Essential (Mg, Fe, Zn and Cu) and Non-Essential (Cd and Pb) Elements in Predatory Insects (Vespa crabro and Vespa velutina): A Molecular Perspective
Abstract
:1. Introduction
2. Results
2.1. Essential and Non-Essential Elements
2.2. Size Exclusion Chromatography and Element Speciation
2.3. SDS–PAGE and Protein Identification Using Mass Spectrometry
3. Discussion
3.1. Essential and Non-Essential Elements
3.2. Factors Affecting Element Concentration and Metabolism
3.3. Proteins Identified
4. Materials and Methods
4.1. Sample Collection
4.2. Metal Analysis
4.3. Size Exclusion Chromatography
4.4. SDS–PAGE
4.5. Protein Identification Using Mass Spectrometry
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAS | Atomic absorption spectrometry |
ACN | Acetonitrile |
ATP | Adenosine triphosphate |
CE | Cytosolic extracts |
DTT | Dithiothreitol |
FDR | False discovery rate |
GO | Gene ontology |
GTP | Guanosine triphosphate |
HCD | Higher energy collision dissociation |
HMM | High molecular mass |
LC-ESI-QO-MS | Liquid chromatography–electrospray ionization quadrupole orbitrap mass spectrometer |
LMM | Low molecular mass |
MES | 2-(N-morpholino) ethanesulfonic acid buffer |
Mts | Metallothioneins |
SD | Standard deviation |
SOD | Superoxide dismutase |
SDS–PAGE | Sodium dodecyl sulfate-polyacrylamide gel electrophoresis |
UHPLC-MS | Ultra high-performance liquid chromatography mass spectrometer |
ww | Wet weight |
References
- Calap-Quintana, P.; González-Fernández, J.; Sebastiá-Ortega, N.; Llorens, J.; Moltó, M. Drosophila melanogaster models of metal-related human diseases and metal toxicity. Int. J. Mol. Sci. 2017, 18, 1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, M.E. Vespine Wasps of the World. Behaviour, Ecology & Taxonomy of the Vespinae; Siri Scientific Press: Rochdale, UK, 2012. [Google Scholar]
- Shaw, F.R.; Weidhaas, J. Distribution and habits of the giant hornet in North America. J. Econ. Entomol. 1956, 49, 275. [Google Scholar] [CrossRef]
- Monceau, K.; Bonnard, O.; Thiéry, D. Vespa velutina: A new invasive predator of honeybees in Europe. J. Pest Sci. 2014, 87, 1–16. [Google Scholar] [CrossRef]
- Regulation EU No 1143/2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 2014, 317, 35–55.
- European Union. Regulation EU No 1141/2016 adopting a list of invasive alien species of Union concern pursuant to Regulation (EU) No 1143/2014 of the European Parliament and of the Council. Off. J. Eur. Union 2016, 189, 4–8. [Google Scholar]
- Smith, K.E.; Weis, D. Evaluating spatiotemporal resolution of trace element concentrations and Pb isotopic compositions of honeybees and hive products as biomonitors for urban metal distribution. GeoHealth 2020, 4, e2020GH000264. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef]
- Mounicou, S.; Szpunar, J.; Lobinski, R. Metallomics: The concept and methodology. Chem. Soc. Rev. 2009, 38, 1119–1138. [Google Scholar] [CrossRef]
- Skaldina, O.; Ciszek, R.; Peräniemi, S.; Kolehmainen, M.; Sorvari, J. Facing the threat: Common yellowjacket wasps as indicators of heavy metal pollution. Environ. Sci. Pollut. Res. 2020, 27, 29031–29042. [Google Scholar] [CrossRef]
- Goretti, E.; Pallottini, M.; Rossi, R.; La Porta, G.; Gardi, T.; Cenci Goga, B.T.; Elia, A.C.; Galletti, M.; Moroni, B.; Petroselli, C.; et al. Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in terrestrial environments. Environ. Pollut. 2020, 256, 113388. [Google Scholar] [CrossRef]
