Albumin Infusion in Critically Ill COVID-19 Patients: Hemodilution and Anticoagulation
Abstract
:1. Introduction
2. Albumin Is the Central Homeostatic Protein in Health and Disease
2.1. Physiology Including Response to Tissue Damage
2.2. Consequences of Hypoalbuminemia in Severe Diseases
3. Albumin as a Life-Saving Drug: From the Second World War to the COVID-19-Pandemic
3.1. First Experiences of the Positive Effect of Albumin Infusion
3.2. Albumin Infusion and Kidney Function in Cirrhotic Patients
3.3. Albumin Infusion and the Influence of the Cost Factor
4. Albumin, Dehydration, Inflammation, Hypercoagulation, and COVID-19
Author Contributions
Funding
Conflicts of Interest
References
- Violi, F.; Ceccarelli, G.; Loffredo, L.; Alessandri, F.; Cipollone, F.; D’Ardes, D.; D’Ettorre, G.; Pignatelli, P.; Venditti, M.; Mastroianni, C.M.; et al. Albumin Supplementation Dampens Hypercoagulability in COVID-19: A Preliminary Report. Thromb. Haemost. 2020, 121, 102–105. [Google Scholar] [CrossRef]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef]
- Levitt, D.; Levitt, M. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016, 9, 229–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imoberdorf, R.; Garlick, P.J.; McNurlan, M.A.; Casella, G.A.; Peheim, E.; Turgay, M.; Bärtsch, P.; Ballmer, P.E. Enhanced synthesis of albumin and fibrinogen at high altitude. J. Appl. Physiol. 2001, 90, 528–537. [Google Scholar] [CrossRef]
- Chien, S.; Usami, S.; Simmons, R.L.; McAllister, F.F.; Gregersen, M.I. Blood volume and age: Repeated measurements on normal men after 17 years. J. Appl. Physiol. 1966, 21, 583–588. [Google Scholar] [CrossRef]
- Davy, K.P.; Seals, D.R. Total blood volume in healthy young and older men. J. Appl. Physiol. 1994, 76, 2059–2062. [Google Scholar] [CrossRef]
- Rea, I.M.; Gibson, D.; McGilligan, V.; McNerlan, S.E.; Alexander, H.D.; Ross, O. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front. Immunol. 2018, 9, 586. [Google Scholar] [CrossRef]
- Ujie, H.; Kawasaki, L.M.; Suzuki, Y.; Kaibara, M. Influence of age and hematocrit on the coagulation of blood. J. Biorheol. 2009, 23, 111–114. [Google Scholar] [CrossRef]
- Ramadori, G.; Christ, B. Cytokines and the Hepatic Acute-Phase Response. Semin. Liver Dis. 1999, 19, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Zaki, M.E.S.; Alsayed, M.A.L.; Shrief, R. Study of the diagnostic value of interleukin-6 and interleukin-8 in children with acute gastroenteritis. Germs 2020, 10, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Malik, I.A.; Naz, N.; Sheikh, N.; Khan, S.; Moriconi, F.; Blaschke, M.; Ramadori, G. Comparison of changes in gene expression of transferrin receptor-1 and other iron-regulatory proteins in rat liver and brain during acute-phase response. Cell Tissue Res. 2011, 344, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Rühl, A.; Franzke, S.; Collins, S.M.; Stremmel, W. Interleukin-6 expression and regulation in rat enteric glial cells. Am. J. Physiol. Liver Physiol. 2001, 280, G1163–G1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.; Saha, N. Changes in serum proteins (albumin, immunoglobulins and acute phase proteins) in pulmonary tuberculosis during therapy. Tubercle 1990, 71, 193–197. [Google Scholar] [CrossRef]
