Modes of Communication between T Cells and Relevance for Immune Responses
Abstract
:1. Introduction
2. Modes of T Cell-T Cell Communication
2.1. Long-Range T Cell-T Cell Communication
2.1.1. a-Cytokines
2.1.2. b-Chemokines
2.1.3. c-Exosomes
2.2. Contact-Based T Cell-T Cell Communication
2.2.1. a. Synapse
2.2.2. b. Tunnelling Nanotubes
3. Relevance of T Cell-T Cell Communication
3.1. Regulation of T Cell Priming
3.2. Sensing Population Size During Immune Responses
3.3. Regulation of T Cell Differentiation
3.4. Regulation of Peripheral Tolerance
3.5. Regulation of Effector Responses
4. Outlook
Acknowledgments
Conflicts of Interest
References
- Mayya, V.; Dustin, M.L. What Scales the T Cell Response? Trends Immunol. 2016, 37, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, V.R.; Gräf, P.; Busch, D.H. The smallest unit: Effector and memory CD8+ T cell differentiation on the single cell level. Front. Immunol. 2013, 4, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, V.R.; Schumacher, T.N.M.; Busch, D.H. T Cell Fate at the Single-Cell Level. Annu. Rev. Immunol. 2016, 34, 65–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaech, S.M.; Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 2012, 12, 749–761. [Google Scholar] [CrossRef]
- Kaech, S.M.; Wherry, E.J. Heterogeneity and Cell-Fate Decisions in Effector and Memory CD8+ T Cell Differentiation during Viral Infection. Immunity 2007, 27, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Gerlach, C.; Rohr, J.C.; Perié, L.; Van Rooij, N.; Van Heijst, J.W.J.; Velds, A.; Urbanus, J.; Naik, S.H.; Jacobs, H.; Beltman, J.B.; et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 2013, 340, 635–639. [Google Scholar] [CrossRef]
- Hodgkin, P.D. Modifying clonal selection theory with a probabilistic cell. Immunol. Rev. 2018, 285, 249–262. [Google Scholar] [CrossRef]
- Feinerman, O.; Veiga, J.; Dorfman, J.R.; Germain, R.N.; Altan-Bonnet, G. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 2008, 321, 1081–1084. [Google Scholar] [CrossRef] [Green Version]
- Plumlee, C.R.; Sheridan, B.S.; Cicek, B.B.; Lefrançois, L. Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity 2013, 39, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Dupage, M.; Bluestone, J.A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 2016, 16, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Doğaner, B.A.; Yan, L.K.Q.; Youk, H. Autocrine Signaling and Quorum Sensing: Extreme Ends of a Common Spectrum. Trends Cell Biol. 2016, 26, 262–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amado, I.F.; Berges, J.; Luther, R.J.; Mailhé, M.P.; Garcia, S.; Bandeira, A.; Weaver, C.; Liston, A.; Freitas, A.A. IL-2 coordinates IL-2-producing and regulatory T cell interplay. J. Exp. Med. 2013, 210, 2707–2720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ågren, J.A.; Davies, N.G.; Foster, K.R. Enforcement is central to the evolution of cooperation. Nat. Ecol. Evol. 2019, 3. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.R. The sociobiology of molecular systems. Nat. Rev. Genet. 2011, 12, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Zenke, S.; Palm, M.M.; Braun, J.; Gavrilov, A.; Meiser, P.; Böttcher, J.P.; Beyersdorf, N.; Ehl, S.; Gerard, A.; Lämmermann, T.; et al. Quorum Regulation via Nested Antagonistic Feedback Circuits Mediated by the Receptors CD28 and CTLA-4 Confers Robustness to T Cell Population Dynamics. Immunity 2020, 52, 313–327.e317. [Google Scholar] [CrossRef]
- Kaech, S.M.; Ahmed, R. Memory CD8+ T cell differentiation: Initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2001, 2, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Van Stipdonk, M.J.B.; Lemmens, E.E.; Schoenberger, S.P. Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2001, 2, 423–429. [Google Scholar] [CrossRef]
- Gérard, A.; Beemiller, P.; Friedman, R.S.; Jacobelli, J.; Krummel, M.F. Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses. Immunol. Rev. 2013, 251, 80–96. [Google Scholar] [CrossRef]
- Gérard, A.; Khan, O.; Beemiller, P.; Oswald, E.; Hu, J.; Matloubian, M.; Krummel, M.F. Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. Nat. Immunol. 2013, 14, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Wakil, A.E.; Wang, Z.E.; Ryan, J.C.; Fowell, D.J.; Locksley, R.M. Interferon γ derived from CD4+ T cells is sufficient to mediate T helper cell type 1 development. J. Exp. Med. 1998, 188, 1651–1656. [Google Scholar] [CrossRef]
