Review of Polarization Optical Devices Based on Graphene Materials
Abstract
:1. Introduction
2. Graphene-Based Polarizer
2.1. Graphene Optical Fiber Polarizer
2.2. Graphene Hybrid Waveguide Polarizer
2.3. Graphene THz Polarizer
3. Polarization Sensors Based on Graphene
3.1. Graphene DNA Biosensor
3.2. Graphene Cell Biosensor
3.3. Graphene Optical Fiber Sensor
4. Polarization Modulator Based on Graphene
4.1. Waveguide Graphene Modulator
4.2. Mach-Zehnder(M-Z) Graphene Modulator
5. Polarization Photodetector Based on Graphene
6. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S.J.N. The structure of suspended graphene sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.; Dubonos, S.; Firsov, A.A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: Singapore, 2010; pp. 11–19. [Google Scholar]
- Novoselov, K.S.; Fal, V.; Colombo, L.; Gellert, P.; Schwab, M.; Kim, K.J.N. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Avouris, P.; Dimitrakopoulos, C.J.M.T. Graphene: Synthesis and applications. Mater. Today 2012, 15, 86–97. [Google Scholar] [CrossRef]
- Wallace, P.R.J.P.R. The band theory of graphite. Phys. Rev. 1947, 71, 622. [Google Scholar] [CrossRef]
- Sarma, S.D.; Adam, S.; Hwang, E.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y.R. Gate-variable optical transitions in graphene. Science 2008, 320, 206–209. [Google Scholar] [CrossRef]
- Mak, K.F.; Shan, J.; Heinz, T.F. Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 2010, 104, 176404. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Lin, Y.-C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K.L.; Huang, Y.; Duan, X. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Loh, K.P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677–3694. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Rashleigh, S.; Marrone, M. Polarisation holding in coiled high-birefringence fibers (from electronic letters 1983). Electron. Lett. 1994, 101, 160. [Google Scholar]
- Vakil, A.; Engheta, N. Transformation optics using graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Liu, Z.; Wang, L.; Liu, J.; Lin, Q. Tunable ultra-narrowband and wide-angle graphene-based perfect absorber in the optical communication region. Appl. Phys. Express 2018, 11, 105102. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Zhu, B.; Zhao, J.; Jiang, T. Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation. Opt. Express 2015, 23, 27230–27239. [Google Scholar] [CrossRef]
- Dai, J.; Wei, Z.; Zhao, L.; Lin, Q.; Lou, Y. A tunable graphene 0–90° polarization rotator achieved by sine equation voltage adjustment. Nanomaterials 2019, 9, 849. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, X.-g.; Zhou, X.; Zhang, Y.-N.; Chemical, A.B. Review on the graphene based optical fiber chemical and biological sensors. Sens. Actuators B 2016, 231, 324–340. [Google Scholar] [CrossRef]
- Shushama, K.N.; Rana, M.M.; Inum, R.; Hossain, M.B. Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis. Opt. Commun. 2017, 383, 186–190. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Wang, Y.; Zhang, C.; Min, C.; Yang, Y.; Zhu, S.; Yuan, X.; Chemical, A.B. Refractive index mapping of single cells with a graphene-based optical sensor. Sens. Actuators B 2017, 242, 41–46. [Google Scholar] [CrossRef]
- Stadler, J.; Schmid, T.; Zenobi, R. Nanoscale chemical imaging of single-layer graphene. Acs Nano 2011, 5, 8442–8448. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, B.; Ni, Z.; Lim, C.H.Y.X.; Wang, Y.; Tang, D.Y.; Loh, K.P. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411. [Google Scholar] [CrossRef]
- Gusynin, V.; Sharapov, S. Transport of Dirac quasiparticles in graphene: Hall and optical conductivities. Phys. Rev. B 2006, 73, 245411. [Google Scholar] [CrossRef] [Green Version]
