Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How
Abstract
:1. Introduction
2. Epigenetic Modulation of Gene Expression
3. Epigenetic Abnormalities in Embryos, Fetuses and Offspring Derived by SCNT
4. Non-Specific Modulators of the Epigenome
5. Specific Attempts to Modulate the Epigenome
5.1. Manipulation of Methyl-CpG-Binding Domain Proteins and Transcription Factors
5.2. Transcriptional and Epigenetic Modulation of Xist
5.3. Modulation of Histone Methylation
5.4. Modulation of Genomic Imprinting
5.5. Transcriptional Manipulation and Epigenome Editing Using dCas9
6. Combined Approaches for Manipulating the Epigenome
7. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavatte-Palmer, P.; Tarrade, A.; Kiefer, H.; Duranthon, V.; Jammes, H. Breeding animals for quality products: Not only genetics. Reprod. Fertil. Dev. 2016, 28, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Halley-Stott, R.P.; Pasque, V.; Gurdon, J. Nuclear reprogramming. Development 2013, 140, 2468–2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmut, I.; Schnieke, A.E.; McWhir, J.; Kind, A.J.; Campbell, K.H. Viable offspring derived from fetal and adult mammalian cells. Nature 1997, 385, 810–813. [Google Scholar]
- Loi, P.; Iuso, D.; Czernik, M.; Ogura, A. A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol. 2016, 34, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Qu, P.; Wang, Y.; Zhang, C.; Liu, E. Insights into the roles of sperm in animal cloning. Stem Cell Res. Ther. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keefer, C.L. Artificial cloning of domestic animals. Proc. Natl. Acad. Sci. USA 2015, 112, 8874–8878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vajta, G. Cloning: A Sleeping Beauty Awaiting the Kiss? Cell. Reprogramming 2018, 20, 145–156. [Google Scholar] [CrossRef]
- Galli, C.; Duchi, R.; Colleoni, S.; Lagutina, I.; Lazzari, G. Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: From the research laboratory to clinical practice. Theriogenology 2014, 81, 138–151. [Google Scholar] [CrossRef]
- Wells, K.D.; Prather, R.S. Genome-editing technologies to improve research, reproduction, and production in pigs. Mol. Reprod. Dev. 2017, 84, 1012–1017. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Uh, K.; Farrell, K. Current progress of genome editing in livestock. Theriogenology 2020, 150, 229–235. [Google Scholar] [CrossRef]
- Längin, M.; Mayr, T.; Reichart, B.; Michel, S.; Buchholz, S.; Guethoff, S.; Dashkevich, A.; Baehr, A.; Egerer, S.; Bauer, A. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 2018, 564, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.; Kemter, E.; Klymiuk, N.; Reichart, B. Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation. Anim. Front. 2019, 9, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klymiuk, N.; Blutke, A.; Graf, A.; Krause, S.; Burkhardt, K.; Wuensch, A.; Krebs, S.; Kessler, B.; Zakhartchenko, V.; Kurome, M. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum. Mol. Genet. 2013, 22, 4368–4382. [Google Scholar] [CrossRef] [Green Version]
- Kemter, E.; Cohrs, C.M.; Schäfer, M.; Schuster, M.; Steinmeyer, K.; Wolf-van Buerck, L.; Wolf, A.; Wuensch, A.; Kurome, M.; Kessler, B. INS-eGFP transgenic pigs: A novel reporter system for studying maturation, growth and vascularisation of neonatal islet-like cell clusters. Diabetologia 2017, 60, 1152–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, A.; Fonteyne, L.; Giesert, F.; Hoppmann, P.; Meier, A.; Bozoglu, T.; Baehr, A.; Schneider, C.; Sinnecker, D.; Klett, K. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat. Med. 2020, 26, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Monzani, P.S.; Adona, P.R.; Ohashi, O.M.; Meirelles, F.V.; Wheeler, M.B. Transgenic bovine as bioreactors: Challenges and perspectives. Bioengineered 2016, 7, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tachibana, M.; Amato, P.; Sparman, M.; Gutierrez, N.M.; Tippner-Hedges, R.; Ma, H.; Kang, E.; Fulati, A.; Lee, H.-S.; Sritanaudomchai, H. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013, 153, 1228–1238. [Google Scholar] [CrossRef] [Green Version]
- Long, C.R.; Westhusin, M.E.; Golding, M.C. Reshaping the transcriptional frontier: Epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 2014, 81, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Simmet, K.; Zakhartchenko, V.; Philippou-Massier, J.; Blum, H.; Klymiuk, N.; Wolf, E. OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proc. Natl. Acad. Sci. USA 2018, 115, 2770–2775. [Google Scholar] [CrossRef] [Green Version]
- Piedrahita, J.A.; Mir, B.; Dindot, S.; Walker, S. Somatic cell cloning: The ultimate form of nuclear reprogramming? J. Am. Soc. Nephrol. 2004, 15, 1140–1144. [Google Scholar] [CrossRef] [Green Version]
