Finely-Tuned Calcium Oscillations in Osteoclast Differentiation and Bone Resorption
Abstract
:1. Introduction
2. Costimulatory Signals during Osteoclast Development
2.1. DAP12
2.2. FcRγ
3. Calcium Channels and Transporters in Osteoclast
3.1. TRP Family
3.2. Voltage-Gated Ca2+ Channels
3.3. K+ Channels
3.4. Ca2+-ATPase and Na+-Ca2+ Exchanger
4. Intracellular Calcium Storage in Osteoclast
4.1. Endoplasmic Reticulum
4.2. Lysosome and Mitochondria, and Nucleus
5. Environmental Factors Affecting Intracellular Calcium of Osteoclast
5.1. Extracellular Calcium and Calcium-Sensing Receptor
5.2. Protons and Reactive Oxygen Species
6. Perspectives for Research on Ca Oscillations in Osteoclast
6.1. No Consensus for the Definition of Ca Oscillations or Spikes
6.2. Ca oscillation Alterations According to the Differentiation Time Course
6.3. Whether Macrophage Colony-Stimulating Factors (M-CSF) or RANKL Can Evoke Ca Oscillations?
6.4. Direct Relationships between ITAM Receptors and Ca2+ Channels, Transporters, and Storage Organelles?
6.5. Identification of the Conductor of Finely-Tuned Ca Oscillations and Clarification of the True Causal Relationship between Ca Oscillations and Osteoclast Differentiation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ca | Calcium |
BMM | Bone marrow macrophage |
M-CSF | Macrophage-colony stimulating factor |
CSF-1 | Colony stimulating factor-1 |
RANKL | Receptor activator of nuclear factor kappa B ligand |
NFATc1 | Nuclear factor of activated T-cells 1 |
TRP | Transient receptor potential |
IP3 | Inositol 1,4,5-trisphosphate |
RyR | Ryanodine receptor |
SERCA | Sarco/endoplasmic reticulum Ca2+ ATPase |
ITAM | Immunoreceptor tyrosine-based activation motif |
FcRγ | Fc receptor gamma |
DAP12 | DNAX-activating protein of 12 kD |
CTLA4 | Cytotoxic T-lymphocyte antigen 4 |
KO | Knock out |
TRPV | Transient receptor potential vanilloid |
TRPC | Transient receptor potential canonical |
RGS | Regulator of G protein signaling |
KD | Knock down |
KCNK | K+ channel subfamily K member |
NCX | Na+-Ca2+ exchanger |
BM | Bone marrow |
ER | Endoplasmic reticulum |
PLC | Phospholipase C |
Tmem | Transmembrane |
CRAC | Ca2+ release-activated Ca2+ |
CaSR | Calcium-sensing receptor |
References
- Carafoli, E.; Krebs, J. Why Calcium? How Calcium Became the Best Communicator. J. Biol. Chem. 2016, 291, 20849–20857. [Google Scholar] [PubMed] [Green Version]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [PubMed]
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [PubMed] [Green Version]
- Brini, M.; Cali, T.; Ottolini, D.; Carafoli, E. Neuronal calcium signaling: Function and dysfunction. Cell. Mol. Life Sci. 2014, 71, 2787–2814. [Google Scholar] [PubMed]
- Eisner, D.A.; Caldwell, J.L.; Kistamas, K.; Trafford, A.W. Calcium and Excitation-Contraction Coupling in the Heart. Circ. Res. 2017, 121, 181–195. [Google Scholar] [PubMed]
- Swann, K. The role of Ca2+ in oocyte activation during In Vitro fertilization: Insights into potential therapies for rescuing failed fertilization. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 1830–1837. [Google Scholar] [PubMed]
- Yasuda, H.; Shima, N.; Nakagawa, N.; Yamaguchi, K.; Kinosaki, M.; Mochizuki, S.; Tomoyasu, A.; Yano, K.; Goto, M.; Murakami, A.; et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 1998, 95, 3597–3602. [Google Scholar]
- Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.; et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 2002, 3, 889–901. [Google Scholar]
- Hirotani, H.; Tuohy, N.A.; Woo, J.T.; Stern, P.H.; Clipstone, N.A. The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J. Biol. Chem. 2004, 279, 13984–13992. [Google Scholar]
- Kamano, Y.; Watanabe, J.; Iida, T.; Kondo, T.; Okawa, H.; Yatani, H.; Saeki, M.; Egusa, H. Binding of PICK1 PDZ domain with calcineurin B regulates osteoclast differentiation. Biochem. Biophys. Res. Commun. 2018, 496, 83–88. [Google Scholar]
- Huynh, H.; Wan, Y. mTORC1 impedes osteoclast differentiation via calcineurin and NFATc1. Commun. Biol. 2018, 1, 29. [Google Scholar] [PubMed]
- Stewart, P.J.; Green, O.C.; Stern, P.H. Cyclosporine A inhibits calcemic hormone-induced bone resorption in vitro. J. Bone Miner. Res. 1986, 1, 285–291. [Google Scholar] [PubMed]
- Awumey, E.M.; Moonga, B.S.; Sodam, B.R.; Koval, A.P.; Adebanjo, O.A.; Kumegawa, M.; Zaidi, M.; Epstein, S. Molecular and functional evidence for calcineurin-A alpha and beta isoforms in the osteoclast: Novel insights into cyclosporin A action on bone resorption. Biochem. Biophys. Res. Commun. 1999, 254, 248–252. [Google Scholar] [PubMed]
- Williams, J.P.; McKenna, M.A.; Thames, A.M., 3rd; McDonald, J.M. Effects of cyclosporine on osteoclast activity: Inhibition of calcineurin activity with minimal effects on bone resorption and acid transport activity. J. Bone Miner. Res. 2003, 18, 451–457. [Google Scholar] [PubMed]
