Recent Advancements in Polythiophene-Based Materials and their Biomedical, Geno Sensor and DNA Detection
Abstract
:1. Introduction
2. Conjugated Polythiophene (PTh)
3. Electrode Coating
4. Self-Assembled Monolayers (SAMs)
5. Polythiophene in the Detection of Adrenolytic Using SPME-HPLC
6. Molecular Gate
7. DNA Hybridization Electrochemical Biosensor
8. Electrochemical DNA Hybridization Detection
9. Specific and Sensitive Detection of DNA by PTh
10. Colorimetric Recognition of RNase H and microRNA Using Cationic Derivatives of PThs
11. Antibacterial Activity of Thiophenes
12. Anti-HIV Effects of Thiophene
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Valentini, R.F.; Vargo, T.G.; Gardella, J.A.; Aebischer, P. Patterned neuronal attachment and outgrowth on surface modified, electrically charged fluoropolymer substrates. J. Biomater. Sci. Polym. Ed. 1994, 5, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, S.; Singh, N.; Venkatachalam, S. Shielding behaviour of conducting polymer-coated fabrics in X-band, W-band and radio frequency range. Synth. Met. 2002, 129, 261–267. [Google Scholar] [CrossRef]
- Guerfi, A.; Trottier, J.; Boyano, I.; De Meatza, I.; Blazquez, J.; Brewer, S.; Ryder, K.; Vijh, A.; Zaghib, K. High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte. J. Power Sources 2014, 248, 1099–1104. [Google Scholar] [CrossRef]
- Esteves, C.H.; Iglesias, B.A.; Li, R.W.; Ogawa, T.; Araki, K.; Gruber, J. New composite porphyrin-conductive polymer gas sensors for application in electronic noses. Sens. Actuators B Chem. 2014, 193, 136–141. [Google Scholar] [CrossRef]
- Hwang, I.-W.; Soci, C.; Moses, D.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C.J.; Heeger, A.J.; Hwang, I.-W.; Soci, C.; et al. Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material. Adv. Mater. 2007, 19, 2307–2312. [Google Scholar] [CrossRef]
- Doğan, F.; Barton, S.; Hadavinia, H.; Mason, P.; Foot, P.J. Experimental Studies on Conducting Polyaniline. Recent Patents Mater. Sci. 2012, 5, 241–255. [Google Scholar] [CrossRef]
- Guo, B.; Glavas, L.; Albertsson, A.-C. Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 2013, 38, 1263–1286. [Google Scholar] [CrossRef]
- Jayamnd, M.; Hatamzadeh, M.; Omidi, Y. Modification of polythiophene by the incorporation of processable polymeric chains: Recent progress in synthesis and applications. Prog. Polym. Sci. 2015, 47, 26–69. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, L.; Spires, J.; Soeller, C.; Travas-Sejdic, J. Synthesis of a functionalized polythiophene as an active substrate for a label-free electrochemical genosensor. Polymer 2007, 48, 3413–3419. [Google Scholar] [CrossRef]
- Guimard, N.K.; Gomez, N.; Schmidt, C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007, 32, 876–921. [Google Scholar] [CrossRef]
- Jeffries-EL, M.; Sauvé, G.; McCullough, R.D. In-Situ End-Group Functionalization of Regioregular Poly (3alkylthiophene) Using the Grignard Metathesis Polymerization Method. Adv. Mater. 2004, 16, 1017–1019. [Google Scholar] [CrossRef]
- Needham, S.; Brown, P.; Duff, K.; Bell, D. Optimized stationary phases for the high-performance liquid chromatography–electrospray ionization mass spectrometric analysis of basic pharmaceuticals. J. Chromatogr. A 2000, 869, 159–170. [Google Scholar] [CrossRef]