- Maruotti, J.; Jouneau, A.; Renard, J.-P. Faithful reprogramming to pluripotency in mammals-what does nuclear transfer teach us? Int. J. Dev. Biol. 2011, 54, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Ogura, A.; Inoue, K.; Wakayama, T. Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20110329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, C.; Huyser, C.; Egli, D.; Pepper, M.S. Lessons Learned from Somatic Cell Nuclear Transfer. Int. J. Mol. Sci. 2020, 21, 2314. [Google Scholar] [CrossRef] [PubMed]
- Matoba, S.; Zhang, Y. Somatic cell nuclear transfer reprogramming: Mechanisms and applications. Cell Stem Cell 2018, 23, 471–485. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Xie, W. Epigenome in early mammalian development: Inheritance, reprogramming and establishment. Trends Cell Biol. 2018, 28, 237–253. [Google Scholar] [CrossRef]
- Dean, W.; Santos, F.; Stojkovic, M.; Zakhartchenko, V.; Walter, J.; Wolf, E.; Reik, W. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA 2001, 98, 13734–13738. [Google Scholar] [CrossRef] [Green Version]
- Moreira, P.N.; Robl, J.M.; Collas, P. Architectural defects in pronuclei of mouse nuclear transplant embryos. J. Cell Sci. 2003, 116, 3713–3720. [Google Scholar] [CrossRef] [Green Version]
- Kishigami, S.; Bui, H.-T.; Wakayama, S.; Tokunaga, K.; Van Thuan, N.; Hikichi, T.; Mizutani, E.; Ohta, H.; Suetsugu, R.; Sata, T. Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. J. Reprod. Dev. 2006, 0610300042. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat. Rev. Genet. 2017, 18, 517. [Google Scholar] [CrossRef]
- Prakash, K.; Fournier, D. Evidence for the implication of the histone code in building the genome structure. Biosystems 2018, 164, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Peserico, A.; Simone, C. Physical and Functional HAT/HDAC Interplay Regulates Protein Acetylation Balance. J. Biomed. Biotechnol. 2011, 2011, 371832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jambhekar, A.; Dhall, A.; Shi, Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. 2019, 20, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Gurdon, J. The egg and the nucleus: A battle for supremacy. Rambam Maimonides Med. J. 2015, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Vassena, R.; Han, Z.; Gao, S.; Baldwin, D.A.; Schultz, R.M.; Latham, K.E. Tough beginnings: Alterations in the transcriptome of cloned embryos during the first two cell cycles. Dev. Biol. 2007, 304, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Graf, A.; Krebs, S.; Heininen-Brown, M.; Zakhartchenko, V.; Blum, H.; Wolf, E. Genome activation in bovine embryos: Review of the literature and new insights from RNA sequencing experiments. Anim. Reprod. Sci. 2014, 149, 46–58. [Google Scholar] [CrossRef]
- Graf, A.; Krebs, S.; Zakhartchenko, V.; Schwalb, B.; Blum, H.; Wolf, E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl. Acad. Sci. USA 2014, 111, 4139–4144. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Jia, J.-L.; Bou, G.; Hu, L.-L.; Wang, Z.-D.; Shen, X.-H.; Shan, Z.-Y.; Shen, J.-L.; Liu, Z.-H.; Lei, L. rRNA genes are not fully activated in mouse somatic cell nuclear transfer embryos. J. Biol. Chem. 2012, 287, 19949–19960. [Google Scholar] [CrossRef] [Green Version]
- Djekidel, M.N.; Inoue, A.; Matoba, S.; Suzuki, T.; Zhang, C.; Lu, F.; Jiang, L.; Zhang, Y. Reprogramming of Chromatin Accessibility in Somatic Cell Nuclear Transfer Is DNA Replication Independent. Cell Rep. 2018, 23, 1939–1947. [Google Scholar] [CrossRef]
- Gao, S.; Chung, Y.G.; Williams, J.W.; Riley, J.; Moley, K.; Latham, K.E. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol. Reprod. 2003, 69, 48–56. [Google Scholar] [CrossRef]
- Boiani, M.; Eckardt, S.; Schöler, H.R.; McLaughlin, K.J. Oct4 distribution and level in mouse clones: Consequences for pluripotency. Genes Dev. 2002, 16, 1209–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, A.; Cao, F.; Morita, S.; Yamada, K.; Jincho, Y.; Tane, S.; Sotomaru, Y.; Kono, T. Identification of inappropriately reprogrammed genes by large-scale transcriptome analysis of individual cloned mouse blastocysts. PLoS ONE 2010, 5, e11274. [Google Scholar] [CrossRef] [PubMed]
- Reik, W.; Dean, W.; Walter, J. Epigenetic reprogramming in mammalian development. Science 2001, 293, 1089–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaujean, N.; Taylor, J.; Gardner, J.; Wilmut, I.; Meehan, R.; Young, L. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol. Reprod. 2004, 71, 185–193. [Google Scholar] [CrossRef]
- Peat, J.R.; Reik, W. Incomplete methylation reprogramming in SCNT embryos. Nat. Genet. 2012, 44, 965–966. [Google Scholar] [CrossRef]
- Santos, F.; Zakhartchenko, V.; Stojkovic, M.; Peters, A.; Jenuwein, T.; Wolf, E.; Reik, W.; Dean, W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 2003, 13, 1116–1121. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Hao, Y.; Ross, J.W.; Spate, L.D.; Walters, E.M.; Samuel, M.S.; Rieke, A.; Murphy, C.N.; Prather, R.S. Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell. Reprogramming Former. Cloning Stem Cells 2010, 12, 75–83. [Google Scholar]