- Krummel, M.F.; Mahale, J.N.; Uhl, L.F.K.; Hardison, E.A.; Mujal, A.M.; Mazet, J.M.; Weber, R.J.; Gartner, Z.J.; Gérard, A. Paracrine costimulation of IFN-γ signaling by integrins modulates CD8 T cell differentiation. Proc. Natl. Acad. Sci. USA 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatos, C.A.; Doh, J.; Chakravarti, S.; Friedman, R.S.; Pandurangi, P.G.; Tooley, A.J.; Krummel, M.F. A Synaptic Basis for Paracrine Interleukin-2 Signaling during Homotypic T Cell Interaction. Immunity 2008, 29, 238–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumwalde, N.A.; Domae, E.; Mescher, M.F.; Shimizu, Y. ICAM-1–Dependent Homotypic Aggregates Regulate CD8 T Cell Effector Function and Differentiation during T Cell Activation. J. Immunol. 2013, 191, 3681–3693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyler-Yaniv, A.; Oyler-Yaniv, J.; Whitlock, B.M.; Liu, Z.; Germain, R.N.; Huse, M.; Altan-Bonnet, G.; Krichevsky, O. A Tunable Diffusion-Consumption Mechanism of Cytokine Propagation Enables Plasticity in Cell-to-Cell Communication in the Immune System. Immunity 2017, 46, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Morgan; Da. Ruscetti, F.W.G.R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 1976, 193, 1007–1008. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A. Interleukin-2: Inception, Impact, and Implications. Science 1988, 240, 1169–1176. [Google Scholar] [CrossRef]
- Malek, T.R. The Biology of IL-2. Annu. Rev. Immunol. 2008, 453–479. [Google Scholar] [CrossRef]
- Malek, T.R.; Castro, I. Interleukin-2 Receptor Signaling: At the Interface between Tolerance and Immunity. Immunity 2010, 33, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Schimpl, A.; Berberich, I.; Kneitz, B.; Krämer, S.; Santner-Nanan, B.; Wagner, S.; Wolf, M.; Hünig, T. IL-2 and autoimmune disease. Cytokine Growth Factor Rev. 2002, 13, 369–378. [Google Scholar] [CrossRef]
- Dooms, H.; Wolslegel, K.; Lin, P.; Abbas, A.K. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7Rα-expressing cells. J. Exp. Med. 2007, 204, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Boyman, O.; Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 2012, 12, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Almeidal, A.R.M.; Amado, I.F.; Reynolds, J.; Berges, J.; Lythe, G.; Molina-París, C.; Freitas, A.A. Quorum-sensing in cD4+t cell homeostasis: A hypothesis and a model. Front. Immunol. 2012, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of Effector CD4 T Cell Populations. Annu. Rev. Immunol. 2010, 28, 445–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mühl, H.; Pfeilschifter, J. Anti-inflammatory properties of pro-inflammatory interferon-γ. Int. Immunopharmacol. 2003, 3, 1247–1255. [Google Scholar] [CrossRef]
- Curtsinger, J.M.; Agarwal, P.; Lins, D.C.; Mescher, M.F. Autocrine IFN-γ Promotes Naive CD8 T Cell Differentiation and Synergizes with IFN-α To Stimulate Strong Function. J. Immunol. 2012, 189, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitmire, J.K.; Eam, B.; Benning, N.; Whitton, J.L. Direct Interferon-γ Signaling Dramatically Enhances CD4+ and CD8+ T Cell Memory. J. Immunol. 2007, 179, 1190–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitmire, J.K.; Tan, J.T.; Whitton, J.L. Interferon-γ acts directly on CD8+ T cells to increase their abundance during virus infection. J. Exp. Med. 2005, 201, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Ivashkiv, L.B. IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 545–558. [Google Scholar] [CrossRef]
- Harrington, L.E.; Hatton, R.D.; Mangan, P.R.; Turner, H.; Murphy, T.L.; Murphy, K.M.; Weaver, C.T. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 2005, 6, 1123–1132. [Google Scholar] [CrossRef]
- Gros, G.L.; Ben-Sasson, S.Z.; Seder, R.A.; Finkelman, F.D.; Paul, W.E. Generation of Interleukin 4 (IL-4)-prodcuing Cells In Vivo and In Vitro: IL-2 and IL-4 are Required for In Vitro Generation of IL-4-producing Cells. J. Exp. Med. 1990, 172, 921–929. [Google Scholar] [CrossRef]