- Cini, A.; Cappa, F.; Petrocelli, I.; Pepiciello, I.; Bortolotti, L.; Cervo, R. Competition between the native and the introduced hornets Vespa crabro and Vespa velutina: A comparison of potentially relevant life-history traits. Ecol. Entomol. 2018, 43, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Suarez, R.K.; Darveau, C.A.; Welch, K.C.; O’Brien, D.M.; Roubik, D.W.; Hochachka, P.W. Energy metabolism in orchid bee flight muscles: Carbohydrate fuels all. J. Exp. Biol. 2005, 208, 3573–3579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvard, D.; Imbault, V.; Darrouzet, É. Flight capacities of yellow-legged hornet (Vespa velutina nigrithorax, Hymenoptera: Vespidae) workers from an invasive population in Europe. PLoS ONE 2018, 13, e0198597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiewok, S.; Schmolz, E. Changes in temperature and light alter the flight speed of hornets (Vespa crabro L.). Physiol. Biochem. Zool. 2006, 79, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Maggiora, R.; Saccani, M.; Milanesio, D.; Porporato, M. An innovative harmonic radar to track flying insects: The case of Vespa velutina. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Polidori, C.; Pastor, A.; Jorge, A.; Pertusa, J. Ultrastructural alterations of midgut epithelium, but not greater wing fluctuating asymmetry, in paper wasps (Polistes dominula) from urban environments. Microsc. Microanal. 2018, 24, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Urbini, A.; Sparvoli, E.; Turillazzi, S. Social paper wasps as bioindicators: A preliminary research with Polistes dominulus (Hymenoptera Vespidae) as a trace metal accumulator. Chemosphere 2006, 64, 697–703. [Google Scholar] [CrossRef]
- Kwon, O.; Choi, M.B. Interspecific hierarchies from aggressiveness and body size among the invasive alien hornet, Vespa velutina nigrithorax, and five native hornets in South Korea. PLoS ONE 2020, 15, e0226934. [Google Scholar] [CrossRef]
- Carisio, L.; Cerri, J.; Lioy, S.; Bianchi, E.; Bertolino, S.; Porporato, M. Introduced Vespa velutina does not replace native Vespa crabro and Vespula species. EcoEvoRxiv 2020, 1–23. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.A.; Boyd, A.; House, M.; Cowin, G.; Baer, B. Multi-modal imaging and analysis in the search for iron-based magnetoreceptors in the honeybee Apis mellifera. R. Soc. Open Sci. 2018, 5, 181163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.-Y. The processes of iron deposition in the common hornet (Vespa affinis). Biol. Cell 2004, 96, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Baranyai, E.; Braun, M.; Fábián, I.; Tóthmérész, B. Elemental concentration in mealworm beetle (Tenebrio molitor L.) during metamorphosis. Biol. Trace Elem. Res. 2013, 154, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalke, B.; Nischwitz, V. Review on metal speciation analysis in cerebrospinal fluid-current methods and results: A review. Anal. Chim. Acta 2010, 682, 23–36. [Google Scholar] [CrossRef]
- García-Sevillano, M.A.; González-Fernández, M.; Jara-Biedma, R.; García-Barrera, T.; López-Barea, J.; Pueyo, C.; Gómez-Ariza, J.L. Biological response of free-living mouse Mus spretus from Doñana National Park under environmental stress based on assessment of metal-binding biomolecules by SEC-ICP-MS. Anal. Bioanal. Chem. 2012, 404, 1967–1981. [Google Scholar] [CrossRef]