- Koga, T.; Inui, M.; Inoue, K.; Kim, S.; Suematsu, A.; Kobayashi, E.; Iwata, T.; Ohnishi, H.; Matozaki, T.; Kodama, T.; et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004, 428, 758–763. [Google Scholar] [PubMed]
- Mocsai, A.; Humphrey, M.B.; Van Ziffle, J.A.; Hu, Y.; Burghardt, A.; Spusta, S.C.; Majumdar, S.; Lanier, L.L.; Lowell, C.A.; Nakamura, M.C. The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl. Acad. Sci. USA 2004, 101, 6158–6163. [Google Scholar] [PubMed] [Green Version]
- Zou, W.; Kitaura, H.; Reeve, J.; Long, F.; Tybulewicz, V.L.; Shattil, S.J.; Ginsberg, M.H.; Ross, F.P.; Teitelbaum, S.L. Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J. Cell Biol. 2007, 176, 877–888. [Google Scholar]
- Kajiya, H.; Okabe, K.; Okamoto, F.; Tsuzuki, T.; Soeda, H. Protein tyrosine kinase inhibitors increase cytosolic calcium and inhibit actin organization as resorbing activity in rat osteoclasts. J. Cell. Physiol. 2000, 183, 83–90. [Google Scholar]
- Park-Min, K.H.; Ji, J.D.; Antoniv, T.; Reid, A.C.; Silver, R.B.; Humphrey, M.B.; Nakamura, M.; Ivashkiv, L.B. IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J. Immunol. 2009, 183, 2444–2455. [Google Scholar]
- Negishi-Koga, T.; Gober, H.J.; Sumiya, E.; Komatsu, N.; Okamoto, K.; Sawa, S.; Suematsu, A.; Suda, T.; Sato, K.; Takai, T.; et al. Immune complexes regulate bone metabolism through FcRgamma signalling. Nat. Commun. 2015, 6, 6637. [Google Scholar]
- Okada, H.; Kajiya, H.; Omata, Y.; Matsumoto, T.; Sato, Y.; Kobayashi, T.; Nakamura, S.; Kaneko, Y.; Nakamura, S.; Koyama, T.; et al. CTLA4-Ig Directly Inhibits Osteoclastogenesis by Interfering With Intracellular Calcium Oscillations in Bone Marrow Macrophages. J. Bone Miner. Res. 2019, 34, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Kaifu, T.; Nakahara, J.; Inui, M.; Mishima, K.; Momiyama, T.; Kaji, M.; Sugahara, A.; Koito, H.; Ujike-Asai, A.; Nakamura, A.; et al. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J. Clin. Investig. 2003, 111, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inui, M.; Kikuchi, Y.; Aoki, N.; Endo, S.; Maeda, T.; Sugahara-Tobinai, A.; Fujimura, S.; Nakamura, A.; Kumanogoh, A.; Colonna, M.; et al. Signal adaptor DAP10 associates with MDL-1 and triggers osteoclastogenesis in cooperation with DAP12. Proc. Natl. Acad. Sci. USA 2009, 106, 4816–4821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daws, M.R.; Lanier, L.L.; Seaman, W.E.; Ryan, J.C. Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur. J. Immunol. 2001, 31, 783–791. [Google Scholar] [CrossRef]
- Cella, M.; Buonsanti, C.; Strader, C.; Kondo, T.; Salmaggi, A.; Colonna, M. Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J. Exp. Med. 2003, 198, 645–651. [Google Scholar] [CrossRef]
- Kim, Y.; Sato, K.; Asagiri, M.; Morita, I.; Soma, K.; Takayanagi, H. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J. Biol. Chem. 2005, 280, 32905–32913. [Google Scholar] [CrossRef] [Green Version]
- Hiruma, Y.; Hirai, T.; Tsuda, E. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation. Biochem. Biophys. Res. Commun. 2011, 409, 424–429. [Google Scholar] [CrossRef]
- Hiruma, Y.; Tsuda, E.; Maeda, N.; Okada, A.; Kabasawa, N.; Miyamoto, M.; Hattori, H.; Fukuda, C. Impaired osteoclast differentiation and function and mild osteopetrosis development in Siglec-15-deficient mice. Bone 2013, 53, 87–93. [Google Scholar] [CrossRef]
- Grevers, L.C.; de Vries, T.J.; Everts, V.; Verbeek, J.S.; van den Berg, W.B.; van Lent, P.L. Immune complex-induced inhibition of osteoclastogenesis is mediated via activating but not inhibitory Fcgamma receptors on myeloid precursor cells. Ann. Rheum. Dis. 2013, 72, 278–285. [Google Scholar] [CrossRef]
- Seeling, M.; Hillenhoff, U.; David, J.P.; Schett, G.; Tuckermann, J.; Lux, A.; Nimmerjahn, F. Inflammatory monocytes and Fcgamma receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc. Natl. Acad. Sci. USA 2013, 110, 10729–10734. [Google Scholar] [CrossRef] [Green Version]
- Tsukasaki, M.; Takayanagi, H. Osteoimmunology: Evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 2019, 19, 626–642. [Google Scholar] [CrossRef] [PubMed]
- Kajiya, H.; Okamoto, F.; Nemoto, T.; Kimachi, K.; Toh-Goto, K.; Nakayana, S.; Okabe, K. RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillations. Cell Calcium 2010, 48, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Zhu, H.; Yan, Q.; Shen, X.; Lu, X.; Wang, J.; Li, J.; Chen, L. TRPV2-induced Ca2+-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma. Cell Commun. Signal. 2018, 16, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Bian, X.; Liu, C.; Wang, S.; Guo, M.; Tao, Y.; Huo, B. STIM1 and TRPV4 regulate fluid flow-induced calcium oscillation at early and late stages of osteoclast differentiation. Cell Calcium 2018, 71, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Masuyama, R.; Vriens, J.; Voets, T.; Karashima, Y.; Owsianik, G.; Vennekens, R.; Lieben, L.; Torrekens, S.; Moermans, K.; Vanden Bosch, A.; et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 2008, 8, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuyama, R.; Mizuno, A.; Komori, H.; Kajiya, H.; Uekawa, A.; Kitaura, H.; Okabe, K.; Ohyama, K.; Komori, T. Calcium/calmodulin-signaling supports TRPV4 activation in osteoclasts and regulates bone mass. J. Bone Miner. Res. 2012, 27, 1708–1721. [Google Scholar] [CrossRef] [PubMed]