- Gao, S.; Chung, Y.G.; Parseghian, M.H.; King, G.J.; Adashi, E.Y.; Latham, K.E. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: Evidence for a uniform developmental program in mice. Dev. Biol. 2004, 266, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Banaszynski, L.A.; Rosenwaks, Z.; Allis, C.D.; Rafii, S. H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos. Nucleus 2014, 5, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Popken, J.; Brero, A.; Koehler, D.; Schmid, V.J.; Strauss, A.; Wuensch, A.; Guengoer, T.; Graf, A.; Krebs, S.; Blum, H.; et al. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 2014, 5, 555–589. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, X.; Wang, C.; Gao, Y.; Gao, R.; Kou, X.; Zhao, Y.; Li, J.; Wu, Y.; Xiu, W. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discov. 2016, 2, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Matoba, S.; Liu, Y.; Lu, F.; Iwabuchi, K.A.; Shen, L.; Inoue, A.; Zhang, Y. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 2014, 159, 884–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matoba, S.; Wang, H.; Jiang, L.; Lu, F.; Iwabuchi, K.A.; Wu, X.; Inoue, K.; Yang, L.; Press, W.; Lee, J.T. Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development. Cell Stem Cell 2018, 23, 343–354.e345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, Y.; Gao, Y.; Su, J.; Zhang, J.; Xing, X.; Zhou, C.; Yao, K.; An, Q.; Zhang, Y. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development 2018, 145, dev158261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hörmanseder, E.; Simeone, A.; Allen, G.E.; Bradshaw, C.R.; Figlmüller, M.; Gurdon, J.; Jullien, J. H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 2017, 21, 135–143.e136. [Google Scholar]
- Zhou, C.; Zhang, J.; Zhang, M.; Wang, D.; Ma, Y.; Wang, Y.; Wang, Y.; Huang, Y.; Zhang, Y. Transcriptional memory inherited from donor cells is a developmental defect of bovine cloned embryos. FASEB J. 2020, 34, 1637–1651. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Li, F.; Jiang, Z.; Sun, Y.; Li, H.; Gao, S.; Zhang, L.; Xue, B.; Zhao, G.; Li, J. Imprinting disorder in donor cells is detrimental to the development of cloned embryos in pigs. Oncotarget 2017, 8, 72363. [Google Scholar] [CrossRef] [Green Version]
- Ohgane, J.; Wakayama, T.; Kogo, Y.; Senda, S.; Hattori, N.; Tanaka, S.; Yanagimachi, R.; Shiota, K. DNA methylation variation in cloned mice. Genesis 2001, 30, 45–50. [Google Scholar] [CrossRef]
- Chung, Y.G.; Ratnam, S.; Chaillet, J.R.; Latham, K.E. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biol. Reprod. 2003, 69, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.M.; Smith, Z.D.; Egli, D.; Regev, A.; Meissner, A. Mouse ooplasm confers context-specific reprogramming capacity. Nat. Genet. 2012, 44, 978. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Kohda, T.; Sugimoto, M.; Sado, T.; Ogonuki, N.; Matoba, S.; Shiura, H.; Ikeda, R.; Mochida, K.; Fujii, T. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 2010, 330, 496–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, D.; Peng, J.; Wang, X.; Ouyang, Z.; Zou, Q.; Yang, Y.; Chen, F.; Ge, W.; Wu, H.; Liu, Z. XIST derepression in active X chromosome hinders pig somatic cell nuclear transfer. Stem Cell Rep. 2018, 10, 494–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R.; Wang, C.; Gao, Y.; Xiu, W.; Chen, J.; Kou, X.; Zhao, Y.; Liao, Y.; Bai, D.; Qiao, Z. Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos. Cell Stem Cell 2018, 23, 426–435.e425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, M.R.; Chung, Y.G.; Nolen, L.D.; Verona, R.I.; Latham, K.E.; Bartolomei, M.S. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 2003, 69, 902–914. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Huan, Y.; Shi, Y.; Liu, Z.; Bou, G.; Luo, Y.; Zhang, L.; Yang, C.; Kong, Q.; Tian, J. Unfaithful maintenance of methylation imprints due to loss of maternal nuclear Dnmt1 during somatic cell nuclear transfer. PLoS ONE 2011, 6, e20154. [Google Scholar] [CrossRef]
- Miki, H.; Wakisaka, N.; Inoue, K.; Ogonuki, N.; Mori, M.; Kim, J.-M.; Ohta, A.; Ogura, A. Embryonic rather than extraembryonic tissues have more impact on the development of placental hyperplasia in cloned mice. Placenta 2009, 30, 543–546. [Google Scholar] [CrossRef]
- Lin, J.; Shi, L.; Zhang, M.; Yang, H.; Qin, Y.; Zhang, J.; Gong, D.; Zhang, X.; Li, D.; Li, J. Defects in trophoblast cell lineage account for the impaired in vivo development of cloned embryos generated by somatic nuclear transfer. Cell Stem Cell 2011, 8, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Humpherys, D.; Eggan, K.; Akutsu, H.; Friedman, A.; Hochedlinger, K.; Yanagimachi, R.; Lander, E.S.; Golub, T.R.; Jaenisch, R. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl. Acad. Sci. USA 2002, 99, 12889–12894. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Kohda, T.; Lee, J.; Ogonuki, N.; Mochida, K.; Noguchi, Y.; Tanemura, K.; Kaneko-Ishino, T.; Ishino, F.; Ogura, A. Faithful expression of imprinted genes in cloned mice. Science 2002, 295, 297. [Google Scholar] [CrossRef]