- Mohammad, A.; Fortuni, B.; Inose, T.; Ricci, M.; Fujita, Y.; Van Zundert, I.; Fron, E.; Mizuno, H.; Latterini, L.; Rocha, S.; et al. PolyEthyleneamine-Grafted Polythiophene nanoparticles for Efficient DDS Delivery Reagent: A New Class of Polymeric Reducing Agent. Sci. Rep. 2017. [Google Scholar] [CrossRef]
- Nilsson, K.P.R.; Inganäs, O. Chip and solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative. Nat. Mater. 2003, 2, 419–424. [Google Scholar] [CrossRef]
- Korri-Youssoufi, H.; Garnier, F.; Srivastava, P.; Godillot, A.P.; Yassar, A. Toward Bioelectronics: Specific DNA Recognition Based on an Oligonucleotide-Functionalized Polypyrrole. J. Am. Chem. Soc. 1997, 119, 7388–7389. [Google Scholar] [CrossRef]
- Korri-Youssoufi, H.; Makrouf, B. Electrochemical biosensing of DNA hybridization by ferrocenyl groups functionalized polypyrrole. Anal. Chim. Acta 2002, 469, 85–92. [Google Scholar] [CrossRef]
- Ho, H.A.; Doré, K.; Boissinot, M.; Bergeron, M.G.; Tanguay, R.M.; Boudreau, D.; Leclerc, M. Direct Molecular Detection of Nucleic Acids by Fluorescence Signal Amplification. J. Am. Chem. Soc. 2005, 127, 12673–12676. [Google Scholar] [CrossRef]
- Lepage, P.H.; Peytavi, R.; Bergeron, M.G.; Leclerc, M. Amplification Strategy Using Aggregates of Ferrocene-Containing Cationic Polythiophene for Sensitive and Specific Electrochemical Detection of DNA. Anal. Chem. 2011, 83, 8086–8092. [Google Scholar] [CrossRef]
- Wagner, P.; Officer, D.L.; Kubicki, M. A flip-disorder in the structure of 3-[2-(anthracen-9-yl)ethenyl]thiophene. Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, o5745–o5747. [Google Scholar] [CrossRef]
- Li, G.; Koßmehl, G.; Welzel, H.-P.; Engelmann, G.; Hunnius, W.-D.; Plieth, W.; Zhu, H. Reactive groups on polymer coated electrodes, 7. New electrogenerated electroactive polythiophenes with different protected carboxyl groups. Macromol. Chem. Phys. 1998, 199, 525–533. [Google Scholar] [CrossRef]
- Li, F.; Albery, W. A novel mechanism of electrochemical deposition of conducting polymers: Two-dimensional layer-by-layer nucleation and growth observed for poly(thiophene-3-acetid acid). Electrochimica Acta 1992, 37, 393–401. [Google Scholar] [CrossRef]
- Welzel, H.-P.; Kossmehl, G.; Boettcher, H.; Engelmann, G.; Hunnius, W.-D. Reactive Groups on Polymer-Covered Electrodes. 5. Synthesis and Cyclovoltammetric Analysis of 3-Substituted Thiophene Derivatives†. Macromolecules 1997, 30, 7419–7426. [Google Scholar] [CrossRef]
- McCullough, R.D. The chemistry of conducting polythiophenes. Adv. Mater. 1998, 10, 93–116. [Google Scholar] [CrossRef]
- Mousavi, S.; Aghili, A.; Hashemi, S.; Goudarzian, N.; Bakhoda, Z.; Baseri, S. Improved Morphology and Properties of Nanocomposites, Linear Low Density Polyethylene, Ethylene-Co-Vinyl Acetate and Nano Clay Particles by Electron Beam. Polym. Renew. Resour. 2016, 7, 135–153. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Esmaeili, H.; Arjmand, O.; Karimi, S.; Hashemi, S.A. Biodegradation Study of Nanocomposites of Phenol Novolac Epoxy/Unsaturated Polyester Resin/Egg Shell Nanoparticles Using Natural Polymers. J. Mater. 2015, 2015, 131957. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.M. Study properties Biodegradation of polypropylene composite nanoparticles on Eggshells. In Proceedings of the Chemical Engineering Industry, Arak, Iran, 1 October 2014. [Google Scholar]