- Chamoux, E.; Bisson, M.; Payet, M.D.; Roux, S. TRPV-5 mediates a receptor activator of NF-kappaB (RANK) ligand-induced increase in cytosolic Ca2+ in human osteoclasts and down-regulates bone resorption. J. Biol. Chem. 2010, 285, 25354–25362. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Ouyang, Y.; Ye, T.; Ni, B.; Chen, A. Estrogen inhibits RANKL-induced osteoclastic differentiation by increasing the expression of TRPV5 channel. J. Cell. Biochem. 2014, 115, 651–658. [Google Scholar] [CrossRef]
- Klein, S.; Mentrup, B.; Timmen, M.; Sherwood, J.; Lindemann, O.; Fobker, M.; Kronenberg, D.; Pap, T.; Raschke, M.J.; Stange, R. Modulation of Transient Receptor Potential Channels 3 and 6 Regulates Osteoclast Function with Impact on Trabecular Bone Loss. Calcif. Tissue Int. 2020, 106, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Pazianas, M.; Zaidi, M.; Huang, C.L.; Moonga, B.S.; Shankar, V.S. Voltage sensitivity of the osteoclast calcium receptor. Biochem. Biophys. Res. Commun. 1993, 192, 1100–1105. [Google Scholar] [CrossRef]
- Koide, M.; Kinugawa, S.; Ninomiya, T.; Mizoguchi, T.; Yamashita, T.; Maeda, K.; Yasuda, H.; Kobayashi, Y.; Nakamura, H.; Takahashi, N.; et al. Diphenylhydantoin inhibits osteoclast differentiation and function through suppression of NFATc1 signaling. J. Bone Miner. Res. 2009, 24, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, A.; Hruska, K.A.; Greenfield, E.M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S.L.; Teti, A. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption. J. Cell Biol. 1990, 111, 2543–2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Li, Y.P. RGS12 is essential for RANKL-evoked signaling for terminal differentiation of osteoclasts in vitro. J. Bone Miner. Res. 2007, 22, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Cao, J.; Liu, T.; Li, Y.P.; Scannapieco, F.; He, X.; Oursler, M.J.; Zhang, X.; Vacher, J.; Li, C.; et al. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss. Cell Death Differ. 2015, 22, 2046–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Li, Y.P. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation. Genes Dev. 2007, 21, 1803–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossinger, E.M.; Kang, M.; Bouchareychas, L.; Sarin, R.; Haudenschild, D.R.; Borodinsky, L.N.; Adamopoulos, I.E. Ca2+-Dependent Regulation of NFATc1 via KCa3.1 in Inflammatory Osteoclastogenesis. J. Immunol. 2018, 200, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Yeon, J.T.; Kim, K.J.; Chun, S.W.; Lee, H.I.; Lim, J.Y.; Son, Y.J.; Kim, S.H.; Choi, S.W. KCNK1 inhibits osteoclastogenesis by blocking the Ca2+ oscillation and JNK-NFATc1 signaling axis. J. Cell Sci. 2015, 128, 3411–3419. [Google Scholar] [CrossRef] [Green Version]
- Kajiya, H.; Okamoto, F.; Fukushima, H.; Takada, K.; Okabe, K. Mechanism and role of high-potassium-induced reduction of intracellular Ca2+ concentration in rat osteoclasts. Am. J. Physiol. Cell Physiol. 2003, 285, C457–C466. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Prasad, V.; Hyung, S.W.; Lee, Z.H.; Lee, S.W.; Bhargava, A.; Pearce, D.; Lee, Y.; Kim, H.H. Plasma membrane calcium ATPase regulates bone mass by fine-tuning osteoclast differentiation and survival. J. Cell Biol. 2012, 199, 1145–1158. [Google Scholar] [CrossRef] [Green Version]
- Li, J.P.; Kajiya, H.; Okamoto, F.; Nakao, A.; Iwamoto, T.; Okabe, K. Three Na+/ Ca2+ exchanger (NCX) variants are expressed in mouse osteoclasts and mediate calcium transport during bone resorption. Endocrinology 2007, 148, 2116–2125. [Google Scholar] [CrossRef] [Green Version]
- Ypey, D.L.; Weidema, A.F.; Hold, K.M.; Van der Laarse, A.; Ravesloot, J.H.; Van Der Plas, A.; Nijweide, P.J. Voltage, calcium, and stretch activated ionic channels and intracellular calcium in bone cells. J. Bone Miner. Res. 1992, 7 (Suppl. 2), S377–S387. [Google Scholar] [CrossRef]
- Li, P.; Hu, M.; Sun, S.; Zhang, Y.; Gao, Y.; Long, M.; Huo, B.; Zhang, D. Fluid flow-induced calcium response in early or late differentiated osteoclasts. Ann. Biomed. Eng. 2012, 40, 1874–1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clapham, D.E. TRP channels as cellular sensors. Nature 2003, 426, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Jordt, S.-E.; Julius, D. Molecular Basis for Species-Specific Sensitivity to “Hot” Chili Peppers. Cell 2002, 108, 421–430. [Google Scholar] [CrossRef] [Green Version]