- González-Fernández, M.; García-Barrera, T.; Arias-Borrego, A.; Jurado, J.; Pueyo, C.; López-Barea, J.; Gómez-Ariza, J.L. Metallomics integrated with proteomics in deciphering metal-related environmental issues. Biochimie 2009, 91, 1311–1317. [Google Scholar] [CrossRef]
- Andrews, N.C. Forging a field: The golden age of iron biology. Blood 2008, 112, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhou, B. Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J. 2013, 27, 288–298. [Google Scholar] [CrossRef]
- Richardson, D.R.; Lane, D.J.R.; Becker, E.M.; Huang, M.L.H.; Whitnall, M.; Rahmanto, Y.S.; Sheftel, A.D.; Ponka, P. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl. Acad. Sci. USA 2010, 107, 10775–10782. [Google Scholar] [CrossRef] [Green Version]
- Kuterbach, D.A.; Walcott, B. Iron-containing cells in the honey-bee (Apis mellifera): Accumulation during development. J. Exp. Biol. 1986, 126, 389–401. [Google Scholar]
- Carpenè, E.; Andreani, G.; Isani, G. Trace elements in unconventional animals: A 40-year experience. J. Trace Elem. Med. Biol. 2017, 43, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, Ł.; Kepinska, M.; Milnerowicz, H. The copper-zinc superoxide dismutase activity in selected diseases. Eur. J. Clin. Investig. 2019, 49, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, W.; Sohal, R. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994, 263, 1128–1130. [Google Scholar] [CrossRef] [PubMed]
- Margotta, J.W.; Roberts, S.P.; Elekonich, M.M. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J. Exp. Biol. 2018, 221, jeb183228. [Google Scholar] [CrossRef] [Green Version]
- Isani, G.; Carpenè, E. Metallothioneins, unconventional proteins from unconventional animals: A long journey from nematodes to mammals. Biomolecules 2014, 4, 435–457. [Google Scholar] [CrossRef] [Green Version]
- Andreani, G.; Carpenè, E.; Capranico, G.; Isani, G. Metallothionein cDNA cloning, metallothionein expression and heavy metals in Scapharca inaequivalvis along the Northern Adriatic coast of Italy. Ecotoxicol. Environ. Saf. 2011, 74, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Dallinger, R.; Berger, B.; Hunziger, P.; Kgi, J.H.R. Metallothionein in snail Cd and Cu metabolism. Nature 1997, 388, 237–238. [Google Scholar] [CrossRef] [PubMed]
- Purać, J.; Nikolić, T.V.; Kojić, D.; Ćelić, A.S.; Plavša, J.J.; Blagojević, D.P.; Petri, E.T. Identification of a metallothionein gene in honey bee Apis mellifera and its expression profile in response to Cd, Cu and Pb exposure. Mol. Ecol. 2019, 28, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Atanesyan, L.; Günther, V.; Celniker, S.E.; Georgiev, O.; Schaffner, W. Characterization of MtnE, the fifth metallothionein member in Drosophila. J. Biol. Inorg. Chem. 2011, 16, 1047–1056. [Google Scholar] [CrossRef] [Green Version]