- Suemizu, H.; Aiba, K.; Yoshikawa, T.; Sharov, A.A.; Shimozawa, N.; Tamaoki, N.; Ko, M.S. Expression profiling of placentomegaly associated with nuclear transplantation of mouse ES cells. Dev. Biol. 2003, 253, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, H.; Ono, Y.; Shimozawa, N.; Sotomaru, Y.; Katsuzawa, Y.; Hiura, H.; Ito, M.; Kono, T. Disruption of imprinting in cloned mouse fetuses from embryonic stem cells. Reproduction 2003, 126, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Guillomot, M.; Taghouti, G.; Constant, F.; Degrelle, S.; Hue, I.; Chavatte-Palmer, P.; Jammes, H. Abnormal expression of the imprinted gene Phlda2 in cloned bovine placenta. Placenta 2010, 31, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhu, J.; Huan, Y.; Liu, Z.; Yang, C.; Zhang, X.; Mu, Y.; Xia, P.; Liu, Z. Aberrant expression and methylation status of putatively imprinted genes in placenta of cloned piglets. Cell. Reprogramming Former. Cloning Stem Cells 2010, 12, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, J.; Zou, H.; Feng, T.; Chen, L.; Li, J.; Qi, X.; Li, Z.; Duan, X.; Xu, C. Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning. Proc. Natl. Acad. Sci. USA 2018, 115, E11071–E11080. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Ogonuki, N.; Kamimura, S.; Inoue, H.; Matoba, S.; Hirose, M.; Honda, A.; Miura, K.; Hada, M.; Hasegawa, A. Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Kang, J.; Zhang, Y.; Quan, F. Overexpression of PGC7 in donor cells maintains the DNA methylation status of imprinted genes in goat embryos derived from somatic cell nuclear transfer technology. Theriogenology 2020, 151, 86–94. [Google Scholar] [CrossRef]
- Bauersachs, S.; Ulbrich, S.E.; Zakhartchenko, V.; Minten, M.; Reichenbach, M.; Reichenbach, H.D.; Blum, H.; Spencer, T.E.; Wolf, E. The endometrium responds differently to cloned versus fertilized embryos. Proc. Natl. Acad. Sci. USA 2009, 106, 5681–5686. [Google Scholar] [CrossRef] [Green Version]
- Mansouri-Attia, N.; Sandra, O.; Aubert, J.; Degrelle, S.; Everts, R.E.; Giraud-Delville, C.; Heyman, Y.; Galio, L.; Hue, I.; Yang, X.; et al. Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl. Acad. Sci. USA 2009, 106, 5687–5692. [Google Scholar] [CrossRef] [Green Version]
- Biase, F.H.; Rabel, C.; Guillomot, M.; Hue, I.; Andropolis, K.; Olmstead, C.A.; Oliveira, R.; Wallace, R.; Le Bourhis, D.; Richard, C. Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium. Proc. Natl. Acad. Sci. USA 2016, 113, 14492–14501. [Google Scholar] [CrossRef] [Green Version]
- Chiumia, D.; Hankele, A.-K.; Groebner, A.E.; Schulke, K.; Reichenbach, H.-D.; Giller, K.; Zakhartchenko, V.; Bauersachs, S.; Ulbrich, S.E. Vascular Endothelial Growth Factor A and VEGFR-1 Change during Preimplantation in Heifers. Int. J. Mol. Sci. 2020, 21, 544. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Smith, S.L.; Tian, X.C.; Lewin, H.A.; Renard, J.-P.; Wakayama, T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 2007, 39, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H.; Tian, X.C.; King, W.A.; Lee, R.S. Focus on Mammalian Embryogenomics Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 2008, 135, 151–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cezar, G.G.; Bartolomei, M.S.; Forsberg, E.J.; First, N.L.; Bishop, M.D.; Eilertsen, K.J. Genome-wide epigenetic alterations in cloned bovine fetuses. Biol. Reprod. 2003, 68, 1009–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiendleder, S.; Mund, C.; Reichenbach, H.D.; Wenigerkind, H.; Brem, G.; Zakhartchenko, V.; Lyko, F.; Wolf, E. Tissue-specific elevated genomic cytosine methylation levels are associated with an overgrowth phenotype of bovine fetuses derived by in vitro techniques. Biol. Reprod. 2004, 71, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Montera, B.; El Zeihery, D.; Müller, S.; Jammes, H.; Brem, G.; Reichenbach, H.D.; Scheipl, F.; Chavatte-Palmer, P.; Zakhartchenko, V.; Schmitz, O.J.; et al. Quantification of leukocyte genomic 5-methylcytosine levels reveals epigenetic plasticity in healthy adult cloned cattle. Cell Reprogramming 2010, 12, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemann, H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016, 86, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.L.; Hill, J.; Shin, T.Y.; Lui, L.; Westhusin, M. DNA hypomethylation of karyoplasts for bovine nuclear transplantation. Mol. Reprod. Dev. 2001, 60, 208–213. [Google Scholar] [CrossRef]