- Gusynin, V.; Sharapov, S.; Carbotte, J. Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett. 2006, 96, 256802. [Google Scholar] [CrossRef] [Green Version]
- Falkovsky, L.; Varlamov, A. Space-time dispersion of graphene conductivity. Eur. Phys. J. B 2007, 56, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Hanson, G.W.J. Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008, 103, 064302. [Google Scholar] [CrossRef] [Green Version]
- Hao, R.; Du, W.; Chen, H.; Jin, X.; Yang, L.; Li, E. Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett. 2013, 103, 061116. [Google Scholar] [CrossRef]
- Eickhoff, W. In-line fibre-optic polariser. Electron. Lett. 1980, 16, 762–764. [Google Scholar] [CrossRef]
- Mesaki, A.; Suzuki, N.; Arima, T.; Okamura, K.; Inagaki, S. Optical Fiber Polarizer and Process of Production Thereof. U.S. Patent No. 5,071,212, 1991. [Google Scholar]
- Daogang, W.; Guanhua, Q.; Hua, C.; Zhen, Y. Birefringent crystal enclosure fiber-optic polarizer. In 1991 Proceedings of 41st Electronic Components & Technology Conference. IEEE 1991, 493–496. [Google Scholar]
- Takuma, Y.; Kajioka, H.; Yamada, K. High Performance Polarizers and Sensing Coils with Elliptical Jacket Type Single Polarization Fibers. Opt. Fiber Sens. 1988. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Zhu, D.J. Chemical doping of graphene. J. Mater. Chem. 2011, 21, 3335–3345. [Google Scholar] [CrossRef]
- Zhang, H.; Healy, N.; Shen, L.; Huang, C.C.; Aspiotis, N.; Hewak, D.W.; Peacock, A.C.J. Graphene-based fiber polarizer with PVB-enhanced light interaction. J. Lightwave Technol. 2016, 34, 3563–3567. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yi, L.; Zheng, R.; Ni, Z.; Hu, W. Fabrication and application of a graphene polarizer with strong saturable absorption. Photonics Res. 2016, 4, 41–44. [Google Scholar] [CrossRef]
- He, X.; Zhang, X.; Zhang, H.; Xu, M. Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 55–61. [Google Scholar]
- Mueller, T.; Xia, F.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64. [Google Scholar] [CrossRef]
- Kim, J.T.; Choi, C.-G. Graphene-based polymer waveguide polarizer. Opt. Express 2012, 20, 3556–3562. [Google Scholar] [CrossRef]
- Pei, C.; Yang, L.; Wang, G.; Wang, Y.; Jiang, X.; Hao, Y.; Li, Y.; Yang, J. Broadband graphene/glass hybrid waveguide polarizer. IEEE Photonics Technol. Lett. 2015, 27, 927–930. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, B.; Hao, Y.; Wang, M.; Jiang, X.; Yang, J. Charge-density flux model for electric-field-assisted ion exchange in glass. Opt. Eng. 2011, 50, 094602. [Google Scholar] [CrossRef]
- Siegel, P.H. Terahertz technology. IEEE Trans. Microwave Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Sakai, K.; Tani, M. Introduction to terahertz pulses. In Terahertz Optoelectronics; Springer: Berlin, Germany, 2005; pp. 1–30. [Google Scholar]
- Born, M.; Wolf, E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Grady, N.K.; Heyes, J.E.; Chowdhury, D.R.; Zeng, Y.; Reiten, M.T.; Azad, A.K.; Taylor, A.J.; Dalvit, D.A.; Chen, H.-T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013, 340, 1304–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Chen, S.; Li, Z.; Cheng, H.; Yu, P.; Li, J.; Tian, J. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt. Lett. 2015, 40, 3185–3188. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Xu, N.; Gu, J.; Singh, R.; Han, J.; Zhang, W.; Reviews, P. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser Photonics Rev. 2014, 8, 626–632. [Google Scholar] [CrossRef]
- Zhu, H.; Cheung, S.; Chung, K.L.; Yuk, T.I. Linear-to-circular polarization conversion using metasurface. IEEE Trans. Antennas Propag. 2013, 61, 4615–4623. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Yang, Z.; Cheng, Y.; Gong, R.; Zhao, M.; Zheng, Y.; Duan, J.; Yuan, X. Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. Appl. Phys. A 2014, 116, 643–648. [Google Scholar] [CrossRef]