- Noben-Trauth, N.; Hu-Li, J.; Paul, W.E. Conventional, Naive CD4 + T Cells Provide an Initial Source of IL-4 During Th2 Differentiation. J. Immunol. 2000, 165, 3620–3625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansel, K.M.; Djuretic, I.; Tanasa, B.; Rao, A. REGULATION OF TH2 DIFFERENTIATION AND Il4 LOCUS ACCESSIBILITY. Annu. Rev. Immunol. 2006, 24, 607–656. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015, 75, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Perona-Wright, G.; Mohrs, K.; Mohrs, M. Sustained signaling by canonical helper T cell cytokines throughout the reactive lymph node. Nat. Immunol. 2010, 11, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Sofi, M.H.; Li, W.; Kaplan, M.H.; Chang, C.H. Elevated IL-6 expression in CD4 T cells via PKCθ and NF-κB induces Th2 cytokine production. Mol. Immunol. 2009, 46, 1443–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, M.; Kamimura, D.; Hirano, T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019, 50, 812–831. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, 1–16. [Google Scholar] [CrossRef]
- Ogura, H.; Murakami, M.; Okuyama, Y.; Tsuruoka, M.; Kitabayashi, C.; Kanamoto, M.; Nishihara, M.; Iwakura, Y.; Hirano, T. Interleukin-17 Promotes Autoimmunity by Triggering a Positive-Feedback Loop via Interleukin-6 Induction. Immunity 2008, 29, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006, 441, 235–238. [Google Scholar] [CrossRef]
- Li, M.O.; Flavell, R.A. TGF-β: A Master of All T Cell Trades. Cell 2008, 134, 392–404. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.A.; Li, M.O. TGF-β: Guardian of T Cell Function. J. Immunol. 2013, 191, 3973–3979. [Google Scholar] [CrossRef]
- Roberto Tinoco, V.A.Y.Y.K.S.; Elina, I.Z. TGF-β Signaling in T cells is Essential for CD8 T Cell Suppression and Viral Persistence In Vivo. Immunity 2009, 17, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Zhang, N. Transforming growth factor-β signaling is constantly shaping memory T-cell population. Proc. Natl. Acad. Sci. USA 2015, 112, 11013–11017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, W.; Oh, S.A.; Ma, Q.; Bivona, M.R.; Zhu, J.; Li, M.O. TGF-β cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor α expression. Immunity 2013, 39, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Donkor, M.K.; Sarkar, A.; Li, M.O. TGF-β1 produced by activated CD4+ T cells antagonizes T cell surveillance of tumor development. OncoImmunology 2012, 1, 162–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.O.; Wan, Y.Y.; Flavell, R.A. T Cell-Produced Transforming Growth Factor-β1 Controls T Cell Tolerance and Regulates Th1- and Th17-Cell Differentiation. Immunity 2007, 26, 579–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettini, M.; Vignali, D.A.A. Regulatory T cells and inhibitory cytokines in autoimmunity. Curr. Opin. Immunol. 2009, 21, 612–618. [Google Scholar] [CrossRef] [Green Version]
- Sanjabi, S.; Mosaheb, M.M.; Flavell, R.A. Opposing Effects of TGF-β and IL-15 Cytokines Control the Number of Short-Lived Effector CD8 + T Cells. Immunity 2009, 31, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, A.; Delisle, J.S. TGF-β in T cell biology: Implications for cancer immunotherapy. Cancers 2018, 10, 194. [Google Scholar] [CrossRef] [Green Version]
- Kearley, J.; Barker, J.E.; Robinson, D.S.; Lloyd, C.M. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J. Exp. Med. 2005, 202, 1539–1547. [Google Scholar] [CrossRef] [Green Version]
- Annacker, O.; Asseman, C.; Read, S.; Powrie, F. Interleukin-10 in the regulation of T cell-induced colitis. J. Autoimmun. 2003, 20, 277–279. [Google Scholar] [CrossRef]
- Asseman, B.C.; Mauze, S.; Leach, M.W.; Coffman, R.L.; Powrie, F. Regulatory T Cells That Inhibit Intestinal Inflammation. J. Exp. Med. 1999, 190, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, J.W.; Sokol, C.L.; Luster, A.D. Chemokines and Chemokine Receptors: Positioning Cells for Host Defense and Immunity. Annu. Rev. Immunol. 2014, 32, 659–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellino, F.; Huang, A.Y.; Altan-Bonnet, G.; Stoll, S.; Scheinecker, C.; Germain, R.N. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006, 440, 890–895. [Google Scholar] [CrossRef]
- McCoy-Simandle, K.; Hanna, S.J.; Cox, D. Exosomes and nanotubes: Control of immune cell communication. Int. J. Biochem. Cell Biol. 2016, 71, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Montecalvo, A.; Larregina, A.T.; Shufesky, W.J.; Stolz, D.B.; Sullivan, M.L.G.; Karlsson, J.M.; Baty, C.J.; Gibson, G.A.; Erdos, G.; Wang, Z.; et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012, 119, 756–766. [Google Scholar] [CrossRef] [Green Version]