- He, L.H.; Liu, M.; He, Y.; Xiao, E.; Zhao, L.; Zhang, T.; Yang, H.Q.; Zhang, Y. TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation. Sci. Rep. 2017, 7, 42385. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.I.; Landao-Bassonga, E.; Ralston, S.H. The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone 2010, 46, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Hanaka, M.; Iba, K.; Dohke, T.; Kanaya, K.; Okazaki, S.; Yamashita, T. Antagonists to TRPV1, ASICs and P2X have a potential role to prevent the triggering of regional bone metabolic disorder and pain-like behavior in tail-suspended mice. Bone 2018, 110, 284–294. [Google Scholar] [CrossRef]
- Caterina, M.J.; Rosen, T.A.; Tominaga, M.; Brake, A.J.; Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 1999, 398, 436–441. [Google Scholar] [CrossRef]
- Güler, A.D.; Lee, H.; Iida, T.; Shimizu, I.; Tominaga, M.; Caterina, M. Heat-Evoked Activation of the Ion Channel, TRPV4. J. Neurosci. 2002, 22, 6408–6414. [Google Scholar] [CrossRef]
- Cao, B.; Dai, X.; Wang, W. Knockdown of TRPV4 suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca2+-calcineurin-NFATc1 pathway. J. Cell. Physiol. 2019, 234, 6831–6841. [Google Scholar] [CrossRef] [PubMed]
- Hoenderop, J.G.; Voets, T.; Hoefs, S.; Weidema, F.; Prenen, J.; Nilius, B.; Bindels, R.J. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 2003, 22, 776–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Eerden, B.C.; Weissgerber, P.; Fratzl-Zelman, N.; Olausson, J.; Hoenderop, J.G.; Schreuders-Koedam, M.; Eijken, M.; Roschger, P.; de Vries, T.J.; Chiba, H.; et al. The transient receptor potential channel TRPV6 is dynamically expressed in bone cells but is not crucial for bone mineralization in mice. J. Cell. Physiol. 2012, 227, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Ni, B.; Yang, Y.O.; Ye, T.; Chen, A. Knockout of TRPV6 causes osteopenia in mice by increasing osteoclastic differentiation and activity. Cell. Physiol. Biochem. 2014, 33, 796–809. [Google Scholar] [CrossRef]
- Ong, E.C.; Nesin, V.; Long, C.L.; Bai, C.X.; Guz, J.L.; Ivanov, I.P.; Abramowitz, J.; Birnbaumer, L.; Humphrey, M.B.; Tsiokas, L. A TRPC1 protein-dependent pathway regulates osteoclast formation and function. J. Biol. Chem. 2013, 288, 22219–22232. [Google Scholar] [CrossRef] [Green Version]
- Mentaverri, R.; Kamel, S.; Brazier, M. Involvement of capacitive calcium entry and calcium store refilling in osteoclastic survival and bone resorption process. Cell Calcium 2003, 34, 169–175. [Google Scholar] [CrossRef]
- Ritchie, C.K.; Maercklein, P.B.; Fitzpatrick, L.A. Direct effect of calcium channel antagonists on osteoclast function: Alterations in bone resorption and intracellular calcium concentrations. Endocrinology 1994, 135, 996–1003. [Google Scholar] [CrossRef]
- Wheal, B.D.; Beach, R.J.; Tanabe, N.; Dixon, S.J.; Sims, S.M. Subcellular elevation of cytosolic free calcium is required for osteoclast migration. J. Bone Miner. Res. 2014, 29, 725–734. [Google Scholar] [CrossRef]
- Li, Z.; Liu, T.; Gilmore, A.; Gomez, N.M.; Fu, C.; Lim, J.; Yang, S.; Mitchell, C.H.; Li, Y.P.; Oursler, M.J.; et al. Regulator of G Protein Signaling Protein 12 (Rgs12) Controls Mouse Osteoblast Differentiation via Calcium Channel/Oscillation and Galphai-ERK Signaling. J. Bone Miner. Res. 2019, 34, 752–764. [Google Scholar] [CrossRef]
- Arkett, S.A.; Dixon, S.J.; Sims, S.M. Effects of extracellular calcium and protons on osteoclast potassium currents. J. Membr. Biol. 1994, 140, 163–171. [Google Scholar] [CrossRef]
- Espinosa, L.; Paret, L.; Ojeda, C.; Tourneur, Y.; Delmas, P.D.; Chenu, C. Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium-dependent potassium current. J. Cell Sci. 2002, 115, 3837–3848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takami, M.; Woo, J.T.; Takahashi, N.; Suda, T.; Nagai, K. Ca2+-ATPase inhibitors and Ca2+-ionophore induce osteoclast-like cell formation in the cocultures of mouse bone marrow cells and calvarial cells. Biochem. Biophys. Res. Commun. 1997, 237, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.E.; Rathod, H.; Gillespie, J.I.; Horrocks, B.R.; Datta, H.K. Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: Evidence for steady-state disposal and intracellular functional compartmentalization of calcium. J. Bone Miner. Res. 2001, 16, 2092–2102. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, C.K.; Strei, T.A.; Maercklein, P.B.; Fitzpatrick, L.A. Antithetic effects of ryanodine and ruthenium red on osteoclast-mediated bone resorption and intracellular calcium concentrations. J. Cell Biochem. 1995, 59, 281–289. [Google Scholar] [CrossRef]
