognition and Advances in Antibody Design and Antigenic Peptide Targeting. International Journal of Molecular Sciences, 21(4), 1405. https://doi.org/10.3390/ijms21041405