- Enright, B.; Kubota, C.; Yang, X.; Tian, X. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine. Biol. Reprod. 2003, 69, 896–901. [Google Scholar] [CrossRef]
- Enright, B.; Sung, L.-Y.; Chang, C.-C.; Yang, X.; Tian, X. Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2′-deoxycytidine. Biol. Reprod. 2005, 72, 944–948. [Google Scholar] [CrossRef] [Green Version]
- Jafarpour, F.; Hosseini, S.M.; Hajian, M.; Forouzanfar, M.; Ostadhosseini, S.; Abedi, P.; Gholami, S.; Ghaedi, K.; Gourabi, H.; Shahverdi, A.H. Somatic cell-induced hyperacetylation, but not hypomethylation, positively and reversibly affects the efficiency of in vitro cloned blastocyst production in cattle. Cell. Reprogramming Former. Cloning Stem Cells 2011, 13, 483–493. [Google Scholar] [CrossRef]
- Jeon, B.-G.; Coppola, G.; Perrault, S.D.; Rho, G.-J.; Betts, D.H.; King, W.A. S-adenosylhomocysteine treatment of adult female fibroblasts alters X-chromosome inactivation and improves in vitro embryo development after somatic cell nuclear transfer. Reproduction 2008, 135, 815–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybouchkin, A.; Kato, Y.; Tsunoda, Y. Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol. Reprod. 2006, 74, 1083–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishigami, S.; Mizutani, E.; Ohta, H.; Hikichi, T.; Van Thuan, N.; Wakayama, S.; Bui, H.-T.; Wakayama, T. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 2006, 340, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Wang, Y.; Zhang, D.; Guo, Z.; Zhang, Y. Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin A. Theriogenology 2008, 70, 622–630. [Google Scholar] [CrossRef]
- Akagi, S.; Matsukawa, K.; Mizutani, E.; Fukunari, K.; Kaneda, M.; Watanabe, S.; Takahashi, S. Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos. J. Reprod. Dev. 2011, 57, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Kato, Y.; Tsuji, Y.; Tsunoda, Y. The effects of trichostatin A on mRNA expression of chromatin structure-, DNA methylation-, and development-related genes in cloned mouse blastocysts. Cloning Stem Cells 2008, 10, 133–142. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Villemoes, K.; Pedersen, A.M.; Purup, S.; Vajta, G. An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning Stem Cells 2007, 9, 357–363. [Google Scholar] [CrossRef]
- Shi, L.; Ai, J.; Ouyang, Y.; Huang, J.; Lei, Z.; Wang, Q.; Yin, S.; Han, Z.; Sun, Q.; Chen, D. Trichostatin A and nuclear reprogramming of cloned rabbit embryos. J. Anim. Sci. 2008, 86, 1106–1113. [Google Scholar] [CrossRef]
- Wakayama, S.; Kohda, T.; Obokata, H.; Tokoro, M.; Li, C.; Terashita, Y.; Mizutani, E.; Kishigami, S.; Ishino, F.; Wakayama, T. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell 2013, 12, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Sangalli, J.R.; De Bem, T.H.C.; Perecin, F.; Chiaratti, M.R.; Oliveira, L.d.J.; de Araújo, R.R.; Valim Pimentel, J.R.; Smith, L.C.; Meirelles, F.V. Treatment of nuclear-donor cells or cloned zygotes with chromatin-modifying agents increases histone acetylation but does not improve full-term development of cloned cattle. Cell. Reprogramming Former. Cloning Stem Cells 2012, 14, 235–247. [Google Scholar] [CrossRef]
- Sawai, K.; Fujii, T.; HirAyAmA, H.; HASHizumE, T.; Minamihashi, A. Epigenetic status and full-term development of bovine cloned embryos treated with trichostatin A. J. Reprod. Dev. 2012, 58, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.; Polgar, Z.; Liu, J.; Dinnyes, A. Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning Stem Cells 2009, 11, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Svensson, K.; Mattsson, R.; James, T.C.; Wentzel, P.; Pilartz, M.; MacLaughlin, J.; Miller, S.J.; Eriksson, U.; Ohlsson, R. The paternal allele of the H19 gene is progressively silenced during early mouse development: The acetylation status of histones may be involved in the generation of variegated expression patterns. Development 1998, 125, 61–69. [Google Scholar] [PubMed]
- Van Thuan, N.; Bui, H.-T.; Kim, J.-H.; Hikichi, T.; Wakayama, S.; Kishigami, S.; Mizutani, E.; Wakayama, T. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction 2009, 138, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, Y.; Kato, Y.; Tsunoda, Y. The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2′-deoxycytidine. Zygote 2009, 17, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Wee, G.; Shim, J.-J.; Koo, D.-B.; Chae, J.-I.; Lee, K.-K.; Han, Y.-M. Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos. Reproduction 2007, 134, 781–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, M.; Selokar, N.; Revey, T.; Singla, S.; Chauhan, M.; Palta, P.; Madan, P. Trichostatin A alters the expression of cell cycle controlling genes and microRNAs in donor cells and subsequently improves the yield and quality of cloned bovine embryos in vitro. Theriogenology 2014, 82, 1036–1042. [Google Scholar] [CrossRef]