- Kuroda, Y.; Hisatsune, C.; Nakamura, T.; Matsuo, K.; Mikoshiba, K. Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 8643–8648. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.M.; Kim, M.S.; Son, A.; Hong, J.H.; Kim, K.H.; Seo, J.T.; Lee, S.I.; Shin, D.M. Alteration of RANKL-induced osteoclastogenesis in primary cultured osteoclasts from SERCA2+/− mice. J. Bone Miner. Res. 2009, 24, 1763–1769. [Google Scholar] [CrossRef]
- Decker, C.E.; Yang, Z.; Rimer, R.; Park-Min, K.H.; Macaubas, C.; Mellins, E.D.; Novack, D.V.; Faccio, R. Tmem178 acts in a novel negative feedback loop targeting NFATc1 to regulate bone mass. Proc. Natl. Acad. Sci. USA 2015, 112, 15654–15659. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, T.; Jeong, B.C.; Cho, I.T.; Han, D.; Takegahara, N.; Negishi-Koga, T.; Takayanagi, H.; Lee, J.H.; Sul, J.Y.; et al. Tmem64 modulates calcium signaling during RANKL-mediated osteoclast differentiation. Cell Metab. 2013, 17, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Li, Q.; Feng, Z.; Zheng, L. STIM1 controls calcineurin/Akt/mTOR/NFATC2-mediated osteoclastogenesis induced by RANKL/M-CSF. Exp. Ther. Med. 2020, 20, 736–747. [Google Scholar] [CrossRef]
- Zhou, Y.; Lewis, T.L.; Robinson, L.J.; Brundage, K.M.; Schafer, R.; Martin, K.H.; Blair, H.C.; Soboloff, J.; Barnett, J.B. The role of calcium release activated calcium channels in osteoclast differentiation. J. Cell. Physiol. 2011, 226, 1082–1089. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.Y.; Putney, J.W. Orai1-mediated calcium entry plays a critical role in osteoclast differentiation and function by regulating activation of the transcription factor NFATc1. FASEB J. 2012, 26, 1484–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.Y.; Foley, J.; Numaga-Tomita, T.; Petranka, J.G.; Bird, G.S.; Putney, J.W., Jr. Deletion of Orai1 alters expression of multiple genes during osteoclast and osteoblast maturation. Cell Calcium 2012, 52, 488–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkhembaatar, M.; Gu, D.R.; Lee, S.H.; Yang, Y.M.; Park, S.; Muallem, S.; Shin, D.M.; Kim, M.S. Lysosomal Ca2+ Signaling is Essential for Osteoclastogenesis and Bone Remodeling. J. Bone Miner. Res. 2017, 32, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, N.; Bolsover, S.; Mason, W. Nuclear and cytosolic calcium changes in osteoclasts stimulated with ATP and integrin-binding peptide. Cell Calcium 1998, 24, 213–221. [Google Scholar] [CrossRef]
- Shankar, G.; Davison, I.; Helfrich, M.H.; Mason, W.T.; Horton, M.A. Integrin receptor-mediated mobilisation of intranuclear calcium in rat osteoclasts. J. Cell Sci. 1993, 105 Pt 1, 61–68. [Google Scholar]
- Huang, C.L.; Sun, L.; Fraser, J.A.; Grace, A.A.; Zaidi, M. Similarities and contrasts in ryanodine receptor localization and function in osteoclasts and striated muscle cells. Ann. N. Y. Acad. Sci. 2007, 1116, 255–270. [Google Scholar] [CrossRef]
- Kim, M.S.; Yang, Y.M.; Son, A.; Tian, Y.S.; Lee, S.I.; Kang, S.W.; Muallem, S.; Shin, D.M. RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J. Biol. Chem. 2010, 285, 6913–6921. [Google Scholar] [CrossRef] [Green Version]
- Robinson, L.J.; Mancarella, S.; Songsawad, D.; Tourkova, I.L.; Barnett, J.B.; Gill, D.L.; Soboloff, J.; Blair, H.C. Gene disruption of the calcium channel Orai1 results in inhibition of osteoclast and osteoblast differentiation and impairs skeletal development. Lab. Investig. 2012, 92, 1071–1083. [Google Scholar] [CrossRef]
- Picard, C.; McCarl, C.A.; Papolos, A.; Khalil, S.; Luthy, K.; Hivroz, C.; LeDeist, F.; Rieux-Laucat, F.; Rechavi, G.; Rao, A.; et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 2009, 360, 1971–1980. [Google Scholar] [CrossRef] [Green Version]
- Kawahara, I.; Koide, M.; Tadokoro, O.; Udagawa, N.; Nakamura, H.; Takahashi, N.; Ozawa, H. The relationship between calcium accumulation in osteoclast mitochondrial granules and bone resorption. Bone 2009, 45, 980–986. [Google Scholar] [CrossRef]
- Zaidi, M.; Datta, H.K.; Patchell, A.; Moonga, B.; MacIntyre, I. ‘Calcium-activated‘ intracellular calcium elevation: A novel mechanism of osteoclast regulation. Biochem. Biophys. Res. Commun. 1989, 163, 1461–1465. [Google Scholar] [CrossRef]
- Xu, J.; Wang, C.; Han, R.; Pavlos, N.; Phan, T.; Steer, J.H.; Bakker, A.J.; Joyce, D.A.; Zheng, M.H. Evidence of reciprocal regulation between the high extracellular calcium and RANKL signal transduction pathways in RAW cell derived osteoclasts. J. Cell. Physiol. 2005, 202, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, R.S.; Jiang, D.L.; He, X.L.; Jin, C.; Lu, W.G.; Su, Q.; Yuan, F.L. Acid-sensing ion channel 1a is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. FEBS Lett. 2013, 587, 3236–3242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teti, A.; Blair, H.C.; Schlesinger, P.; Grano, M.; Zambonin-Zallone, A.; Kahn, A.J.; Teitelbaum, S.L.; Hruska, K.A. Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures. J. Clin. Investig. 1989, 84, 773–780. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Qiu, H.; Yuan, Y.; Chen, K.; Cao, Z.; Xiang Tan, R.; Tickner, J.; Xu, J.; Zou, J. Asperpyrone A attenuates RANKL-induced osteoclast formation through inhibiting NFATc1, Ca2+ signalling and oxidative stress. J. Cell. Mol. Med. 2019, 23, 8269–8279. [Google Scholar] [CrossRef] [Green Version]
