The Potential of Asiatic Acid in the Reversion of Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats
Abstract
:1. Introduction
2. Results
2.1. The Results of Pretreatment with Asiatic Acid on Cyclophosphamide-Induced Changes in Cystometric Parameters
2.2. The Influence of Pretreatment with Asiatic Acid on Cyclophosphamide-Induced Changes in Bladder Urothelium and Detrusor Biomarkers
2.3. The Effects of Pre-Treatment with Asiatic Acid on Cyclophosphamide-Induced Changes in Urothelium Thickness
2.4. The Results of Pretreatment with Asiatic Acid on Cyclophosphamide-Induced Changes in Bladder Oedema
3. Discussion
4. Materials and Methods
4.1. Animals
- Control (CON) group that received a single injection of vehicle I plus vehicle II for 14 days (CON group).
- Cyclophosphamide (CYP) group that received a single injection of CYP (200 mg/kg) plus vehicle II for 14 days (CYP group).
- Asiatic acid (AA) group that received a single injection of vehicle I plus asiatic acid (30 mg/kg/day for 14 days) (AA group).
- CYP and AA group that received a single injection of CYP (200 mg/kg) plus asiatic acid (30 mg/kg/day for 14 days) (CYP + AA group).
4.2. Drugs
4.3. Surgical Procedures
4.4. Conscious Cystometry
4.5. Biochemical Analyses
4.6. The Assessment of Urothelium Thickness
4.7. The Assessment of Bladder Oedema
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANVC | non-voiding contraction amplitude (cm H2O) |
AUC | the area under the pressure curve (cm H2O/s) |
BC | bladder compliance (mL/cm H2O) |
BDNF | brain-derived neurotrophic factor (pg/mL) |
BP | basal pressure (cm H2O) |
CGRP | calcitonin gene related peptide (pg/mL) |
DO | detrusor overactivity |
DOI | detrusor overactivity index (cm H2O/mL) |
FNVC | non-voiding contraction frequency (times/filling phase) |
HB-EGF | heparin-binding EGF-like growth factor (pg/mL) |
HPX | hemopexin (pg/mL) |
ICI | intercontraction interval (s) |
IGFBP-3 | insulin-like growth factor-binding protein 3 (pg/mL) |
IL-1β | interleukin 1-β (pg/mL) |
IL-6 | interleukin 6 (pg/mL) |
MAL | malondialdehyde (pg/mL) |
MVP | micturition voiding pressure (cm H2O) |
NGF | nerve growth factor (pg/mL) |
NIT | 3-nitrotyrosine (pg/mL) |
OAB | overactive bladder syndrome |
OCC | occludin (pg/mL) |
OCT3 | organic cation transporter 3 (pg/mL) |
ORM1 | orosomucoid-1 (pg/mL) |
PAC1 | PAC1 receptor (pg/mL) |
PVR | post-void residual (mL) |
ROCK1 | Rho kinase (pg/mL) |
SNAP-23 | synaptosomal-associated protein 23 (pg/mL) |
SNAP-25 | synaptosome associated protein 25 (pg/mL) |
SV2A | rat Synaptic vesicle glycoprotein 2A (pg/mL) |
T–H | Tamm–Horsfall protein (pg/mL) |
TNF-α | tumor necrosis factor alpha (pg/mL) |
TP | threshold pressure (cm H2O) |
UT | urothelium thickness (am) |
VAChT | vesicular acetylcholine transporter (pg/mL) |
VTNVC | volume threshold to elicit NVC (%) |
VV | voided volume (mL) |
Z01 | tight junction protein 1 (pg/mL) |
References
- Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine 2000, 7, 427–448. [Google Scholar] [CrossRef]
- Maquart, F.X.; Chastang, F.; Simeon, A.; Birembaut, P.; Gillery, P.; Wegrowski, Y. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur. J. Dermatol. 1999, 9, 289–296. [Google Scholar]
- Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J. Pharm. Sci. 2010, 72, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Nagoor Meeran, M.F.; Goyal, S.N.; Suchal, K.; Sharma, C.; Patil, C.R.; Ojha, S.K. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of Asiatic Acid: A Pentacyclic Triterpenoid of Therapeutic Promise. Front. Pharmacol. 2018, 9, 892. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Sharma, A.; Zhang, T.; Wu, Y.; Ding, X. Pharmacological Review on Asiatic Acid and Its Derivatives: A Potential Compound. SLAS Technol. 2018, 23, 111–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.H.; Liu, Y.W.; Wei, F.; Tan, H.Z.; Han, Z.D. Asiatic acid ameliorates pulmonary fibrosis induced by bleomycin (BLM) via suppressing pro-fibrotic and inflammatory signaling pathways. Biomed. Pharmacother. 2017, 89, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, M.; He, F.; Bian, Z.; He, Q.; Wang, X.; Yao, W.; Zhu, L. Neuroprotective effect of asiatic acid against spinal cord injury in rats. Life Sci. 2016, 157, 45–51. [Google Scholar] [CrossRef]
- Lu, C.W.; Lin, T.Y.; Wang, S.J.; Huang, S.K. Asiatic acid, an active substance of Centella asiatica, presynaptically depresses glutamate release in the rat hippocampus. Eur. J. Pharmacol. 2019, 865, 172781. [Google Scholar] [CrossRef]
- Duggina, P.; Kalla, C.M.; Varikasuvu, S.R.; Bukke, S.; Tartte, V. Protective effect of centella triterpene saponins against cyclophosphamide-induced immune and hepatic system dysfunction in rats: Its possible mechanisms of action. J. Physiol. Biochem. 2015, 71, 435–454. [Google Scholar] [CrossRef] [PubMed]
- Auge, C.; Game, X.; Vergnolle, N.; Lluel, P.; Chabot, S. Characterization and Validation of a Chronic Model of Cyclophosphamide-Induced Interstitial Cystitis/Bladder Pain Syndrome in Rats. Front. Pharmacol. 2020, 11, 1305. [Google Scholar] [CrossRef] [PubMed]
- Haldar, S.; Dru, C.; Bhowmick, N.A. Mechanisms of hemorrhagic cystitis. Am. J. Clin. Exp. Urol. 2014, 2, 199–208. [Google Scholar]
- Keles, I.; Bozkurt, M.F.; Cemek, M.; Karalar, M.; Hazini, A.; Alpdagtas, S.; Keles, H.; Yildiz, T.; Ceylan, C.; Buyukokuroglu, M.E. Prevention of cyclophosphamide-induced hemorrhagic cystitis by resveratrol: A comparative experimental study with mesna. Int. Urol. Nephrol. 2014, 46, 2301–2310. [Google Scholar] [CrossRef]
- Sherif, I.O. Uroprotective mechanism of quercetin against cyclophosphamide-induced urotoxicity: Effect on oxidative stress and inflammatory markers. J. Cell. Biochem. 2018, 119, 7441–7448. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, A.; Zapala, L.; Zapala, P.; Piecha, T.; Radziszewski, P. The effect of O-1602, a GPR55 agonist, on the cyclophosphamide-induced rat hemorrhagic cystitis. Eur. J. Pharmacol. 2020, 882, 173321. [Google Scholar] [CrossRef]
- Kong, D.; Fu, P.; Zhang, Q.; Ma, X.; Jiang, P. Protective effects of Asiatic acid against pelvic inflammatory disease in rats. Exp. Ther. Med. 2019, 17, 4687–4692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrobel, A.; Serefko, A.; Szopa, A.; Poleszak, E. Asiatic Acid, a Natural Compound that Exerts Beneficial Effects on the Cystometric and Biochemical Parameters in the Retinyl Acetate-Induced Model of Detrusor Overactivity. Front. Pharmacol. 2020, 11, 574108. [Google Scholar] [CrossRef] [PubMed]