- Landry, M.L. Immunoglobulin M for Acute Infection: True or False? Clin. Vaccine Immunol. 2016, 23, 540–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secchi, M.; Bazzigaluppi, E.; Brigatti, C.; Marzinotto, I.; Tresoldi, C.; Rovere-Querini, P.; Poli, A.; Castagna, A.; Scarlatti, G.; Zangrillo, A.; et al. COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike receptor binding domain. J. Clin. Investig. 2020, 130, 6366–6378. [Google Scholar] [CrossRef] [PubMed]
- Weatherhead, J.E.; Clark, E.; Vogel, T.P. Inflammatory syndromes associated with SARS-CoV infection:dysregulation of the immune response across the age spectrum. J. Clin. Investig. 2020, 130, 6194–6197. [Google Scholar] [CrossRef] [PubMed]
- Schols, J.M.G.A.; de Groot, C.P.G.M.; Van Der Cammen, T.J.M.; Rikkert, M.G.M.O. Preventing and treating dehydration in the elderly during periods of illness and warm weather. J. Nutr. Health Aging 2009, 13, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Bonventre, J.V.; Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Investig. 2011, 121, 4210–4221. [Google Scholar] [CrossRef] [PubMed]
- Rowat, A.; Graham, C.; Dennis, M. Dehydration in Hospital-Admitted Stroke Patients. Stroke 2012, 43, 857–859. [Google Scholar] [CrossRef] [Green Version]
- Simmons, B.B.; Cirignano, B.; Gadegbeku, A.B. Transient ischemic attack:Part I.Diagnosis and evaluation. Am. Med. Phys. 2012, 86, 521–526. [Google Scholar]
- Picetti, D.; Foster, S.; Pangle, A.K.; Schrader, A.; George, M.; Wei, J.Y.; Azhar, G. Hydration health literacy in the elderly. Nutr. Heal. Aging 2017, 4, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mccarty, J.L.; Leung, L.Y.; Peterson, R.B.; Sitton, C.W.; Sarraj, A.; Riascos, R.F.; Brinjikji, W. Ischemic Infarction in Young Adults: A Review for Radiologists. RadioGraphics 2019, 39, 1629–1648. [Google Scholar] [CrossRef]
- Oxley, T.J.; Mocco, J.; Majidi, S.; Kellner, C.P.; Shoirah, H.; Singh, I.P.; De Leacy, R.A.; Shigematsu, T.; Ladner, T.R.; Yaeger, K.A.; et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N. Engl. J. Med. 2020, 382, e60. [Google Scholar] [CrossRef]
- LaRovere, K.L.; Riggs, B.J.; Poussaint, T.Y.; Young, C.C.; Newhams, M.M.; Maamari, M.; Walker, T.C.; Singh, A.R.; Dapul, H.; Hobbs, C.V.; et al. Neurologic Involvement in Children and Adolescents Hospitalized in the United States for COVID-19 or Multisystem Inflammatory Syndrome. JAMA Neurol. 2021, 78, 536. [Google Scholar] [CrossRef] [PubMed]
- Wijeratne, T.; Crewther, S.G.; Sales, C.; Karimi, L. COVID-19 Pathophysiology Predicts That Ischemic Stroke Occurrence Is an Expectation, Not an Exception—A Systematic Review. Front. Neurol. 2021, 11, 607221. [Google Scholar] [CrossRef]
- Ramadori, G.; Sipe, J.; Colten, H. Espression and regulation oft he murine Serum Amyloid A(SAA) gene in extrahepatic sites. J. Immunol. 1985, 135, 3645–3647. [Google Scholar] [PubMed]
- Sheikh, N.; Dudas, J.; Ramadori, G. Changes of gene expression of iron regulatory proteins during turpentine oil-induced acute-phase response in the rat. Lab. Investig. 2007, 87, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Gendrault, J.; Steffan, A.; Schmitt, M.; Jaeck, D.; Aubertin, A.; Kirn, A. Interaction of Cultured Human Kupffer Cells with HΓV-Infected CEM Cells: An Electron Microscopic Study. Pathobiology 1991, 59, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.G.; Wardrop, C.A. Measurement of blood volume in surgical and intensive care practice. Br. J. Anaesth. 2000, 84, 226–235. [Google Scholar] [CrossRef]