- Wu, L.; Yang, Z.; Cheng, Y.; Zhao, M.; Gong, R.; Zheng, Y.; Duan, J.; Yuan, X. Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials. Appl. Phys. Lett. 2013, 103, 021903. [Google Scholar] [CrossRef]
- Gansel, J.K.; Latzel, M.; Frölich, A.; Kaschke, J.; Thiel, M.; Wegener, M. Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phys. Lett. 2012, 100, 101109. [Google Scholar] [CrossRef]
- Song, K.; Liu, Y.; Luo, C.; Zhao, X.J. High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial. J. Phys. D Appl. Phys. 2014, 47, 505104. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Yu, S.; Lv, T.; Zhu, Z.; Feng Ma, H.; Jun Cui, T. Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial. Appl. Phys. Lett. 2013, 102, 191905. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Ma, H.; Qu, S.; Xu, Z.; Zhang, A.; Yan, M.; Li, Y.J. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J. Appl. Phys. 2014, 115, 154504. [Google Scholar] [CrossRef]
- Wen, Q.-Y.; Zhang, H.-W.; Yang, Q.-H.; Chen, Z.; Long, Y.; Jing, Y.-L.; Lin, Y.; Zhang, P.-X. A tunable hybrid metamaterial absorber based on vanadium oxide films. Appl. Phys. 2012, 45, 235106. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Gu, Y.; Mehmood, M.; Gong, Y.; Srivastava, A.; Jian, L.; Venkatesan, T.; Qiu, C.-W.; Hong, M. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci. Rep. 2015, 5, 15020. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Xiao, Z.; Ling, X. A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics 2018, 13, 287–291. [Google Scholar] [CrossRef]
- Shrekenhamer, D.; Chen, W.-C.; Padilla, W.J. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett. 2013, 110, 177403. [Google Scholar] [CrossRef]
- Shen, N.-H.; Kafesaki, M.; Koschny, T.; Zhang, L.; Economou, E.N.; Soukoulis, C.M. Broadband blueshift tunable metamaterials and dual-band switches. Phys. Rev. B 2009, 79, 161102. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Yang, Y.; Li, S. A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter. Opt. Commun. 2018, 413, 336–340. [Google Scholar] [CrossRef]
- Cheng, Y.; Gong, R.; Zhao, J. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves. Opt. Mater. 2016, 62, 28–33. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, Y.; Cheng, Z. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, J.; Park, Y.-S.; Rho, J.; Singh, R.; Nam, S.; Azad, A.K.; Chen, H.-T.; Yin, X.; Taylor, A.J. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 2012, 3, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Gao, X.; Qiao, W.; Wen, L.; Yang, W. Broadband tunable polarization converter realized by graphene-based metamaterial. IEEE Photonics Technol. Lett. 2016, 28, 2399–2402. [Google Scholar] [CrossRef]
- Guo, T.; Argyropoulos, C. Broadband polarizers based on graphene metasurfaces. Opt. Lett. 2016, 41, 5592–5595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Li, S.; Deng, L.; Zhang, C.; Yang, Y.; Zhu, H. Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial. Opt. Mater. Express 2018, 8, 1164–1173. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, X.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G.; Chemical, A.B. Surface plasmon resonance sensors. Sens. Actuators B 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Nenninger, G.; Tobiška, P.; Homola, J.; Yee, S.; Chemical, A.B. Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sens. Actuators B 2001, 74, 145–151. [Google Scholar] [CrossRef]
- Chen, S.-J.; Chien, F.; Lin, G.; Lee, K. Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles. Opt. Lett. 2004, 29, 1390–1392. [Google Scholar] [CrossRef]