- Okinami, T.; Imamura, M.; Nishikawa, N.; Negoro, H.; Sugino, Y.; Yoshimura, K.; Kanematsu, A.; Hashitani, H.; Ogawa, O. Altered detrusor gap junction communications induce storage symptoms in bladder inflammation: A mouse cyclophosphamide-induced model of cystitis. PLoS ONE 2014, 9, e104216. [Google Scholar] [CrossRef] [Green Version]
- Wrobel, A.; Lancut, M.; Rechberger, T. A new model of detrusor overactivity in conscious rats induced by retinyl acetate instillation. J. Pharmacol. Toxicol. Methods 2015, 74, 7–16. [Google Scholar] [CrossRef]
- Kim, H.J. Update on the Pathology and Diagnosis of Interstitial Cystitis/Bladder Pain Syndrome: A Review. Int. Neurourol. J. 2016, 20, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamimura, D.; Ishihara, K.; Hirano, T. IL-6 signal transduction and its physiological roles: The signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 2003, 149, 1–38. [Google Scholar]
- Lee, S.A.; Tsai, H.T.; Ou, H.C.; Han, C.P.; Tee, Y.T.; Chen, Y.C.; Wu, M.T.; Chou, M.C.; Wang, P.H.; Yang, S.F. Plasma interleukin-1beta, -6, -8 and tumor necrosis factor-alpha as highly informative markers of pelvic inflammatory disease. Clin. Chem. Lab. Med. 2008, 46, 997–1003. [Google Scholar] [CrossRef]
- Gonzalez, E.J.; Peterson, A.; Malley, S.; Daniel, M.; Lambert, D.; Kosofsky, M.; Vizzard, M.A. The effects of tempol on cyclophosphamide-induced oxidative stress in rat micturition reflexes. Sci. World J. 2015, 2015, 545048. [Google Scholar] [CrossRef] [Green Version]
- Smaldone, M.C.; Vodovotz, Y.; Tyagi, V.; Barclay, D.; Philips, B.J.; Yoshimura, N.; Chancellor, M.B.; Tyagi, P. Multiplex analysis of urinary cytokine levels in rat model of cyclophosphamide-induced cystitis. Urology 2009, 73, 421–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, T.N.; Santos, C.C.; Souza-Filho, M.V.; Cunha, F.Q.; Ribeiro, R.A. Participation of TNF-alpha and IL-1 in the pathogenesis of cyclophosphamide-induced hemorrhagic cystitis. Braz. J. Med. Biol. Res. 1995, 28, 1103–1108. [Google Scholar] [PubMed]
- Gore, P.R.; Prajapati, C.P.; Mahajan, U.B.; Goyal, S.N.; Belemkar, S.; Ojha, S.; Patil, C.R. Protective Effect of Thymoquinone against Cyclophosphamide-Induced Hemorrhagic Cystitis through Inhibiting DNA Damage and Upregulation of Nrf2 Expression. Int. J. Biol. Sci. 2016, 12, 944–953. [Google Scholar] [CrossRef]
- Moreto, F.; de Oliveira, E.P.; Manda, R.M.; Burini, R.C. The higher plasma malondialdehyde concentrations are determined by metabolic syndrome-related glucolipotoxicity. Oxid. Med. Cell. Longev. 2014, 2014, 505368. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.P.; Lu, J.M.; Lu, Y. [The protective effect of asiatic acid against oxygen-glucose deprivation/reoxygenation injury of PC12 cells]. Yao Xue Xue Bao 2013, 48, 1738–1742. [Google Scholar] [PubMed]
- Merrill, L.; Girard, B.; Arms, L.; Guertin, P.; Vizzard, M.A. Neuropeptide/Receptor expression and plasticity in micturition pathways. Curr. Pharm. Des. 2013, 19, 4411–4422. [Google Scholar] [CrossRef] [PubMed]
- Goo, Y.A.; Tsai, Y.S.; Liu, A.Y.; Goodlett, D.R.; Yang, C.C. Urinary proteomics evaluation in interstitial cystitis/painful bladder syndrome: A pilot study. Int. Braz. J. Urol. 2010, 36, 464–478. [Google Scholar] [CrossRef] [Green Version]