- Montecalvo, A.; Shufesky, W.J.; Beer Stolz, D.; Sullivan, M.G.; Wang, Z.; Divito, S.J.; Papworth, G.D.; Watkins, S.C.; Robbins, P.D.; Larregina, A.T.; et al. Exosomes As a Short-Range Mechanism to Spread Alloantigen between Dendritic Cells during T Cell Allorecognition. J. Immunol. 2008, 180, 3081–3090. [Google Scholar] [CrossRef] [Green Version]
- Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M.Á.; Bernad, A.; Sánchez-Madrid, F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2011, 2. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, N.; Lankar, D.; Faure, F.; Regnault, A.; Dumont, C.; Raposo, G.; Hivroz, C. TCR Activation of Human T Cells Induces the Production of Exosomes Bearing the TCR/CD3/ζ Complex. J. Immunol. 2002, 168, 3235–3241. [Google Scholar] [CrossRef] [Green Version]
- Admyre, C.; Johansson, S.M.; Paulie, S.; Gabrielsson, S. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur. J. Immunol. 2006, 36, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xie, Y.; Li, W.; Chibbar, R.; Xiong, S.; Xiang, J. CD4 T cell-released exosomes inhibit CD8 cytotoxic T-lymphocyte responses and antitumor immunity. Cell. Mol. Immunol. 2011, 8, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Fooksman, D.R.; Vardhana, S.; Vasiliver-Shamis, G.; Liese, J.; Blair, D.; Waite, J.; Sacristán, C.; Victora, G.; Zanin-Zhorov, A.; Dustin, M.L. Functional Anatomy of T Cell Activation and Synapse Formation. Annu. Rev. Immunol. 2010, 28, 79–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campi, G.; Varma, R.; Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 2005, 202, 1031–1036. [Google Scholar] [CrossRef]
- Varma, R.; Campi, G.; Yokosuka, T.; Saito, T.; Dustin, M.L. T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster. Immunity 2006, 25, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Yokosuka, T.; Sakata-Sogawa, K.; Kobayashi, W.; Hiroshima, M.; Hashimoto-Tane, A.; Tokunaga, M.; Dustin, M.L.; Saito, T. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 2005, 6, 1253–1262. [Google Scholar] [CrossRef]
- Moseman, E.A.; McGavern, D.B. The great balancing act: Regulation and fate of antiviral T-cell interactions. Immunol. Rev. 2013, 255, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Hommel, M.; Kyewski, B. Dynamic changes during the immune response in T cell-antigen-presenting cell clusters isolated from lymph nodes. J. Exp. Med. 2003, 197, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Ingulli, E.; Mondino, A.; Khoruts, A.; Jenkins, M.K. In vivo detection of dendritic cell antigen presentation to CD4+ T cells. J. Exp. Med. 1997, 185, 2133–2141. [Google Scholar] [CrossRef]
- Bousso, P.; Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol. 2003, 4, 579–585. [Google Scholar] [CrossRef]
- Rothlein, R.; Marlin, D.; Springer, T.A. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1 R Rothlein, M L Dustin, S D Marlin and T A Springer. J. Immunol. 1986, 137, 1270–1274. [Google Scholar] [PubMed]
- Van Kooyk, Y.; Weder, P.; Heije, K.; De Waal Malefijt, R.; Figdor, C.G. Role of intracellular ca2+ levels in the regulation of CD11a/CD18 mediated cell adhesion. Cell Commun. Adhes. 1993, 1, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Doh, J.; Krummel, M.F. Immunological Synapses Within Context: Patterns of Cell–Cell Communication and Their Application in T–T Interactions; Springer: Berlin/Heidelberg, Germany, 2010; pp. 25–50. [Google Scholar]
- Walling, B.L.; Kim, M. LFA-1 in T cell migration and differentiation. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thümmler, K.; Leipe, J.; Ramming, A.; Schulze-Koops, H.; Skapenko, A. Immune regulation by peripheral suppressor T cells induced upon homotypic T cell/T cell interactions. J. Leukoc. Biol. 2010, 88, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Brod, S.A.; Purvee, M.; Benjamin, D.; Hafler, D.A. T-T cell interactions are mediated by adhesion molecules. Eur. J. Immunol. 1990, 20, 2259–2268. [Google Scholar] [CrossRef]
- Makgoba, M.W.; Sanders, M.E.; Luce, G.E.G.; Dustint, M.L.; Springer, T.A.; Clark, E.A.; Mannoni, P.; Shaw, S. ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells. Nature 1988, 331, 86–88. [Google Scholar] [CrossRef]