- Tong, L.; Wei, H.; Zhang, S.; Xu, H. Recent advances in plasmonic sensors. Sensors 2014, 14, 7959–7973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voisin, V.; Pilate, J.; Damman, P.; Mégret, P.; Caucheteur, C. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors. Biosens. Bioelectron. 2014, 51, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhang, S.; Chen, H.; Weng, J. Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens. J. 2015, 15, 5478–5482. [Google Scholar] [CrossRef]
- Salihoglu, O.; Balci, S.; Kocabas, C. Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl. Phys. Lett. 2012, 100, 213110. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, H.; Qiao, X.; Wang, X. High-performance polarization control modulated surface plasmon resonance sensor based on monolayer graphene/Au-NPs architecture for detection of DNA hybridization. Meas. Sci. Technol. 2019, 30, 125701. [Google Scholar] [CrossRef]
- Xue, T.; Cui, X.; Guan, W.; Wang, Q.; Liu, C.; Wang, H.; Qi, K.; Singh, D.J.; Zheng, W. Surface plasmon resonance technique for directly probing the interaction of DNA and graphene oxide and ultra-sensitive biosensing. Biosens. Bioelectron. 2014, 58, 374–379. [Google Scholar] [CrossRef]
- Chau, L.Y.; He, Q.; Qin, A.; Yip, S.P.; Lee, T.M.J. Platinum nanoparticles on reduced graphene oxide as peroxidase mimetics for the colorimetric detection of specific DNA sequence. J. Mater. Chem. B 2016, 4, 4076–4083. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [Green Version]
- Xing, F.; Meng, G.-X.; Zhang, Q.; Pan, L.-T.; Wang, P.; Liu, Z.-B.; Jiang, W.-S.; Chen, Y.; Tian, J.-G. Ultrasensitive flow sensing of a single cell using graphene-based optical sensors. Nano Lett. 2014, 14, 3563–3569. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, J.; Liu, Z.; Deng, Z.-C.; Kong, X.-T.; Xing, F.; Chen, X.-D.; Zhou, W.-Y.; Zhang, C.-P.; Tian, J. Polarization-dependent optical absorption of graphene under total internal reflection. Appl. Phys. Lett. 2013, 102, 021912. [Google Scholar] [CrossRef]
- Xing, F.; Chen, X.-D.; Liu, Z.-B.; Zhang, Q.; Yan, X.-Q.; Chen, Y.; Tian, J. Transparent and flexible multi-layer films with graphene recording layers for optical data storage. Appl. Phys. Lett. 2013, 102, 253501. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Liu, Z.-B.; Chen, X.-D.; Xing, F.; Jiang, W.-S.; Dong, B.; Xin, W.; Tian, J. Accurate layers determination of graphene on transparent substrate based on polarization-sensitive absorption effect. Appl. Phys. Lett. 2013, 103, 181902. [Google Scholar] [CrossRef]
- He, J.; Zhou, Z.; Ou, J. Simultaneous measurement of strain and temperature using a hybrid local and distributed optical fiber sensing system. Measurement 2014, 47, 698–706. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, B.; Wei, G.; Chen, S.; Zhang, D. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles. Smart Mater. Struct. 2012, 21, 115011. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, B.-C.; Cheng, Y.; Rao, Y.-J.; Gong, Y.; Zhang, W.; Wang, Z.; Chen, Y. Hybrid graphene-microfiber waveguide for chemical gas sensing. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 49–54. [Google Scholar] [CrossRef]
- Li, Z.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, M.C.; Kim, P.; Stormer, H.; Basov, D.N. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 2008, 4, 532. [Google Scholar] [CrossRef] [Green Version]
- Yao, B.; Wu, Y.; Zhang, A.; Rao, Y.; Wang, Z.; Cheng, Y.; Gong, Y.; Zhang, W.; Chen, Y.; Chiang, K. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt. Express 2014, 22, 28154–28162. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491. [Google Scholar] [CrossRef] [Green Version]