- Miller, Y.I.; Smith, A.; Morgan, W.T.; Shaklai, N. Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation. Biochemistry 1996, 35, 13112–13117. [Google Scholar] [CrossRef]
- Ding, H.; Chen, J.; Su, M.; Lin, Z.; Zhan, H.; Yang, F.; Li, W.; Xie, J.; Huang, Y.; Liu, X.; et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J. Neuroinflamm. 2020, 17, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.C.; Yao, W.; Hashimoto, K. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets. Curr. Neuropharmacol. 2016, 14, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Ojala, J.; Tooke, K.; Hsiang, H.; Girard, B.M.; May, V.; Vizzard, M.A. PACAP/PAC1 Expression and Function in Micturition Pathways. J. Mol. Neurosci. 2019, 68, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Girard, B.M.; Wolf-Johnston, A.; Braas, K.M.; Birder, L.A.; May, V.; Vizzard, M.A. PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J. Mol. Neurosci. 2008, 36, 310–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braas, K.M.; May, V.; Zvara, P.; Nausch, B.; Kliment, J.; Dunleavy, J.D.; Nelson, M.T.; Vizzard, M.A. Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R951–R962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajasekaran, M.; Wilkes, N.; Kuntz, S.; Albo, M.E. Rho-kinase inhibition suppresses bladder hyperactivity in spontaneously hypertensive rats. Neurourol. Urodyn. 2005, 24, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, A.; Doboszewska, U.; Rechberger, E.; Rojek, K.; Serefko, A.; Poleszak, E.; Skalicka-Wozniak, K.; Dudka, J.; Wlaz, P. Rho kinase inhibition ameliorates cyclophosphamide-induced cystitis in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2017, 390, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.I.; Kang, K.S. Function of capric acid in cyclophosphamide-induced intestinal inflammation, oxidative stress, and barrier function in pigs. Sci. Rep. 2017, 7, 16530. [Google Scholar] [CrossRef] [PubMed]
- Matter, K.; Balda, M.S. Signalling to and from tight junctions. Nat. Rev. Mol. Cell Biol. 2003, 4, 225–236. [Google Scholar] [CrossRef]
- Wolf-Johnston, A.S.; Hanna-Mitchell, A.T.; Buffington, C.A.; Shinde, S.; Roppolo, J.R.; Mayer, E.; Birder, L.A. Alterations in the non-neuronal acetylcholine synthesis and release machinery in esophageal epithelium. Life Sci. 2012, 91, 1065–1069. [Google Scholar] [CrossRef] [Green Version]
- Hanna-Mitchell, A.T.; Wolf-Johnston, A.S.; Barrick, S.R.; Kanai, A.J.; Chancellor, M.B.; de Groat, W.C.; Birder, L.A. Effect of botulinum toxin A on urothelial-release of ATP and expression of SNARE targets within the urothelium. Neurourol. Urodyn. 2015, 34, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenqvist, J.; Winder, M.; Carlsson, T.; Aronsson, P.; Tobin, G. Urothelial acetylcholine involvement in ATP-induced contractile responses of the rat urinary bladder. Eur. J. Pharmacol. 2017, 809, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.A.; Xia, G.; Mehta, V.B.; Glenn, S.; Michalsky, M.P.; Besner, G.E. Heparin-binding EGF-like growth factor (HB-EGF) decreases oxygen free radical production in vitro and in vivo. Antioxid. Redox Signal. 2002, 4, 639–646. [Google Scholar] [CrossRef]