- Zhao, J.; Ross, J.W.; Hao, Y.; Spate, L.D.; Walters, E.M.; Samuel, M.S.; Rieke, A.; Murphy, C.N.; Prather, R.S. Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol. Reprod. 2009, 81, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Li, C.; Mizutani, E.; Terashita, Y.; Yamagata, K.; Wakayama, T. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice. Biol. Reprod. 2010, 83, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, K.M.; Mao, J.; Lee, K.; Spollen, W.G.; Samuel, M.S.; Walters, E.M.; Spate, L.D.; Prather, R.S. Transcriptome Analysis of Pig In Vivo, In Vitro–Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway. Cell. Reprogramming Former. Cloning Stem Cells 2015, 17, 243–258. [Google Scholar] [CrossRef] [Green Version]
- Mallol, A.; Santaló, J.; Ibáñez, E. Psammaplin A improves development and quality of somatic cell nuclear transfer mouse embryos. Cell. Reprogramming Former. Cloning Stem Cells 2014, 16, 392–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jozi, M.; Jafarpour, F.; Moradi, R.; Zadegan, F.G.; Karbalaie, K.; Nasr-Esfahani, M.H. Induced DnA hypomethylation by folic Acid Deprivation in Bovine fibroblast Donor cells improves Reprogramming of Somatic cell nuclear transfer embryos. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-D.; Duan, L.; Zhang, Z.-H.; Song, S.-H.; Bai, G.-Y.; Zhang, N.; Shen, X.-H.; Shen, J.-L.; Lei, L. Methyl-CpG–binding protein 2 improves the development of mouse somatic cell nuclear transfer embryos. Cell. Reprogramming Former. Cloning Stem Cells 2016, 18, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Inoue, A.; He, J.; Liu, Y.; Lu, F.; Zhang, Y. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 2014, 15, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Deng, R.; Mao, T.; Luo, Y.; Wei, B.; Meng, P.; Zhao, L.; Zhang, Q.; Quan, F.; Liu, J. Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency. FEBS J. 2018, 285, 2708–2723. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hao, L.; Wei, Q.; Zhang, S.; Cheng, H.; Zhai, Y.; Jiang, Y.; An, X.; Li, Z.; Zhang, X. TET3 overexpression facilitates DNA reprogramming and early development of bovine SCNT embryos. Reproduction 2020, 160, 379–391. [Google Scholar] [CrossRef]
- Wang, X.; Shi, J.; Cai, G.; Zheng, E.; Liu, D.; Wu, Z.; Li, Z. Overexpression of MBD3 Improves Reprogramming of Cloned Pig Embryos. Cell. Reprogramming 2019, 21, 221–228. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Song, L.; Di, A.; Su, G.; Bai, C.; Wei, Z.; Li, G. Transient Dux expression facilitates nuclear transfer and induced pluripotent stem cell reprogramming. EMBO Rep. 2020, e202050054. [Google Scholar] [CrossRef]
- Mordhorst, B.R.; Benne, J.A.; Cecil, R.F.; Whitworth, K.M.; Samuel, M.S.; Spate, L.D.; Murphy, C.N.; Wells, K.D.; Green, J.A.; Prather, R.S. Improvement of in vitro and early in utero porcine clone development after somatic donor cells are cultured under hypoxia. Mol. Reprod. Dev. 2019, 86, 558–565. [Google Scholar] [CrossRef]
- Mordhorst, B.R.; Murphy, S.L.; Ross, R.M.; Benne, J.A.; Samuel, M.S.; Cecil, R.F.; Redel, B.K.; Spate, L.D.; Murphy, C.N.; Wells, K.D. Pharmacologic treatment of donor cells induced to have a Warburg effect-like metabolism does not alter embryonic development in vitro or survival during early gestation when used in somatic cell nuclear transfer in pigs. Mol. Reprod. Dev. 2018, 85, 290–302. [Google Scholar] [CrossRef]
- Cecil, R.F.; Chen, P.R.; Benne, J.A.; Hord, T.K.; Spate, L.D.; Samuel, M.S.; Prather, R.S. Chemical simulation of hypoxia in donor cells improves development of somatic cell nuclear transfer-derived embryos and increases abundance of transcripts related to glycolysis. Mol. Reprod. Dev. 2020, 87, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Minkovsky, A.; Patel, S.; Plath, K. Concise review: Pluripotency and the transcriptional inactivation of the female Mammalian X chromosome. Stem Cells 2012, 30, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matoba, S.; Inoue, K.; Kohda, T.; Sugimoto, M.; Mizutani, E.; Ogonuki, N.; Nakamura, T.; Abe, K.; Nakano, T.; Ishino, F. RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc. Natl. Acad. Sci. USA 2011, 108, 20621–20626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oikawa, M.; Matoba, S.; Inoue, K.; Kamimura, S.; Hirose, M.; Ogonuki, N.; Shiura, H.; Sugimoto, M.; Abe, K.; Ishino, F. RNAi-mediated knockdown of Xist does not rescue the impaired development of female cloned mouse embryos. J. Reprod. Dev. 2013, 2012–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Wu, X.; Yang, Y.; Gu, T.; Hong, L.; Zheng, E.; Xu, Z.; Zeng, F.; Shi, J.; Zhou, R. Improvement of developmental competence of cloned male pig embryos by short hairpin ribonucleic acid (shRNA) vector-based but not small interfering RNA (siRNA)-mediated RNA interference (RNAi) of Xist expression. J. Reprod. Dev. 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gao, X.; Yang, J.; Fan, X.; Wang, W.; Liang, Y.; Fan, L.; Han, H.; Xu, X.; Tang, F. Xist Intron 1 Repression by Transcriptional-Activator-Like Effectors Designer Transcriptional Factor Improves Somatic Cell Reprogramming in Mice. Stem Cells 2019, 37, 599–608. [Google Scholar] [CrossRef]