- Chirathaworn, C.; Kohlmeier, J.E.; Tibbetts, S.A.; Rumsey, L.M.; Chan, M.A.; Benedict, S.H. Stimulation Through Intercellular Adhesion Molecule-1 Provides a Second Signal for T Cell Activation. J. Immunol. 2002, 168, 5530–5537. [Google Scholar] [CrossRef] [Green Version]
- Dragovich, M.A.; Adam, K.; Strazza, M.; Tocheva, A.S.; Peled, M.; Mor, A. SLAMF6 clustering is required to augment T cell activation. PLoS ONE 2019, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sowinski, S.; Jolly, C.; Berninghausen, O.; Purbhoo, M.A.; Chauveau, A.; Köhler, K.; Oddos, S.; Eissmann, P.; Brodsky, F.M.; Hopkins, C.; et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 2008, 10, 211–219. [Google Scholar] [CrossRef]
- Rustom, A.; Saffrich, R.; Markovic, I.; Walther, P.; Gerdes, H.H. Nanotubular Highways for Intercellular Organelle Transport. Science 2004, 303, 1007–1010. [Google Scholar] [CrossRef] [Green Version]
- Usherwood, E.J.; Hogg, T.L.; Woodland, D.L. Enumeration of antigen-presenting cells in mice infected with Sendai virus. J. Immunol. 1999, 162, 3350–3355. [Google Scholar] [PubMed]
- Jenkins, M.K.; Chu, H.H.; McLachlan, J.B.; Moon, J.J. On the Composition of the Preimmune Repertoire of T Cells Specific for Peptide–Major Histocompatibility Complex Ligands. Annu. Rev. Immunol. 2010, 28, 275–294. [Google Scholar] [CrossRef]
- Hugues, S.; Scholer, A.; Boissonnas, A.; Nussbaum, A.; Combadière, C.; Amigorena, S.; Fetler, L. Dynamic imaging of chemokine-dependent CD8+ T cell help for CD8+ T cell responses. Nat. Immunol. 2007, 8, 921–930. [Google Scholar] [CrossRef]
- Foulds, K.E.; Rotte, M.J.; Seder, R.A. IL-10 Is Required for Optimal CD8 T Cell Memory following Listeria monocytogenes Infection. J. Immunol. 2006, 177, 2565–2574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.F.; Yang, Y.; Sepulveda, H.; Shi, W.; Hwang, I.; Peterson, P.A.; Jackson, M.R.; Sprent, J.; Cai, Z. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 1999, 286, 952–954. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.H.; McMichael, A.J.; Screaton, G.R.; Xu, X.-N. CTLs Target Th Cells That Acquire Bystander MHC Class I-Peptide Complex from APCs. J. Immunol. 2007, 179, 830–836. [Google Scholar] [CrossRef] [Green Version]
- Akkaya, B.; Oya, Y.; Akkaya, M.; Al Souz, J.; Holstein, A.H.; Kamenyeva, O.; Kabat, J.; Matsumura, R.; Dorward, D.W.; Glass, D.D.; et al. Regulatory T cells mediate specific suppression by depleting peptide–MHC class II from dendritic cells. Nat. Immunol. 2019, 20, 218–231. [Google Scholar] [CrossRef]
- Reed, J.; Wetzel, S.A. Trogocytosis-Mediated Intracellular Signaling in CD4 + T Cells Drives T H 2-Associated Effector Cytokine Production and Differentiation. J. Immunol. 2019, 202, 2873–2887. [Google Scholar] [CrossRef]
- LeMaoult, J.; Caumartin, J.; Daouya, M.; Favier, B.; Le Rond, S.; Gonzalez, A.; Carosella, E.D. Immune regulation by pretenders: Cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood 2007, 109, 2040–2048. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Munegowda, M.A.; Xie, Y.; Xiang, J. Intercellular trogocytosis plays an important role in modulation of immune responses. Cell. Mol. Immunol. 2008, 5, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Tsang, J.Y.S.; Chai, J.G.; Lechler, R. Antigen presentation by mouse CD4+ T cells involving acquired MHC class II:peptide complexes: Another mechanism to limit clonal expansion? Blood 2003, 101, 2704–2710. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Huang, H.; Liu, Y. A New Dynamic Model of CD8 + T Effector Cell Responses via CD4 + T Helper-Antigen-Presenting Cells. J. Immunol. 2005, 174, 7497–7505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeshappa, C.S.; Huang, H.; Xie, Y.; Wei, Y.; Mulligan, S.J.; Deng, Y.; Xiang, J. CD4 + Th-APC with Acquired Peptide/MHC Class I and II Complexes Stimulate Type 1 Helper CD4 + and Central Memory CD8 + T Cell Responses. J. Immunol. 2009, 182, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeshappa, C.S.; Xie, Y.; Xu, S.; Nanjundappa, R.H.; Freywald, A.; Deng, Y.; Ma, H.; Xiang, J. Th Cells Promote CTL Survival and Memory via Acquired pMHC-I and Endogenous IL-2 and CD40L Signaling and by Modulating Apoptosis-Controlling Pathways. PLoS ONE 2013, 8, 1–14. [Google Scholar] [CrossRef]