- Kaji, H.; Sugimoto, T.; Kanatani, M.; Chihara, K. High extracellular calcium stimulates osteoclast-like cell formation and bone-resorbing activity in the presence of osteoblastic cells. J. Bone Miner. Res. 1996, 11, 912–920. [Google Scholar] [CrossRef]
- Shirai, Y.; Yoshimura, Y.; Yawaka, Y.; Hasegawa, T.; Kikuiri, T.; Takeyama, S.; Matsumoto, A.; Oguchi, H. Effect of extracellular calcium concentrations on osteoclast differentiation in vitro. Biochem. Biophys. Res. Commun. 1999, 265, 484–488. [Google Scholar] [CrossRef]
- Shin, M.M.; Kim, Y.H.; Kim, S.N.; Kim, G.S.; Baek, J.H. High extracellular Ca2+ alone stimulates osteoclast formation but inhibits in the presence of other osteoclastogenic factors. Exp. Mol. Med. 2003, 35, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Xiang, B.; Liu, Y.; Zhao, W.; Zhao, H.; Yu, H. Extracellular calcium regulates the adhesion and migration of osteoclasts via integrin alphav beta 3 /Rho A/Cytoskeleton signaling. Cell Biol. Int. 2019, 43, 1125–1136. [Google Scholar] [CrossRef]
- Xiang, B.; Liu, Y.; Xie, L.; Zhao, Q.; Zhang, L.; Gan, X.; Yu, H. The osteoclasts attach to the bone surface where the extracellular calcium concentration decreases. Cell Biochem. Biophys. 2016, 74, 553–558. [Google Scholar] [CrossRef]
- Nielsen, R.H.; Karsdal, M.A.; Sorensen, M.G.; Dziegiel, M.H.; Henriksen, K. Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival. Biochem. Biophys. Res. Commun. 2007, 360, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Lorget, F.; Kamel, S.; Mentaverri, R.; Wattel, A.; Naassila, M.; Maamer, M.; Brazier, M. High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem. Biophys. Res. Commun. 2000, 268, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Kanatani, M.; Sugimoto, T.; Kanzawa, M.; Yano, S.; Chihara, K. High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem. Biophys. Res. Commun. 1999, 261, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Kameda, T.; Mano, H.; Yamada, Y.; Takai, H.; Amizuka, N.; Kobori, M.; Izumi, N.; Kawashima, H.; Ozawa, H.; Ikeda, K.; et al. Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem. Biophys. Res. Commun. 1998, 245, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.; Huo, R.; Samadfam, R.; Bolivar, I.; Miao, D.; Brown, E.M.; Hendy, G.N.; Goltzman, D. The calcium-sensing receptor and 25-hydroxyvitamin D-1alpha-hydroxylase interact to modulate skeletal growth and bone turnover. J. Bone Miner. Res. 2010, 25, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Mentaverri, R.; Yano, S.; Chattopadhyay, N.; Petit, L.; Kifor, O.; Kamel, S.; Terwilliger, E.F.; Brazier, M.; Brown, E.M. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J. 2006, 20, 2562–2564. [Google Scholar] [CrossRef]
- Hurtel-Lemaire, A.S.; Mentaverri, R.; Caudrillier, A.; Cournarie, F.; Wattel, A.; Kamel, S.; Terwilliger, E.F.; Brown, E.M.; Brazier, M. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J. Biol. Chem. 2009, 284, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Boudot, C.; Saidak, Z.; Boulanouar, A.K.; Petit, L.; Gouilleux, F.; Massy, Z.; Brazier, M.; Mentaverri, R.; Kamel, S. Implication of the calcium sensing receptor and the Phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells. Bone 2010, 46, 1416–1423. [Google Scholar] [CrossRef]
- Nicholson, G.C.; Moseley, J.M.; Sexton, P.M.; Mendelsohn, F.A.; Martin, T.J. Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J. Clin. Investig. 1986, 78, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Ikegame, M.; Ejiri, S.; Ozawa, H. Calcitonin-induced change in serum calcium levels and its relationship to osteoclast morphology and number of calcitonin receptors. Bone 2004, 35, 27–33. [Google Scholar] [CrossRef]
- Meleleo, D.; Picciarelli, V. Effect of calcium ions on human calcitonin. Possible implications for bone resorption by osteoclasts. Biometals 2016, 29, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.; Catala-Lehnen, P.; Huebner, A.K.; Jeschke, A.; Heckt, T.; Lueth, A.; Krause, M.; Koehne, T.; Albers, J.; Schulze, J.; et al. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. Nat. Commun. 2014, 5, 5215. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Matsushita, M. Proton concentrations can be a major contributor to the modification of osteoclast and osteoblast differentiation, working independently of extracellular bicarbonate ions. J. Bone Miner. Metab. 2014, 32, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Meghji, S.; Morrison, M.S.; Henderson, B.; Arnett, T.R. pH dependence of bone resorption: Mouse calvarial osteoclasts are activated by acidosis. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E112–E119. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Kawawaki, J.; Moriura, Y.; Mori, H.; Morihata, H.; Kuno, M. pH dependence and inhibition by extracellular calcium of proton currents via plasmalemmal vacuolar-type H+-ATPase in murine osteoclasts. J. Physiol. 2006, 576, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Callaway, D.A.; Jiang, J.X. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J. Bone Miner. Metab. 2015, 33, 359–370. [Google Scholar] [CrossRef] [PubMed]