- Yang, L.; Song, L.; Liu, X.; Bai, L.; Li, G. KDM 6A and KDM 6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system. EMBO Rep. 2018, 19, e46240. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, H.; Wei, R.; Li, Q.; Weng, X.; Kong, Q.; Liu, Z. Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming. Reproduction 2016, 151, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, H.; Yao, J.; Qin, G.; Wang, F.; Wang, X.; Luo, A.; Zheng, Q.; Cao, C.; Zhao, J. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction 2016, 151, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Jeong, P.-S.; Sim, B.-W.; Park, S.-H.; Kim, M.J.; Kang, H.-G.; Nanjidsuren, T.; Lee, S.; Song, B.-S.; Koo, D.-B.; Kim, S.-U. Chaetocin Improves Pig Cloning Efficiency by Enhancing Epigenetic Reprogramming and Autophagic Activity. Int. J. Mol. Sci. 2020, 21, 4836. [Google Scholar] [CrossRef]
- Weng, X.-g.; Cai, M.-m.; Zhang, Y.-t.; Liu, Y.; Liu, C.; Liu, Z.-h. Improvement in the in vitro development of cloned pig embryos after kdm4a overexpression and an H3K9me3 methyltransferase inhibitor treatment. Theriogenology 2020, 146, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jiang, X.; Yu, M.; Huang, R.; Yao, J.; Li, M.; Zheng, F.; Yang, X. Beneficial effects of diazepin-quinazolin-amine derivative (BIX-01294) on preimplantation development and molecular characteristics of cloned mouse embryos. Reprod. Fertil. Dev. 2017, 29, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chow, J.; Hong, J.; Smith, A.F.; Moreno, C.; Seaby, P.; Vrana, P.; Miri, K.; Tak, J.; Chung, E.D. Recent acquisition of imprinting at the rodent Sfmbt2 locus correlates with insertion of a large block of miRNAs. BMC Genom. 2011, 12, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-Y.; Li, Z.-K.; Wang, L.-B.; Liu, C.; Sun, X.-H.; Feng, G.-H.; Wang, J.-Q.; Li, Y.-F.; Qiao, L.-Y.; Nie, H. Overcoming intrinsic H3K27me3 imprinting barriers improves post-implantation development after somatic cell nuclear transfer. Cell Stem Cell 2020, 27, 315–325.e315. [Google Scholar] [CrossRef]
- Sõber, S.; Rull, K.; Reiman, M.; Ilisson, P.; Mattila, P.; Laan, M. RNA sequencing of chorionic villi from recurrent pregnancy loss patients reveals impaired function of basic nuclear and cellular machinery. Sci. Rep. 2016, 6, 38439. [Google Scholar] [CrossRef]
- Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Wei, Y.; Lang, J.; Zhang, Q.; Yang, C.-R.; Zhao, Z.-A.; Zhang, Y.; Du, Y.; Sun, Y. DNA methylation analysis and editing in single mammalian oocytes. Proc. Natl. Acad. Sci. USA 2019, 116, 9883–9892. [Google Scholar] [CrossRef] [Green Version]
- Horii, T.; Morita, S.; Hino, S.; Kimura, M.; Hino, Y.; Kogo, H.; Nakao, M.; Hatada, I. Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome. Genome Biol. 2020, 21, 1–17. [Google Scholar] [CrossRef]
- Chen, C.; Du, F.; Xu, J.; Chang, W.; Liu, C.; Su, H.; Lin, T.; Ju, J.; Cheng, W.; Wu, S. Synergistic effect of trichostatin A and scriptaid on the development of cloned rabbit embryos. Theriogenology 2013, 79, 1284–1293. [Google Scholar] [CrossRef] [Green Version]
- Diao, Y.-F.; Naruse, K.-J.; Han, R.-X.; Li, X.-X.; Oqani, R.K.; Lin, T.; Jin, D.-I. Treatment of fetal fibroblasts with DNA methylation inhibitors and/or histone deacetylase inhibitors improves the development of porcine nuclear transfer-derived embryos. Anim. Reprod. Sci. 2013, 141, 164–171. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, X.; An, Z.; Wang, L.; Liu, J.; Quan, F.; Hua, S.; Zhang, Y. Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2/-deoxycytidine and trichostatin A. Theriogenology 2011, 75, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Saini, M.; Selokar, N.L.; Agrawal, H.; Singla, S.K.; Chauhan, M.S.; Manik, R.S.; Palta, P. Treatment of donor cells and reconstructed embryos with a combination of trichostatin-A and 5-aza-2′-deoxycytidine improves the developmental competence and quality of buffalo embryos produced by handmade cloning and alters their epigenetic status and gene expression. Cell. Reprogramming 2017, 19, 208–215. [Google Scholar]
- Xu, W.; Li, Z.; Yu, B.; He, X.; Shi, J.; Zhou, R.; Liu, D.; Wu, Z. Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer. PLoS ONE 2013, 8, e64705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Xia, W.; Cao, H.; Guo, Y.; Wang, H.; Zhang, X.; Wan, P.; Liu, C.; Wei, Q.; Sun, S. Effect of supplemetation of Zebularine and Scriptaid on efficiency of in vitro developmental competence of ovine somatic cell nuclear transferred embryos. Anim. Biotechnol. 2020, 31, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Hong, R.; Ding, B.; Zuo, X.; Li, H.; Ding, J.; Li, Y.; Huang, W.; Zhang, Y. TSA and BIX-01294 induced normal DNA and histone methylation and increased protein expression in porcine somatic cell nuclear transfer embryos. PLoS ONE 2017, 12, e0169092. [Google Scholar] [CrossRef]