- Egli, D.; Yepiskoposyan, H.; Selvaraj, A.; Balamurugan, K.; Rajaram, R.; Simons, A.; Multhaup, G.; Mettler, S.; Vardanyan, A.; Georgiev, O.; et al. A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol. Cell. Biol. 2006, 26, 2286–2296. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Rafael, S.; Kurz, A.; Guirola, M.; Capdevila, M.; Palacios, Ò.; Atrian, S. Is MtnE, the fifth Drosophila metallothionein, functionally distinct from the other members of this polymorphic protein family? Metallomics 2012, 4, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.A.; Schneuwly, S. Copper and zinc homeostasis: Lessons from Drosophila melanogaster. Front. Genet. 2017, 8, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Habara, O.; Kubo, H.; Nishimura, T. Correction: Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development 2018, 145, dev165910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zmasek, C.M.; Godzik, A. Phylogenomic analysis of glycogen branching and debranching enzymatic duo. BMC Evol. Biol. 2014, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, S.G.; Bates, P.; Dillon, R.; Genta, F.A. Characterization of α-glucosidases from Lutzomyia longipalpis reveals independent hydrolysis systems for plant or blood sugars. Front. Physiol. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shi, L.; Zhou, Y.; Xie, H.; Dai, X.; Li, R.; Chen, Y.; Wang, H. Molecular evolutionary mechanisms driving functional diversification of α-glucosidase in Lepidoptera. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shukla, E.; Thorat, L.J.; Nath, B.B.; Gaikwad, S.M. Insect trehalase: Physiological significance and potential applications. Glycobiology 2015, 25, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Richter, M. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 2000, 45, 121–150. [Google Scholar] [CrossRef]
- Beenakkers, A.M.T.; Van der Horst, D.J.; Van Marrewijk, W.J.A. Insect flight muscle metabolism. Insect Biochem. 1984, 14, 243–260. [Google Scholar] [CrossRef]
Species | Body Parts | Mg | Fe | Zn | Cu | Cd | Pb |
---|---|---|---|---|---|---|---|
V. crabro | whole body n = 60 | 378.16 ± 70.12 A | 70.61 ± 18.02 A | 35.62 ± 6.97 A | 11.79 ± 2.10 A | 44.92 ± 22.51 A | 101.00 ± 94.67 A |
V. crabro | head N = 10 | 365.40 ± 23.61 A a | 23.78 ± 8.37 A a | 28.82 ± 3.14 A a | 6.68 ± 1.46 A a | 39.63 ± 38.84 A ab | 128.20 ± 2.54 A b |
V. crabro | thorax N = 10 | 308.06 ± 28.95 A b | 27.39 ± 11.82 A a | 21.81 ± 2.18 A b | 8.54 ± 1.40 A b | 6.29 ± 0.40 A b | 22.04 ± 2.89 A a |
V. crabro | abdomen N = 10 | 394.38 ± 55.92 A a | 71.60 ± 9.08 A b | 46.93 ± 16.11 A c | 11.96 ± 3.10 A c | 65.54 ± 44.20 A a | 80.56 ± 77.19 A ab |
V. velutina | whole body n = 60 | 300.62 ± 58.69 B | 46.66 ± 7.27 B | 23.98 ± 3.94 B | 12.67 ± 2.48 A | 61.70 ± 25.27 A | 30.91 ± 17.76 B |
V. velutina | head N = 10 | 329.63 ± 6.25 B a | 14.89 ± 0.61 B a | 26.60 ± 1.47 A a | 6.22 ± 0.67 A a | 47.59 ± 27.53 A ab | 37.71 ± 23.32 B a |
V. velutina | thorax N = 10 | 324.71 ± 18.65 A a | 28.31 ± 1.73 B b | 20.02 ± 1.29 B b | 9.54 ± 0.57 A b | 11.91 ± 0.33 B a | 11.78 ± 1.88 B a |
V. velutina | abdomen N = 10 | 269.15 ± 32.27 B b | 69.92 ± 8.90 A c | 39.71 ± 8.63 A c | 24.06 ± 2.63 B c | 163.92 ± 33.98 A b | 69.79 ± 22.60 A a |
Mg | Fe | Zn | Cu | Cd | Pb | |
---|---|---|---|---|---|---|
Adult whole body n = 60 | 378.16 ± 70.12 a | 70.61 ± 18.02 a | 35.62 ± 6.97 a | 11.79 ± 2.10 a | 44.92 ± 22.51 a | 101.00 ± 94.67 a |
Pupa n = 30 | 264.94 ± 62.63 b | 29.33 ± 7.17 b | 13.56 ± 1.59 b | 4.71 ± 0.67 b | 7.56 ± 12.77 ab | 15.55 ± 13.53 b |
Larva n = 30 | 240.64 ± 67.61 b | 38.01 ± 18.17 b | 18.79 ± 8.44 b | 5.85 ± 2.75 b | 49.34 ± 44.78 b | 10.78 ± 5.15 b |