Focused Molecules or Organs | Main Effect on Ca Oscillations | Animal or Cell Line | Pretreatment Condition or Cell Type | Reagents for Ca2+ Measurement | Measurement Interval (s) | Assessment of Ca Oscillations | First Author | Year | |
---|---|---|---|---|---|---|---|---|---|
NFATc1, RANKL, IL-1 | IL-1, suppressive | Mouse | 24–72 h RAKNL & M-CSF | ratiometry, Fluo-4 & Fura Red | 5 | by appearance | Takayanagi | 2002 | [8] |
ITAM, costimulatory signals | Dap12 KO, suppressive | Mouse | 24 h RANKL & M-CSF | ratiometry, Fluo-4 & Fura Red | 5 | by appearance | Koga | 2004 | [15] |
protein tyrosine kinase (PTK) | PTK inhibitors, [Ca2+]i level↑ | Rat | Osteoclast | ratiometry, Fura-2 | 2 to 3 | by appearance | Kajiya | 2000 | [18] |
IL-10 | IL-10, suppressive | Human | 24 h RANKL | ratiometry, Fura-2 | 15 | by appearance | Park-Min | 2009 | [19] |
immune complex, FcRγ | Fcgr3 KO, promotive | Mouse | BMM | ratiometry, Fluo-4 & Fura Red | 5 | by appearance | Negishi-Koga | 2015 | [20] |
CTLA4, FcRγ | CTLA4-Ig, suppressive | Mouse | BMM | ratiometry, Fura-2 | 2 to 3 | difference, wavelet method | Okada | 2019 | [21] |
Focused Molecules or Organs | Main Effect on Ca Oscillations | Animal or Cell Line | Pretreatment Condition or Cell Type | Reagents for Ca2+ Measurement | Measurement Interval (s) | Assessment of Ca Oscillations | First Author | Year | |
---|---|---|---|---|---|---|---|---|---|
TRPV2, Stim1, Orai1 | Trpv2 KD, suppressive; Stim1 KD, suppressive; Orai1 KD, suppressive | RAW cell | 18, 48 h RANKL | ratiometry, Fura-2 | 2 to 3 | oscillation frequency | Kajiya | 2010 | [32] |
TRPV2, multiple myeloma (MM) | Trpv2 overexpression, Ca2+ influx faster | RAW, MM cell | response to outcellular Ca | normalized intensity, Fluo-4 | 5 | response curve | Bai | 2018 | [33] |
TRPV4, Stim1 | Trpv4 KD, oscillation peak↓; Stim1 KD, oscillation peak↓ | RAW cell | 4, 8 day RANKL & M-CSF | normalized intensity, Fluo-4 | 1.5 | peak number, time to peak | Li | 2018 | [34] |
TRPV4 | TRPV4 activation, Ca2+ influx↑ | Mouse | 5 day RANKL & M-CSF | ratiometry, Fura-2 | 2 to 3 | %oscillations, peak frequency, amplitude | Masuyama | 2008 | [35] |
TRPV4 | TRPV4 activation, Ca2+ influx↑ | Mouse | Osteoclast | ratiometry, Fura-2 | 2 to 3 | by appearance | Masuyama | 2012 | [36] |
TRPV5 | TRPV5 KD, no RANKL-induced [Ca2+]i elevation | Human | acute RANKL stimulation to Osteoclast | ratiometry, Fura-2 | 2 | intracellular Ca concentration change | Chamoux | 2010 | [37] |
TRPV6 | Trpv6 KO, no change | Mouse | 72 h M-CSF | ratiometry, Fluo-4 & Fura Red | 5 | by appearance | Chen | 2014 | [38] |
TRPC6, TRPC3 | Trpc6 KD, [Ca2+]i level↑; TRPC3 inhibition [Ca2+]i level↓ | RAW cell | 1 day RANKL | ratiometry, Fura-2 | <2 | intracellular Ca concentration change | Klein | 2020 | [39] |
cation sensitive receptors | Ni2+, [Ca2+]i level↑; K+ ionophore, [Ca2+]i level↓ | Rat | Osteoclast | ratiometry, Fura-2 | 1 | by appearance | Pazianas | 1993 | [40] |
T-type Ca2+ channel Cav3.2 | Cav3.2 inhibition, suppressive | Mouse | 3 day RANKL & M-CSF | ratiometry, Fluo-4 & Fura Red | 10 | by appearance | Koide | 2009 | [41] |
voltage-gated Ca2+ channel | voltage-gated Ca2+ channel activation, [Ca2+]i level↑ | Chicken | Osteoclast | ratiometry, Fura-2 | <2 | by appearance | Miyauchi | 1990 | [42] |
RGS12 | Rgs12 KD, suppressive | Mouse, RAW cell | 24, 48, 72 h RANKL & M-CSF | ratiometry, Fluo-4 & Fura Red | 5 | by appearance | Yang | 2007 | [43] |
RGS12 | Rgs12 KO, suppressive | Mouse | 24 h RANKL & M-CSF | intensity, Fluo-4 | 5 | by appearance | Yuan | 2015 | [44] |
RGS10 | Rgs10 KO, suppressive | Mouse | 72 h RANKL & M-CSF | ratiometry, Fluo-4 & Fura Red | 5 | by appearance | Yang | 2007 | [45] |
Ca2+-activated K+ channel KCa3.1 | KCa3.1 inhibition, RANKL-induced [Ca2+]i change↓ | Mouse | acute RANKL stimulation to BMM | normalized intensity, Fluo-4 | 1 | %response cells, amplitude | Grossinger | 2018 | [46] |
K+ channel subfamily K member 1 (KCNK1) | KCNK1 overexpression, suppressive; high [K+]o, suppressive | Mouse | 48 h RANKL & M-CSF | ratiometry, Fura-2 | 2 to 3 | by appearance | Yeon | 2015 | [47] |
membrane potential change via K+ channels | high [K+]o & [Ca2+]i high -> [Ca2+]i level↓, high [K+]o & [Ca2+]i low -> [Ca2+]i level↑ | Rat | Osteoclast | ratiometry, Fura-2 | 2 to 3 | by appearance | Kajiya | 2003 | [48] |