- Mousavi, S.M. Mechanical Properties of Poly(Methyl Metha Acrylate)and Poly Styrene/Sodium Bentonite Bentonite Nano Composists Prepreared by Bulk Polymerization; Bangs Laboratories, Inc.: Fishers, Indiana, 2012. [Google Scholar]
- Farazi, Z.; Oromiehie, A.; Mousavi, S.M.; Hashemi, S.A. Preparation of LDPE/EVA/PE-MA, Nano Clay Blend Composite in the Stage Potassium Sorbate (KS) and Garlic Oil (GO) as an Antimicrobial Substance. Polym. Sci. 2018, 4, 1–12. [Google Scholar]
- Zakeri, A.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Beigi, V.; Mousavi, S.M.; Hashemi, S.A.R.; Zade, A.K.; Amani, A.M.; Savardashtaki, A.; Mirzaei, E.; et al. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: A developing horizon. Nano Rev. Exp. 2018, 9, 1488497. [Google Scholar] [CrossRef] [Green Version]
- Savardashtaki, A.; Amani, A.M.; Mousavi, S.M.; Delavarifar, S.; Hashemi, S.A.; Vakili, S.; Movahedpour, A.; Jahandideh, S. Core-Shell Nanofibers: A New Horizon in Controlling the Drug Release. Curr. Cancer Ther. Rev. 2017, 13. [Google Scholar] [CrossRef]
- Mousavi, S.M. Alignment of multi wall carbon nanotube in epoxy polymer matrix and investigating the effect of CNT’s alignment on the mechanical properties of composite. In Proceedings of the Second International Conference on New Approaches in Science, Engineering and Technology, Istanbul, Turkey, 5–6 November 2015. [Google Scholar]
- Mousavi, S.M.B.O.; Arjmand, C.H.; Mostajabi, D.H. Shooli Investigation of Physical, Mechanical and Biodegradation Properties of Nitrile Butadiene Rubber by Natural Polymers and Nano- Silica Particles American. Int. J. Res. Form. Appl. Nat. Sci. 2014, 1, 110–117. [Google Scholar]
- Mousavi, S.M. Mechanical and thermal and morphology studies of unsaturated polyester-toughened epoxy composites filled with amine-functionalized nanosilica. Iran. Chem. Congr. 2013, 16, 7–12. [Google Scholar]
- Mousavi, S.M. Long-term thermal mechanical and physical properties of silica nanoparticles epoxy phenol novelac resins and unsaturated polyester crosslinking method by creating a fluid. In Proceedings of the Chemical Engineering Confrence, Atlanta, GA, USA, 16–21 November 2014. [Google Scholar]
- Fernandes, R.; Yi, H.; Wu, L.-Q.; Rubloff, G.W.; Ghodssi, R.; Bentley, W.E.; Payne, G.F. Thermo-Biolithography: A Technique for Patterning Nucleic Acids and Proteins. Langmuir 2004, 20, 906–913. [Google Scholar] [CrossRef]
- Stauffer, W.R.; Cui, X.T. Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials 2006, 27, 2405–2413. [Google Scholar] [CrossRef]
- Cui, X.; Hetke, J.F.; Wiler, J.A.; Anderson, D.J.; Martin, D.C. Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sens. Actuators A Phys. 2001, 93, 8–18. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Arjmand, M.; Amani, A.M.; Sharif, F.; Jahandideh, S. Octadecyl Amine Functionalized Graphene Oxide towards Hydrophobic Chemical Resistant Epoxy Nanocomposites. Chemistry 2018, 3, 7200–7207. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Mousavi, S.M.; Arjmand, M.; Yan, N.; Sundararaj, U. Electrified single-walled carbon nanotube/epoxy nanocomposite via vacuum shock technique: Effect of alignment on electrical conductivity and electromagnetic interference shielding. Polym. Compos. 2018, 39, E1139–E1148. [Google Scholar] [CrossRef]