- Helft, J.; Jacquet, A.; Joncker, N.T.; Grandjean, I.; Dorothée, G.; Kissenpfennig, A.; Malissen, B.; Matzinger, P.; Lantz, O. Antigen-specific T-T interactions regulate CD4 T-cell expansion. Blood 2008, 112, 1249–1258. [Google Scholar] [CrossRef]
- Antonioli, L.; Blandizzi, C.; Pacher, P.; Guilliams, M.; Haskó, G. Quorum sensing in the immune system. Nat. Rev. Immunol. 2018, 18, 537–538. [Google Scholar] [CrossRef]
- Rutherford, S.T.; Bassler, B.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2012, 2, 1–26. [Google Scholar] [CrossRef]
- Postat, J.; Bousso, P. Quorum Sensing by Monocyte-Derived Populations. Front. Immunol. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Antonioli, L.; Blandizzi, C.; Pacher, P.; Guilliams, M.; Haskó, G. Rethinking Communication in the Immune System: The Quorum Sensing Concept. Trends Immunol. 2019, 40, 88–97. [Google Scholar] [CrossRef]
- Feinerman, O.; Jentsch, G.; Tkach, K.E.; Coward, J.W.; Hathorn, M.M.; Sneddon, M.W.; Emonet, T.; Smith, K.A.; Altan-Bonnet, G. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 2010, 6, 1–16. [Google Scholar] [CrossRef]
- Savir, Y.; Waysbort, N.; Antebi, Y.E.; Tlusty, T.; Friedman, N. Balancing speed and accuracy of polyclonal T cell activation: A role for extracellular feedback. BMC Syst. Biol. 2012, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feau, S.; Arens, R.; Togher, S.; Schoenberger, S.P. Autocrine IL-2 is required for secondary population expansion of CD8 + memory T cells. Nat. Immunol. 2011, 12, 908–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, Y.; Reich-Zeliger, S.; Antebi, Y.E.; Zaretsky, I.; Mayo, A.E.; Alon, U.; Friedman, N. Paradoxical signaling by a secreted molecule leads to homeostasis of cell levels. Cell 2014, 158, 1022–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waysbort, N.; Russ, D.; Chain, B.M.; Friedman, N. Coupled IL-2–Dependent Extracellular Feedbacks Govern Two Distinct Consecutive Phases of CD4 T Cell Activation. J. Immunol. 2013, 191, 5822–5830. [Google Scholar] [CrossRef] [Green Version]
- Lighvani, A.A.; Frucht, D.M.; Jankovic, D.; Yamane, H.; Aliberti, J.; Hissong, B.D.; Nguyen, B.V.; Gadina, M.; Sher, A.; Paul, W.E.; et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. USA 2001, 98, 15137–15142. [Google Scholar] [CrossRef] [Green Version]
- Djuretic, I.M.; Levanon, D.; Negreanu, V.; Groner, Y.; Rao, A.; Ansel, K.M. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells (Nature Immunology). Nat. Immunol. 2007, 8, 145–153. [Google Scholar] [CrossRef]
- Sungnak, W.; Wang, C.; Kuchroo, V.K. Multilayer Regulation of CD4 T Cell Subset Differentiation in the Era of Single Cell Genomics. Adv. Immunol. 2019, 141, 1–31. [Google Scholar] [CrossRef]
- Pernis, A.; Gupta, S.; Gollob, K.J.; Garfein, E.; Coffman, R.L.; Schindler, C.; Rothman, P. Lack of interferon γ receptor β chain and the prevention of interferon γ signaling in TH1 Cells. Science 1995, 269, 245–247. [Google Scholar] [CrossRef]
- Antebi, Y.E.; Reich-Zeliger, S.; Hart, Y.; Mayo, A.; Eizenberg, I.; Rimer, J.; Putheti, P.; Pe’er, D.; Friedman, N. Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. PLoS Biol. 2013, 11. [Google Scholar] [CrossRef]
- Fang, M.; Xie, H.; Dougan, S.K.; Ploegh, H.; van Oudenaarden, A. Stochastic Cytokine Expression Induces Mixed T Helper Cell States. PLoS Biol. 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Polonsky, M.; Rimer, J.; Kern-Perets, A.; Zaretsky, I.; Miller, S.; Bornstein, C.; David, E.; Kopelman, N.M.; Stelzer, G.; Porat, Z.; et al. Induction of CD4 T cell memory by local cellular collectivity. Science 2018, 360, eaaj1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badovinac, V.P.; Tvinnereim, A.R.; Harty, J.T. Regulation of antigen-specific CD8+T cell homeostasis by perforin and interferon-γ. Science 2000, 290, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- Sercan, Ö.; Stoycheva, D.; Hämmerling, G.J.; Arnold, B.; Schüler, T. IFN-γ Receptor Signaling Regulates Memory CD8+ T Cell Differentiation. J. Immunol. 2010, 184, 2855–2862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, N.K.; Fazil, M.H.U.T.; Ong, S.T.; Chalasani, M.L.S.; Low, J.H.; Kottaiswamy, A.; P, P.; Kizhakeyil, A.; Kumar, S.; Panda, A.K.; et al. LFA-1/ICAM-1 Ligation in Human T Cells Promotes Th1 Polarization through a GSK3β Signaling–Dependent Notch Pathway. J. Immunol. 2016, 197, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Ramming, A.; Thümmler, K.; Schulze-Koops, H.; Skapenko, A. Homotypic T-cell/T-cell interaction induces T-cell activation, proliferation, and differentiation. Hum. Immunol. 2009, 70, 873–881. [Google Scholar] [CrossRef]