- Mizutani, E.; Oikawa, M.; Kassai, H.; Inoue, K.; Shiura, H.; Hirasawa, R.; Kamimura, S.; Matoba, S.; Ogonuki, N.; Nagatomo, H. Generation of cloned mice from adult neurons by direct nuclear transfer. Biol. Reprod. 2015, 92, 81. [Google Scholar] [CrossRef]
- Miyamoto, K.; Tajima, Y.; Yoshida, K.; Oikawa, M.; Azuma, R.; Allen, G.E.; Tsujikawa, T.; Tsukaguchi, T.; Bradshaw, C.R.; Jullien, J. Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. Biol. Open 2017, 6, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Cai, Y.; Wang, Y.; Nie, Y.; Zhang, C.; Xu, Y.; Zhang, X.; Lu, Y.; Wang, Z.; Poo, M. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 2018, 172, 881–887.e887. [Google Scholar] [CrossRef] [Green Version]
- Czernik, M.; Anzalone, D.A.; Palazzese, L.; Oikawa, M.; Loi, P. Somatic cell nuclear transfer: Failures, successes and the challenges ahead. Int. J. Dev. Biol. 2019, 63, 123–130. [Google Scholar] [CrossRef]
- Costello, J.F.; Plass, C. Methylation matters. J. Med Genet. 2001, 38, 285–303. [Google Scholar] [CrossRef] [Green Version]
- Antony, J.; Oback, F.; Chamley, L.W.; Oback, B.; Laible, G. Transient JMJD2B-mediated reduction of H3K9me3 levels improves reprogramming of embryonic stem cells into cloned embryos. Mol. Cell. Biol. 2013, 33, 974–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dovey, O.M.; Foster, C.T.; Cowley, S.M. Emphasizing the Positive: A Role for Histone Deacetylases in Transcriptional Activation. Cell Cycle 2010, 9, 2700–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, N.; O’Shaughnessy, A.; Hendrich, B. Transcriptional repressors: Multifaceted regulators of gene expression. Development 2013, 140, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilton, I.B.; D’ippolito, A.M.; Vockley, C.M.; Thakore, P.I.; Crawford, G.E.; Reddy, T.E.; Gersbach, C.A. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 2015, 33, 510–517. [Google Scholar] [CrossRef] [Green Version]
- La Salle, S. Growing fast or slow: What makes the best embryo? Biol. Reprod. 2012, 86, 142. [Google Scholar] [CrossRef]
Epigenetic Barrier | Where | Reference |
---|---|---|
Memory of an active transcriptional state | Donor cells | [55,56] |
Imprinting disorder in donor cells | Fibroblasts from abnormal cloned fetuses | [57] |
Misregulation of mRNAs at the time of ZGA | Early stage NT embryos | [35] |
Disturbed transcription by RNA polymerase I around ZGA | Early stage NT embryos | [38] |
Non-proper degradation of maternally stored transcripts | Early stage NT embryos | [35] |
Continuous expression of some somatic genes around ZGA | Early stage NT embryos | [40] |
Resistance to reprogramming of pluripotency genes | Early to blastocyst stage NT embryos | [41,42] |
Defective epigenetic reprogramming of DNA and histones | NT embryos | [27,46,58] |
Abnormal regulation of DNA methyltransferase expression | NT embryos | [59] |
Incomplete erasure of the somatic type of DNA methylation and somatic cell-like features | NT embryos | [40,51,60] |
Failure to reactivate X chromosome and aberrant X chromosome inactivation (XCI) | NT embryos | [61,62] |
Aberrant remethylation leading to mis-expression of genes and retrotransposons important for ZGA | NT embryos | [63] |
Disruption of imprinted gene methylation and expression | NT embryos | [64,65] |
Loss of imprinting | NT embryos | [53] |
Defective trophoblast cell lineage specification | NT blastocysts | [66,67] |
Abnormal gene expression profiles in cloned placenta | Extra-embryonic tissues | [68,69,70] |
Abnormal imprinted gene expression and methylation patterns in mid-gestation | Cloned fetuses and placentas | [57,71,72,73,74,75,76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simmet, K.; Wolf, E.; Zakhartchenko, V. Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int. J. Mol. Sci. 2021, 22, 236. https://doi.org/10.3390/ijms22010236
Simmet K, Wolf E, Zakhartchenko V. Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. International Journal of Molecular Sciences. 2021; 22(1):236. https://doi.org/10.3390/ijms22010236
Chicago/Turabian StyleSimmet, Kilian, Eckhard Wolf, and Valeri Zakhartchenko. 2021. "Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How" International Journal of Molecular Sciences 22, no. 1: 236. https://doi.org/10.3390/ijms22010236
APA StyleSimmet, K., Wolf, E., & Zakhartchenko, V. (2021). Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. International Journal of Molecular Sciences, 22(1), 236. https://doi.org/10.3390/ijms22010236