- Bain, C.D.; Troughton, E.B.; Tao, Y.T.; Evall, J.; Whitesides, G.M.; Nuzzo, R.G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 1989, 111, 321–335. [Google Scholar] [CrossRef]
- Lee, H.; Bellamkonda, R.V.; Sun, W.; Levenston, M.E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2005, 2, 81–89. [Google Scholar] [CrossRef]
- Yang, D.-F.; Wilde, C.P.; Morin, M. Electrochemical Desorption and Adsorption of Nonyl Mercaptan at Gold Single Crystal Electrode Surfaces. Langmuir 1996, 12, 6570–6577. [Google Scholar] [CrossRef]
- Widge, A.S.; Jeffries-El, M.; Cui, X.; Lagenaur, C.F.; Matsuoka, Y. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens. Bioelectron. 2007, 22, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Geissler, M.; Chen, J.; Xia, Y. Comparative Study of Monolayers Self-Assembled from Alkylisocyanides and Alkanethiols on Polycrystalline Pt Substrates. Langmuir 2004, 20, 6993–6997. [Google Scholar] [CrossRef]
- Olszowy, P.; Szultka, M.; Ligor, T.; Nowaczyk, J.; Buszewski, B. Fibers with polypyrrole and polythiophene phases for isolation and determination of adrenolytic drugs from human plasma by SPME-HPLC. J. Chromatogr. B 2010, 878, 2226–2234. [Google Scholar] [CrossRef]
- Gautier, C.; Cougnon, C.; Pilard, J.-F.; Casse, N.; Chénais, B. A Poly(cyclopentadithiophene) Matrix Suitable for Electrochemically Controlled DNA Delivery. Anal. Chem. 2007, 79, 7920–7923. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Das, S.; Layek, R.K.; Chatterjee, D.P.; Nandi, A.K. Polythiophene-g-poly(dimethylaminoethyl methacrylate) doped methyl cellulose hydrogel behaving like a polymeric AND logic gate. Soft Matter 2012, 8, 6066–6072. [Google Scholar] [CrossRef]
- Uygun, A. DNA hybridization electrochemical biosensor using a functionalized polythiophene. Talanta 2009, 79, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Buga, K.; Pokrop, R.; Majkowska, A.; Zagorska, M.; Planes, J.; Genoud, F.; Pron, A. Alternate copolymers of head to head coupled dialkylbithiophenes and oligoaniline substituted thiophenes: Preparation, electrochemical and spectroelectrochemical properties. J. Mater. Chem. 2006, 16, 2150–2164. [Google Scholar] [CrossRef]
- Cha, J.; Han, J.I.; Choi, Y.; Yoon, D.S.; Oh, K.W.; Lim, G. DNA hybridization electrochemical sensor using conducting polymer. Biosens. Bioelectron. 2003, 18, 1241–1247. [Google Scholar] [CrossRef]
- Faïd, K.; Leclerc, M. Functionalized regioregular polythiophenes: Towards the development of biochromic sensors. Chem. Commun. 1996, 24, 2761–2762. [Google Scholar] [CrossRef]
- Liu, M.; Luo, C.; Peng, H. Electrochemical DNA sensor based on methylene blue functionalized polythiophene as a hybridization indicator. Talanta 2012, 88, 216–221. [Google Scholar] [CrossRef]
- Nielsen, C.B.; Shomron, N.; Sandberg, R.; Hornstein, E.; Kitzman, J.; Burge, C.B. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 2007, 13, 1894–1910. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, X.; Li, Z.; Jiao, X.; Wang, Y.; Zhang, Y. Highly Sensitive Determination of microRNA Using Target-Primed and Branched Rolling-Circle Amplification. Angew. Chem. 2009, 121, 3318–3322. [Google Scholar] [CrossRef]