- Mak, K.F.; Sfeir, M.Y.; Wu, Y.; Lui, C.H.; Misewich, J.A.; Heinz, T.F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Zhu, B.; Zhao, J.; Jiang, T. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 2014, 22, 22743–22752. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, D.; Zhang, J.; Zhang, Z.; Huang, J. Polarization modulation based on the hybrid waveguide of graphene sandwiched structure. Europhys. Lett. 2017, 119, 54001. [Google Scholar] [CrossRef]
- Hass, J.; Varchon, F.; Millan-Otoya, J.-E.; Sprinkle, M.; Sharma, N.; de Heer, W.A.; Berger, C.; First, P.N.; Magaud, L.; Conrad, E.H. Why multilayer graphene on 4 H—SiC (000 1−) behaves like a single sheet of graphene. Phys. Rev. Lett. 2008, 100, 125504. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196. [Google Scholar] [CrossRef] [Green Version]
- Sadowski, M.L.; Martinez, G.; Potemski, M.; Berger, C.; de Heer, W.A. Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 2006, 97, 266405. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.-W.; Yuan, F.; Zou, X.-H.; Shah, M.K.; Lu, R.-G.; Liu, Y.J. High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 76–80. [Google Scholar] [CrossRef]
- Celo, D.; Goodwill, D.J.; Jiang, J.; Dumais, P.; Li, M.; Bernier, E. Thermo-optic silicon photonics with low power and extreme resilience to over-drive. In Proceedings of the 2016 IEEE Optical Interconnects Conference (OI), San Diego, CA, USA, 9–11 May 2016; pp. 26–27. [Google Scholar]
- Grigotenko, A.; Polini, M.; Novoselov, K. Graphene plasmonics-optics in flatland. Nat. Photonics 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Yang, L.; Hu, T.; Hao, R.; Qiu, C.; Xu, C.; Yu, H.; Xu, Y.; Jiang, X.; Li, Y.; Yang, J. Low-chirp high-extinction-ratio modulator based on grapheme-silicon waveguide. Opt. Lett. 2013, 38, 2512–2515. [Google Scholar] [CrossRef]
- Koos, C.; Vorreau, P.; Vallaitis, T.; Dumon, P.; Bogaerts, W.; Baets, R.; Esembeson, B.; Biaggio, I.; Michinobu, T.; Diederich, F. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics 2009, 3, 216. [Google Scholar] [CrossRef]
- Van Acoleyen, K.; Roels, J.; Mechet, P.; Claes, T.; Van Thourhout, D.; Baets, R. Ultracompact phase modulator based on a cascade of nems-operated slot waveguides fabricated in silicon-on-insulator. IEEE Photonics J. 2012, 4, 779–788. [Google Scholar] [CrossRef]
- Hao, R.; Du, W.; Li, E.-P.; Chen, H.-S. Graphene assisted TE/TM-independent polarizer based on mach-zehnder interferometer. IEEE Photonics Technol. Lett. 2015, 27, 1112–1115. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Zhang, X. Double-layer graphene optical modulator. Nano Lett. 2012, 12, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Niemack, M.D.; Ade, P.; Aguirre, J.; Barrientos, F.; Beall, J.; Bond, J.; Britton, J.; Cho, H.; Das, S.; Devlin, M. ACTPol: A polarization-sensitive receiver for the Atacama Cosmology Telescope. Proceedings of Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, San Diego, CA, USA, 15 July 2010; p. 77411S. [Google Scholar]
- Hagen, N.A.; Sabatke, D.S.; Scholl, J.F.; Jansson, P.A.; Chen, W.W.; Dereniak, E.L.; Sass, D.T. Compact methods for measuring stress birefringence. Proceedings of Polarization Science and Remote Sensing, San Diego, CA, USA, 12 December 2013; pp. 45–53. [Google Scholar]
- Xia, F.; Mueller, T.; Lin, Y.; Valdes-Garcia, A. Phaedon Avouris. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Chen, Y.; Xu, B.; Liu, F.; Shi, L.; Tang, C.; Wang, Z. Polarization dependence of absorption in strongly vertically coupled InAs/GaAs quantum dots for two-color far-infrared photodetector. Phys. E 2008, 40, 633–636. [Google Scholar] [CrossRef]
- Wu, D.; Guo, J.; Du, J.; Xia, C.; Zeng, L.; Tian, Y.; Shi, Z.; Tian, Y.; Li, X.J.; Tsang, Y.H. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/pdse2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yu, X.F. Few-layered black phosphorus: From fabrication and customization to biomedical applications. Small 2018, 14, 1702830. [Google Scholar] [CrossRef]