plasma membrane Ca2+-ATPase (PMCA) | PMCA KD, promotive | Mouse | 2 day RANKL & M-CSF | ratiometry, Fura-2 | 0.5 | by appearance | Kim | 2012 | [49] |
Na+-Ca2+ exchanger (NCX) | NCX inhibitors, [Na+]o-free-induced [Ca2+]i increase↓ | Mouse | Osteoclast | ratiometry, Fura-2 | <5 | relative change of ratio, rate of change | Li | 2007 | [50] |
Focused Molecules or Organs | Main Effect on Ca Oscillations | Animal or Cell Line | Pretreatment Condition or Cell Type | Reagents for Ca2+ Measurement | Measurement Interval (s) | Assessment of Ca Oscillations | First Author | Year | |
---|---|---|---|---|---|---|---|---|---|
Ryanodine, Ruthenium Red | Ryanodine, [Ca2+]i level↑; Ruthenium Red, [Ca2+]i level↓ | Rat | Osteoclast | ratiometry, Fura-2 | ~10 | by appearance | Ritchie | 1995 | [74] |
inositol 1,4,5-trisphosphate receptor (IP3R) | IP3R type 2,3 KO, suppressive | Mouse | 48–72 h RANKL & M-CSF | ratiometry, Fura-2 | <5 | by appearance | Kuroda | 2008 | [75] |
Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) | SERCA2 +/−, BMM: initial peak↓& preOC: spikes↓ | Mouse | BMM, 48 h RANKL | ratiometry, Fura-2 | 2 | peak ratio, spike frequency | Yang | 2009 | [76] |
Transmembrane(Tmem)178 | Tmem 178 KO, [Ca2+]i level↑ | Mouse | BMM, pre osteoclast | ratiometry, Fura-2 | 2 | by appearance | Decker | 2015 | [77] |
Tmem64, SERCA | Tmem64 KO, suppressive | Mouse | 48 h RANKL & M-CSF | ratiometry, Fluo-4 & Fura Red | 5 | by appearance | Kim | 2013 | [78] |
Stim1 | Stim1 mutations, Store-operated Ca2+ entry↓& M-CSF+RANKL-induced [Ca2+]i elevation↓ | Human | BMM | ratiometry, Fura-2 | <2 | by appearance | Huang | 2020 | [79] |
CRAC channel | RANKL stimulation, Ca2+ influx longer | Human | 0, 1, 3, 7, 11 day RANKL & M-CSF | ratiometry, Fura-2 | 1.5 | %oscillation cells, average Ca entry | Zhou | 2011 | [80] |
Orai1 | Orai1 KD, [Ca2+]o↑→[Ca2+]i elevation↓ | RAW cell | RAW cell | ratiometry, Fura-2 | <10 | peak value, initial rate of rise | Hwang | 2012 | [81] |
Orai1 | Orai1 KO, [Ca2+]o↑→[Ca2+]i elevation↓ | Mouse | BM-derived stromal cells | ratiometry, Fura-2 | <10 | by appearance | Hwang | 2012 | [82] |
TRPML1, Lysosome | TRPML1 KO, spike number & amplitude↓ | Mouse | 48 h RANKL | ratiometry, Fura-2 | <10 | spike frequency, by appearance | Erkhembaatar | 2017 | [83] |
Nuclear, Cytosolic | ATP, [Ca2+]i level↑, Integrin-binding peptide, [Ca2+]i level↑, | Rat | Osteoclast | ratiometry, Fura-2 | <2 | by appearance | Parkinson | 1998 | [84] |
Nuclear, integrin receptor | integrin ligands, [Ca2+]i level↑ | Rat | Osteoclast | ratiometry, Fura-2 | <3 | by appearance | Shankar | 1993 | [85] |
Focused Molecules or Organs | Main Effect on Ca Oscillations | Animal or Cell Line | Pretreatment Condition or Cell Type | Reagents for Ca2+ Measurement | Measurement Interval (s) | Assessment of Ca Oscillations | First Author | Year | |
---|---|---|---|---|---|---|---|---|---|
extracellular Ca2+ | [Ca2+]o↑, [Ca2+]i level↑ | Rat | Osteoclast | ratiometry, indo-1 | <5 | by appearance | Zaidi | 1989 | [91] |
extracellular Ca2+ | [Ca2+]o↑, [Ca2+]i level↑ | RAW cell | Osteoclast | ratiometry, Fura-2 | <10 | by appearance | Xu | 2005 | [92] |
Acid-sensing ion channel (ASIC) 1a | acid, [Ca2+]i level↑, acid & ASIC1a inhibition, [Ca2+]i level↑diminished | Rat | Osteoclast | ratiometry, Fura-2 | <5 | amplitude, by appearance | Li | 2013 | [93] |
extracellular proton (pH) | acid, [Ca2+]i level↑ | Rat | Osteoclast | ratiometry, Fura-2 | <5 | by appearance | Teti | 1989 | [94] |
oxidative stress, asperpyrone A (antioxidant) | asperpyrone A, suppressive | Mouse | 24 h RANKL | intensity, Fluo-4 | 2 | intensity change | Chen | 2019 | [95] |
Reactive Oxygen Species (ROS) | peroxiredoxin(Prx) II KO (ROS↑), promotive | Mouse | BMM, 48 h RANKL | ratiometry, Fura-2 | <10 | spike frequency | Kim | 2010 | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, H.; Okabe, K.; Tanaka, S. Finely-Tuned Calcium Oscillations in Osteoclast Differentiation and Bone Resorption. Int. J. Mol. Sci. 2021, 22, 180. https://doi.org/10.3390/ijms22010180
Okada H, Okabe K, Tanaka S. Finely-Tuned Calcium Oscillations in Osteoclast Differentiation and Bone Resorption. International Journal of Molecular Sciences. 2021; 22(1):180. https://doi.org/10.3390/ijms22010180
Chicago/Turabian StyleOkada, Hiroyuki, Koji Okabe, and Sakae Tanaka. 2021. "Finely-Tuned Calcium Oscillations in Osteoclast Differentiation and Bone Resorption" International Journal of Molecular Sciences 22, no. 1: 180. https://doi.org/10.3390/ijms22010180
APA StyleOkada, H., Okabe, K., & Tanaka, S. (2021). Finely-Tuned Calcium Oscillations in Osteoclast Differentiation and Bone Resorption. International Journal of Molecular Sciences, 22(1), 180. https://doi.org/10.3390/ijms22010180