- Thaventhiran, J.E.D.; Hoffmann, A.; Magiera, L.; De La Roche, M.; Lingel, H.; Brunner-Weinzierl, M.; Fearon, D.T. Activation of the Hippo pathway by CTLA-4 regulates the expression of Blimp-1 in the CD8 + T cell. Proc. Natl. Acad. Sci. USA 2012, 109, 2223–2229. [Google Scholar] [CrossRef] [Green Version]
- Klebanoff, C.A.; Scott, C.D.; Leonardi, A.J.; Yamamoto, T.N.; Cruz, A.C.; Ouyang, C.; Ramaswamy, M.; Roychoudhuri, R.; Ji, Y.; Eil, R.L.; et al. Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J. Clin. Investig. 2016, 126, 318–334. [Google Scholar] [CrossRef] [Green Version]
- Sewell, A.K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 2012, 12, 669–677. [Google Scholar] [CrossRef]
- Danke, N.A.; Koelle, D.M.; Yee, C.; Beheray, S.; Kwok, W.W. Autoreactive T Cells in Healthy Individuals. J. Immunol. 2004, 172, 5967–5972. [Google Scholar] [CrossRef] [Green Version]
- Butler, T.C.; Kardar, M.; Chakraborty, A.K. Quorum sensing allows T cells to discriminate between self and nonself. Proc. Natl. Acad. Sci. USA 2013, 110, 11833–11838. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.R.M.; Rocha, B.; Freitas, A.A.; Tanchot, C. Homeostasis of T cell numbers: From thymus production to peripheral compartmentalization and the indexation of regulatory T cells. Semin. Immunol. 2005, 17, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.R.M.; Legrand, N.; Papiernik, M.; Freitas, A.A. Homeostasis of Peripheral CD4 + T Cells: IL-2Rα and IL-2 Shape a Population of Regulatory Cells That Controls CD4 + T Cell Numbers. J. Immunol. 2002, 169, 4850–4860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, A.R.M.; Zaragoza, B.; Freitas, A.A. Indexation as a Novel Mechanism of Lymphocyte Homeostasis: The Number of CD4 + CD25 + Regulatory T Cells Is Indexed to the Number of IL-2-Producing Cells. J. Immunol. 2006, 177, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, M.; Yaguchi, H.; Ohkura, N.; Kitabayashi, I.; Nagamura, Y.; Nomura, T.; Miyachi, Y.; Tsukada, T.; Sakaguchi, S. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007, 446, 685–689. [Google Scholar] [CrossRef]
- Wu, Y.; Borde, M.; Heissmeyer, V.; Feuerer, M.; Lapan, A.D.; Stroud, J.C.; Bates, D.L.; Guo, L.; Han, A.; Ziegler, S.F.; et al. FOXP3 Controls Regulatory T Cell Function through Cooperation with NFAT. Cell 2006, 126, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Setoguchi, R.; Hori, S.; Takahashi, T.; Sakaguchi, S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 2005, 201, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Malek, T.R.; Yu, A.; Zhu, L.; Matsutani, T.; Adeegbe, D.; Bayer, A.L. IL-2 family of cytokines in T regulatory cell development and homeostasis. J. Clin. Immunol. 2008, 28, 635–639. [Google Scholar] [CrossRef]
- Liu, Z.; Gerner, M.Y.; Van Panhuys, N.; Levine, A.G.; Rudensky, A.Y.; Germain, R.N. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 2015, 528, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Villarino, A.V.; Tato, C.M.; Stumhofer, J.S.; Yao, Z.; Cui, Y.K.; Hennighausen, L.; O’Shea, J.J.; Hunter, C.A. Helper T cell IL-2 production is limited by negative feedback and STAT-dependent cytokine signals. J. Exp. Med. 2007, 204, 65–71. [Google Scholar] [CrossRef]
- Long, M.; Adler, A.J. Cutting Edge: Paracrine, but Not Autocrine, IL-2 Signaling Is Sustained during Early Antiviral CD4 T Cell Response. J. Immunol. 2006, 177, 4257–4261. [Google Scholar] [CrossRef]
- Martins, G.A.; Cimmino, L.; Liao, J.; Magnusdottir, E.; Calame, K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J. Exp. Med. 2008, 205, 1959–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burroughs, N.J.; Miguel Paz Mendes de Oliveira, B.; Adrego Pinto, A. Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses. J. Theor. Biol. 2006, 241, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, J.; Amado, I.F.; Freitas, A.A.; Lythe, G.; Molina-París, C. A mathematical perspective on CD4+ T cell quorum-sensing. J. Theor. Biol. 2014, 347, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Sakamoto, A.; Bender, J.; Kappler, J.; Marrack, P. CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc. Natl. Acad. Sci. USA 2002, 99, 8832–8837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kursar, M.; Bonhagen, K.; Fensterle, J.; Köhler, A.; Hurwitz, R.; Kamradt, T.; Kaufmann, S.H.E.; Mittrücker, H.W. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J. Exp. Med. 2002, 196, 1585–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obar, J.J.; Molloy, M.J.; Jellison, E.R.; Stoklasek, T.A.; Zhang, W.; Usherwood, E.J.; Lefrançois, L. CD4+ T cell regulation of CD25 expression controls development of short-lived effector CD8+ T cells in primary and secondary responses. Proc. Natl. Acad. Sci. USA 2010, 107, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Collison, L.W.; Pillai, M.R.; Chaturvedi, V.; Vignali, D.A.A. Regulatory T Cell Suppression Is Potentiated by Target T Cells in a Cell Contact, IL-35- and IL-10-Dependent Manner. J. Immunol. 2009, 182, 6121–6128. [Google Scholar] [CrossRef] [Green Version]
- Sledzinska, A.; Mucha, M.V.D.; Sledzi, A.; Bergerhoff, K.; Jenner, R.G.; Peggs, K.S.; Quezada, S.A.; Mucha, M.V.D.; Bergerhoff, K.; Hotblack, A.; et al. Regulatory T Cells Restrain Interleukin-2- and Blimp- 1-Dependent Acquisition of Cytotoxic Function by Article Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4 + T Cells. Immunity 2020, 1–16. [Google Scholar] [CrossRef]
- Turnis, M.E.; Sawant, D.V.; Szymczak-Workman, A.L.; Andrews, L.P.; Delgoffe, G.M.; Yano, H.; Beres, A.J.; Vogel, P.; Workman, C.J.; Vignali, D.A.A. Interleukin-35 Limits Anti-Tumor Immunity. Immunity 2016, 44, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Yanguas, A.; Garasa, S.; Teijeira, Á.; Aubá, C.; Melero, I.; Rouzaut, A. ICAM-1-LFA-1 dependent CD8+ T-lymphocyte aggregation in tumor tissue prevents recirculation to draining lymph nodes. Front. Immunol. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Bénéchet, A.P.; De Simone, G.; Di Lucia, P.; Cilenti, F.; Barbiera, G.; Le Bert, N.; Fumagalli, V.; Lusito, E.; Moalli, F.; Bianchessi, V.; et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature 2019, 574, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, J.; Di Lucia, P.; Magini, D.; Moalli, F.; Boni, C.; Benechet, A.P.; Fumagalli, V.; Inverso, D.; Vecchi, A.; Fiocchi, A.; et al. Effector CD8+ T cell-derived interleukin-10 enhances acute liver immunopathology. J. Hepatol. 2017, 67, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Chaudhri, G.; Quah, B.J.; Wang, Y.; Tan, A.H.Y.; Zhou, J.; Karupiah, G.; Parish, C.R. T cell receptor sharing by cytotoxic T lymphocytes facilitates efficient virus control. Proc. Natl. Acad. Sci. USA 2009, 106, 14984–14989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickson, J.; Diane Yamada, S.; Berger, J.; Alverdy, J.; O’Keefe, J.; Bassler, B.; Rinker-Schaeffer, C. Societal interactions in ovarian cancer metastasis: A quorum-sensing hypothesis. Clin. Exp. Metastasis 2009, 26, 67–76. [Google Scholar] [CrossRef]
- Agur, Z.; Kogan, Y.; Levi, L.; Harrison, H.; Lamb, R.; Kirnasovsky, O.U.; Clarke, R.B. Disruption of a Quorum Sensing mechanism triggers tumorigenesis: A simple discrete model corroborated by experiments in mammary cancer stem cells. Biol. Direct 2010, 5, 1–11. [Google Scholar] [CrossRef]
- Patel, S.J.; Dao, S.; Darie, C.C.; Clarkson, B.D. Defective quorum sensing of acute lymphoblastic leukemic cells: Evidence of collective behavior of leukemic populations as semi-autonomous aberrant ecosystems. Am. J. Cancer Res. 2016, 6, 1177–1230. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uhl, L.F.K.; Gérard, A. Modes of Communication between T Cells and Relevance for Immune Responses. Int. J. Mol. Sci. 2020, 21, 2674. https://doi.org/10.3390/ijms21082674
Uhl LFK, Gérard A. Modes of Communication between T Cells and Relevance for Immune Responses. International Journal of Molecular Sciences. 2020; 21(8):2674. https://doi.org/10.3390/ijms21082674
Chicago/Turabian StyleUhl, Lion F. K., and Audrey Gérard. 2020. "Modes of Communication between T Cells and Relevance for Immune Responses" International Journal of Molecular Sciences 21, no. 8: 2674. https://doi.org/10.3390/ijms21082674
APA StyleUhl, L. F. K., & Gérard, A. (2020). Modes of Communication between T Cells and Relevance for Immune Responses. International Journal of Molecular Sciences, 21(8), 2674. https://doi.org/10.3390/ijms21082674