- Huang, Y.; Qiao, J.; He, K.; Bliznakov, S.; Sutter, E.; Chen, X.; Luo, D.; Meng, F.; Su, D.; Decker, J. Interaction of black phosphorus with oxygen and water. Chem. Mater. 2016, 28, 8330–8339. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liu, Y.; Gong, T.; Huang, W.; Guo, J.; Zhang, X.; Zhou, S.; Yu, B. Graphene-based polarization-sensitive longwave infrared photodetector. Nanotechnology 2019, 30, 435205. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Liang, W.; Wang, R.; Sun, M. Optical, photonic and optoelectronic properties of graphene, h-nb and their hybrid materials. Nanophotonics 2017, 6, 943. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Xing, F. Graphene optical biosensors. Int. J. Mol. Sci. 2019, 20, 2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Optical Polarizing Devices | Work Principle | Advantage |
---|---|---|
Graphene-based Polarizer | Graphene in the intrinsic state can cause the transverse magnetic (TM) mode to be consumed through the leak mode and the TE mode to be retained. When the chemical potential of graphene is at the epsilon near zero (ENZ) point, the transverse electrical (TE) mode can generate plasmon resonance effect at the graphene-dielectric interface, thereby losing the TE mode and retaining the TM mode. | Strong compatibility, high extinction ratio, broadband, small volume and easy to integrate. |
Polarization Sensors Based on Graphene | Under total internal reflection, graphene exhibits properties of enhanced polarization absorption and broadband absorption. The sensor uses the attenuated total reflection method to detect the refractive index change near the sensor surface. | High sensitivity, low sample consumption, fast measurement speed, no marking processing and real-time detection. |
Polarization Modulator Based on Graphene | Applying a voltage changes the refractive index of graphene, which changes the absorption coefficient of graphene. Evanescent waves are generated when light travels through the waveguide. When graphene interacts with the evanescent wave, since the light absorption rate of graphene is controlled by the electric signal, the output light intensity is controlled by the electric signal, and finally the modulation effect is achieved. | High extinction ratio, high modulation efficiency, small loss and small volume. |
Polarization Photodetector Based on Graphene | Graphene polarization-sensitive photodetector (GPSP) is composed of crossed graphene nanostructure with different dimensions deposited in SiO2 substrate. Localized surface plasmon is generated by patterned graphene structure with significantly enhanced incident light absorption. The tunability of photodetectors is achieved by changing gate voltage to modulate the chemical potential of graphene. | High light responsiveness, high specific detection rate, broadband and fast response speed. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Li, Z.; Xing, F. Review of Polarization Optical Devices Based on Graphene Materials. Int. J. Mol. Sci. 2020, 21, 1608. https://doi.org/10.3390/ijms21051608
Zhang S, Li Z, Xing F. Review of Polarization Optical Devices Based on Graphene Materials. International Journal of Molecular Sciences. 2020; 21(5):1608. https://doi.org/10.3390/ijms21051608
Chicago/Turabian StyleZhang, Shijie, Zongwen Li, and Fei Xing. 2020. "Review of Polarization Optical Devices Based on Graphene Materials" International Journal of Molecular Sciences 21, no. 5: 1608. https://doi.org/10.3390/ijms21051608
APA StyleZhang, S., Li, Z., & Xing, F. (2020). Review of Polarization Optical Devices Based on Graphene Materials. International Journal of Molecular Sciences, 21(5), 1608. https://doi.org/10.3390/ijms21051608