- Chen, C.; Ridzon, D.A.; Broomer, A.J.; Zhou, Z.; Lee, D.H.; Nguyen, J.T.; Barbisin, M.; Xu, N.L.; Mahuvakar, V.R.; Andersen, M.R.; et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, J.; Gifford, L.; Zhang, X.; Gewirtz, A.; Lu, P. Chimeric RNA–DNA molecular beacon assay for ribonuclease H activity. Mol. Cell. Probes 2002, 16, 277–283. [Google Scholar] [CrossRef]
- Schultz, S.J.; Champoux, J.J. RNase H activity: Structure, specificity, and function in reverse transcription. Virus Res. 2008, 134, 86–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, Z.; Cheng, Y.; Lv, X. Colorimetric detection of microRNA and RNase H activity in homogeneous solution with cationic polythiophene derivative. Chem. Commun. 2009, 2009, 3172–3174. [Google Scholar] [CrossRef] [PubMed]
- Darwish, E.S. Facile Synthesis of Heterocycles via 2-Picolinium Bromide and Antimicrobial Activities of the Products. Molecules 2008, 13, 1066–1078. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Srivastava, S.; Das, B. Synthesis and evaluation of some novel thiophenes as potential antibacterial and mycolytic agents. Der Pharma Chemica 2011, 3, 103–111. [Google Scholar]
- Campos, K.R. Direct sp3C–H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 2007, 36, 1069–1084. [Google Scholar] [CrossRef]
- Esté, J.A.; Cihlar, T. Current status and challenges of antiretroviral research and therapy. Antivir. Res. 2010, 85, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, M.A.; Zaharatos, G.J.; Brenner, B. Development of Antiretroviral Drug Resistance. N. Engl. J. Med. 2011, 365, 637–646. [Google Scholar] [CrossRef]
- Chen, W.; Zhan, P.; Daelemans, D.; Yang, J.; Huang, B.; De Clercq, E.; Pannecouque, C.; Liu, X. Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket. Eur. J. Med. Chem. 2016, 121, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Fang, Z.; Li, Z.; Huang, B.; Zhang, H.; Lu, X.; Xu, H.; Zhou, Z.; Ding, X.; Daelemans, D.; et al. Design, Synthesis, and Evaluation of Thiophene[3,2-d]pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles. J. Med. Chem. 2016, 59, 7991–8007. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Ding, X.; Wu, G.; Huo, Z.; Zhou, Z.; Zhao, T.; Feng, D.; Wang, Z.; Tian, Y.; Daelemans, D.; et al. Discovery of Thiophene[3,2-d]pyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the Tolerant Region I of NNIBP. ACS Med. Chem. Lett. 2017, 8, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
Parameters | Oxprenolol | Mexiletine | Propranolol | Propaphenon | Metoprolol |
---|---|---|---|---|---|
Linear range (g/mL) | - | - | - | - | 1–150 |
Slope | 146.9 | 131.65 | 966.62 | 1025.5 | 319.72 |
Intercept | 667.4 | 465 | 830.9 | 4212.2 | 1054 |
R2 | 0.9605 | 0.9644 | 0.9773 | 0.9879 | 0.9856 |
RSD | 1.2 | 1.1 | 1.1 | 1.8 | 0.9 |
EC50 (μM) a | ||||||
---|---|---|---|---|---|---|
comp | X | SI c IIIB | ROD | R | IIB | CC50 (μM) b |
8a | CO | 294 | >3.930 | H | 0.013 ± 0.007 | 3.930 ± 0.662 |
8b | CO | 121 | >3.182 | 4-F | 0.026 ± 0.002 | 3.182 ± 1.346 |
8c | CO | 93 | >2.849 | 4-Br | 0.030 ± 0.005 | 2.849 ± 1.225 |