- Keay, S.; Zhang, C.O.; Kagen, D.I.; Hise, M.K.; Jacobs, S.C.; Hebel, J.R.; Gordon, D.; Whitmore, K.; Bodison, S.; Warren, J.W. Concentrations of specific epithelial growth factors in the urine of interstitial cystitis patients and controls. J. Urol. 1997, 158, 1983–1988. [Google Scholar] [CrossRef]
- Vera, P.L.; Iczkowski, K.A.; Wang, X.; Meyer-Siegler, K.L. Cyclophosphamide-induced cystitis increases bladder CXCR4 expression and CXCR4-macrophage migration inhibitory factor association. PLoS ONE 2008, 3, e3898. [Google Scholar] [CrossRef]
- Aronsson, P.; Vesela, R.; Johnsson, M.; Tayem, Y.; Wsol, V.; Winder, M.; Tobin, G. Inhibition of nitric oxide synthase prevents muscarinic and purinergic functional changes and development of cyclophosphamide-induced cystitis in the rat. Biomed. Res. Int. 2014, 2014, 359179. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kyung, Y.S.; Lee, G. Urinary uroplakin expression in cyclophosphamide-induced rat cystitis model. Hum. Exp. Toxicol. 2016, 35, 613–622. [Google Scholar] [CrossRef]
- Streng, T.; Santti, R.; Talo, A. Similarities and differences in female and male rat voiding. Neurourol. Urodyn. 2002, 21, 136–141. [Google Scholar] [CrossRef]
BP cm H2O | TP cm H2O | MVP cm H2O | VV mL | PVR mL | ICI s | BC mL/cm H2O | DOI cm H2O/mL | A NVC cm H2O | F NVC Times/Filling Phase | VT NVC % | AUC cm H2O/s | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | 2.6 ± 0.19 | 6.3 ± 0.39 | 44 ± 1.7 | 0.96 ± 0.049 | 0.059 ± 0.0049 | 1061 ± 45 | 0.25 ± 0.014 | 53 ± 4.9 | 2.3 ± 0.099 | 0.36 ± 0.047 | 70 ± 3.1 | 14 ± 0.66 |
CYP | 4.6 ± 0.21 *** | 4.4 ± 0.21 ** | 37 ± 2.0 | 0.62 ± 0.043 * | 0.053 ± 0.0047 | 731 ± 34 *** | 0.16 ± 0.0091 *** | 210 ± 16 *** | 6.0 ± 0.29 *** | 5.3 ± 0.32 *** | 47 ± 3.3 ** | 22 ± 0.89 *** |
AA | 2.3 ± 0.13 | 6.4 ± 0.33 | 47 ± 3.3 | 0.88 ± 0.087 | 0.074 ± 0.0047 | 956 ± 35 | 0.23 ± 0.015 | 54 ± 6.7 | 2.5 ± 0.12 | 0.31 ± 0.025 | 64 ± 4.1 | 13 ± 0.76 |
CYP+AA | 3.2 ± 0.22 ^^^ | 7.2 ± 0.37 ^^^ | 39 ± 2.9 | 0.94 ± 0.066 ^ | 0.070 ± 0.0049 | 999 ± 50 ^^ | 0.22 ± 0.0012 ^ | 92 ± 6.4 ^^^ | 3.0 ± 0.18 ^^^ | 1.2 ± 0.22 ^^^ | 66 ± 4.3 ^ | 15 ± 0.70 ^^^ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, A.; Zapała, Ł.; Kluz, T.; Rogowski, A.; Misiek, M.; Juszczak, K.; Sieńko, J.; Gold, D.; Stangel-Wójcikiewicz, K.; Poleszak, E.; et al. The Potential of Asiatic Acid in the Reversion of Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats. Int. J. Mol. Sci. 2021, 22, 5853. https://doi.org/10.3390/ijms22115853
Wróbel A, Zapała Ł, Kluz T, Rogowski A, Misiek M, Juszczak K, Sieńko J, Gold D, Stangel-Wójcikiewicz K, Poleszak E, et al. The Potential of Asiatic Acid in the Reversion of Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats. International Journal of Molecular Sciences. 2021; 22(11):5853. https://doi.org/10.3390/ijms22115853
Chicago/Turabian StyleWróbel, Andrzej, Łukasz Zapała, Tomasz Kluz, Artur Rogowski, Marcin Misiek, Kajetan Juszczak, Jacek Sieńko, Daniela Gold, Klaudia Stangel-Wójcikiewicz, Ewa Poleszak, and et al. 2021. "The Potential of Asiatic Acid in the Reversion of Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats" International Journal of Molecular Sciences 22, no. 11: 5853. https://doi.org/10.3390/ijms22115853