Queen n = 5 | 164.28 ± 26.12 c | 41.21 ± 9.58 b | 81.94 ± 60.74 a | 12.57 ± 5.15 a | 52.33 ± 11.68 ab | 33.58 ± 33.96 a |
Meconium n = 10 | 641.91 ± 89.85 | 251.26 ± 74.27 | 180.76 ± 111.79 | 53.56 ± 5.54 | 296.19 ± 46.28 | 141.14 ± 81.24 |
Mg | Fe | Zn | Cu | |||||
---|---|---|---|---|---|---|---|---|
P | CE | P | CE | P | CE | P | CE | |
Larva | 33 ± 2 A | 67 ± 2 B | 42 ± 8 A | 58 ± 8 A | 36 ± 1 A | 64 ± 1 B | 17 ± 5 A | 83 ± 5 B |
Pupa | 41 ± 6 A | 59 ± 6 B | 84 ± 2 A | 16 ± 2 B | 53 ± 6 A | 47 ± 6 A | 39 ± 5 A | 61 ± 5 B |
Adult | 87 ± 3 A | 13 ± 3 B | 72 ± 8 A | 28 ± 8 B | 47 ± 5 A | 53 ± 5 A | 56 ± 9 A | 44 ± 9 A |
Band 1 | Entry Name 2 | Protein Full Name | MW (Da) 3 | Score 4 | Sign. Pept.5 | Sign Seq.6 | Organism |
---|---|---|---|---|---|---|---|
1 | A0A088ALS8 | 4-alpha-glucanotransferase | 178,903 | 221 | 15 | 12 | Apis mellifera |
A0A088A777 | Sodium channel protein | 292,184 | 17 | 2 | 2 | Apis mellifera | |
2 | A1IHL0 | Alpha-glucosidase isozyme | 66,623 | 52 | 2 | 1 | Apis cerana japonica |
A0A088AUT8 | Trehalase | 77,540 | 37 | 2 | 2 | Apis mellifera | |
BIP_DROME | Endoplasmic reticulum chaperone BiP | 72,330 | 59 | 3 | 3 | Drosophila melanogaster | |
3 | A0A088AHC8 | Glyceraldehyde-3-phosphate dehydrogenase | 36,146 | 192 | 13 | 8 | Apis mellifera |
A0A088AUT2 | Uncharacterized protein | 1,067,315 | 68 | 7 | 7 | Apis mellifera | |
V9IJ78 | Enolase | 29,942 | 59 | 2 | 2 | Apis cerana | |
G6PI_DROME | Glucose-6-phosphate isomerase | 62,585 | 52 | 3 | 3 | Drosophila melanogaster | |
4 | A0A088A4K0 | Phosphoglycerate mutase 2 | 35,396 | 187 | 10 | 6 | Apis mellifera |
5 | A0A088A933 | Superoxide dismutase [Cu-Zn] | 15,795 | 89 | 4 | 2 | Apis mellifera |
A4ZXC4 | Triosephosphate isomerase | 26,939 | 30 | 2 | 2 | Apis mellifera | |
6 | A0A087ZYC6 | Dynein light chain 2, cytoplasmic | 10,465 | 57 | 3 | 3 | Apis mellifera |
7 | A0A088AN20 | Ubiquitin-like domain-containing protein | 14,979 | 333 | 32 | 6 | Apis mellifera |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreani, G.; Ferlizza, E.; Cabbri, R.; Fabbri, M.; Bellei, E.; Isani, G. Essential (Mg, Fe, Zn and Cu) and Non-Essential (Cd and Pb) Elements in Predatory Insects (Vespa crabro and Vespa velutina): A Molecular Perspective. Int. J. Mol. Sci. 2021, 22, 228. https://doi.org/10.3390/ijms22010228
Andreani G, Ferlizza E, Cabbri R, Fabbri M, Bellei E, Isani G. Essential (Mg, Fe, Zn and Cu) and Non-Essential (Cd and Pb) Elements in Predatory Insects (Vespa crabro and Vespa velutina): A Molecular Perspective. International Journal of Molecular Sciences. 2021; 22(1):228. https://doi.org/10.3390/ijms22010228
Chicago/Turabian StyleAndreani, Giulia, Enea Ferlizza, Riccardo Cabbri, Micaela Fabbri, Elisa Bellei, and Gloria Isani. 2021. "Essential (Mg, Fe, Zn and Cu) and Non-Essential (Cd and Pb) Elements in Predatory Insects (Vespa crabro and Vespa velutina): A Molecular Perspective" International Journal of Molecular Sciences 22, no. 1: 228. https://doi.org/10.3390/ijms22010228
APA StyleAndreani, G., Ferlizza, E., Cabbri, R., Fabbri, M., Bellei, E., & Isani, G. (2021). Essential (Mg, Fe, Zn and Cu) and Non-Essential (Cd and Pb) Elements in Predatory Insects (Vespa crabro and Vespa velutina): A Molecular Perspective. International Journal of Molecular Sciences, 22(1), 228. https://doi.org/10.3390/ijms22010228