8d | CO | 19 | >2.617 | 4-CN | 0.138 ± 0.018 | 2.617 ± 1.655 |
8e | CO | 17 | >3.241 | 3-CF3 | 0.196 ± 0.086 | 3.241 ± 0.671 |
9a | SO2 | 340 | >3.734 | 4-NHCOCH3 | 0.010 ± 0.008 | 3.734 ± 0.157 |
9b | SO2 | 383 | >3.527 | 4-F | 0.0092 ± 0.001 | 3.527 ± 0.372 |
9c | SO2 | 231 | >5.861 | 4-Br | 0.025 ± 0.006 | 5.861 ± 3.624 |
9d | SO2 | 1308 | >9.287 | 4-CN | 0.0071 ± 0.0005 | 9.287 ± 6.187 |
9e | SO2 | 78 | >6.683 | 3-CF3 | 0.086 ± 0.029 | 6.683 ± 3.436 |
ETV | - | 776 | - | - | 0.0028 ± 0.0002 | 2.18 ± 0.029 |
AZT | - | >664 | 0.008 ± 0.001 | - | 0.011 ± 0.005 | >7.484 |
L100I | K103N | Y181C | Y188L | E138K | F227L + V106A | RES056 | |
---|---|---|---|---|---|---|---|
8a | >3.922 | 0.273 ± 0.045 | ≥1.508 | >3.922 | 0.183 ± 0.039 | >3.922 | >3.922 |
8b | >3.183 | 0.478 ± 0.023 | >3.183 | >3.183 | 0.230 | >3.183 | >3.183 |
8c | >2.851 | 0.519 ± 0.023 | >2.851 | >2.851 | 0.370 ± 0.086 | >2.851 | >2.851 |
8d | >2.623 | ≥1.436 | >2.623 | >2.623 | 0.736 ± 0.017 | >2.623 | >2.623 |
8e | >3.237 | >3.237 | >3.237 | >3.237 | ≥1.327 | >3.237 | >3.237 |
9a | 0.562 ± 0.487 | 0.032 ± 0.002 | 0.513 ± 0.415 | 0.903 ± 0.248 | 0.035 ± 0.001 | 1.208 ± 0.333 | >3.727 |
9b | 0.410 ± 0.350 | 0.103 ± 0.006 | 0.472 ± 0.323 | >3.519 | 0.076 ± 0.018 | >3.519 | >3.519 |
9c | 0.841 ± 0.884 | 0.131 ± 0.003 | 0.852 ± 0.655 | 2.250 ± 0.011 | 0.126 ± 0.014 | ≥6.136 | 5.874 ± 0.925 |
9d | 0.424 ± 0.361 | 0.070 ± 0.025 | 0.428 ± 0.294 | 0.675 ± 0.091 | 0.045 ± 0.001 | 3.583 ± 0.241 | >9.280 |
9e | ≥4.092 | 0.569 ± 0.31 | ≥4.341 | >6.687 | 0.642 ± 0.009 | >6.687 | >6.687 |
ETV | 0.0097 ± 0.003 | 0.0034 ± 0.0003 | 0.019 ± 0.007 | 0.020 ± 0.0034 | 0.014 ± 0.0025 | 0.023 ± 0.011 | 0.026 ± 0.0041 |
AZT | 0.0054 ±0.0004 | 0.0078 ± 0.0005 | 0.0063 ±0.0009 | 0.008 ±0.001 | 0.017 ±0.0056 | 0.0053 ±0.0011 | 0.011 ± 0.0029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, S.M.; Hashemi, S.A.; Bahrani, S.; Yousefi, K.; Behbudi, G.; Babapoor, A.; Omidifar, N.; Lai, C.W.; Gholami, A.; Chiang, W.-H. Recent Advancements in Polythiophene-Based Materials and their Biomedical, Geno Sensor and DNA Detection. Int. J. Mol. Sci. 2021, 22, 6850. https://doi.org/10.3390/ijms22136850
Mousavi SM, Hashemi SA, Bahrani S, Yousefi K, Behbudi G, Babapoor A, Omidifar N, Lai CW, Gholami A, Chiang W-H. Recent Advancements in Polythiophene-Based Materials and their Biomedical, Geno Sensor and DNA Detection. International Journal of Molecular Sciences. 2021; 22(13):6850. https://doi.org/10.3390/ijms22136850
Chicago/Turabian StyleMousavi, Seyyed Mojtaba, Seyyed Alireza Hashemi, Sonia Bahrani, Khadije Yousefi, Gity Behbudi, Aziz Babapoor, Navid Omidifar, Chin Wei Lai, Ahmad Gholami, and Wei-Hung Chiang. 2021. "Recent Advancements in Polythiophene-Based Materials and their Biomedical, Geno Sensor and DNA Detection" International Journal of Molecular Sciences 22, no. 13: 6850. https://doi.org/10.3390/ijms22136850
APA StyleMousavi, S. M., Hashemi, S. A., Bahrani, S., Yousefi, K., Behbudi, G., Babapoor, A., Omidifar, N., Lai, C. W., Gholami, A., & Chiang, W. -H. (2021). Recent Advancements in Polythiophene-Based Materials and their Biomedical, Geno Sensor and DNA Detection. International Journal of Molecular Sciences, 22(13), 6850. https://doi.org/10.3390/ijms22136850