- Griffiths, R.D.; Jones, C. ABC of intensive care.Recovery from intensive care. BMJ 1999, 319, 427–429. [Google Scholar] [CrossRef]
- Cuthbertson, B.H.; Wunsch, H. Long-term outcomes after critical illness.The best predictor of the future ist he past. Am. J. Resp. Crit. Care Med. 2016, 194, 132–134. [Google Scholar] [CrossRef]
- Feetham, L. The long road to recovery after the ICU. Lancet Respir. Med. 2018, 6, 180–181. [Google Scholar] [CrossRef] [Green Version]
- Mackie-Savage, U.F.; Lathlean, J. The long-term effects of prolonged intensive care stay postcardiac surgery. J. Card. Surg. 2020, 35, 3099–3107. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A. Long-term outcomes from critical care. Surgery 2020, 39, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J. Surviving the ICU is only the beginning of a long road ahead. Lancet Respir. Med. 2020, 8, 669–670. [Google Scholar] [CrossRef]
- Morley, J.E. COVID-19. The Long Road to Recovery. J. Nutr. Health Aging 2020, 24, 917–919. [Google Scholar] [CrossRef]
- Kirvan, R.; McCallough, D.; Butler, T. Sarcopenia during COVID-19 lockdown restrictions: Long-term health effects of short-term muscle loss. GeroScience 2020, 42, 1547–1578. [Google Scholar] [CrossRef]
- Gosselink, R.; Langer, D. Recovery from ICU-acquired weakness; do not forget the respiratory muscles! Thorax 2016, 71, 779–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Feo, P.; Lucidi, P. Liver protein synthesis in physiology and in disease states. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 47–50. [Google Scholar] [CrossRef]
- Fuhrman, M.P.; Charney, P.; Mueller, C.M. Hepatic proteins and Nutrition assessment. J. Am. D Ass. 2004, 104, 1258–1264. [Google Scholar] [CrossRef]
- Barle, H.; Hammerquist, F.; Westermann, B. Synthesis rates of total liver protein and albumin are both increased in patients with acute inflammatory response. Clin. Sci. 2006, 110, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komrokji, R.S.; Corrales-Yepez, M.; Kharfan-Dabaja, M.A.; Al Ali, N.H.; Padron, E.; Rollison, D.E.; Pinilla-Ibarz, J.; Zhang, L.; Epling-Burnette, P.K.; Lancet, J.E.; et al. Hypoalbuminemia is an independent prognostic factor for overall survival in myelodysplastic syndromes. Am. J. Hematol. 2012, 87, 1006–1009. [Google Scholar] [CrossRef]
- Townsend, L.; Fogarty, H.; Dyer, A.; Martin-Loeches, I.; Bannan, C.; Nadarajan, P.; Bergin, C.; Farrelly, C.O.; Conlon, N.; Bourke, N.M.; et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J. Thromb. Haemost. 2021, 19, 1064–1070. [Google Scholar] [CrossRef]
- Giannis, D.; Allen, S.L.; Tsang, J.; Flint, S.; Pinhasov, T.; Williams, S.; Tan, G.; Thakur, R.; Leung, C.; Snyder, M.; et al. Postdischarge thromboembolic outcomes and mortality of hospitalized patients with COVID-19: The CORE-19 registry. Blood 2021, 137, 2838–2847. [Google Scholar] [CrossRef]
- Banerjee, J.; Canamar, C.P.; Voyageur, C.; Tangpraphaphorn, S.; Lemus, A.; Coffey, C.; Wald-Dickler, N.; Holtom, P.; Shoenberger, J.; Bowdish, M.; et al. Mortality and Readmission Rates Among Patients With COVID-19 After Discharge From Acute Care Setting With Supplemental Oxygen. JAMA Netw. Open 2021, 4, e213990. [Google Scholar] [CrossRef]
- Pawlowski, C.; Venkatakrishnan, A.; Ramudu, E.; Kirkup, C.; Puranik, A.; Kayal, N.; Berner, G.; Anand, A.; Barve, R.; O’Horo, J.C.; et al. Pre-existing conditions are associated with COVID-19 patients’ hospitalization, despite confirmed clearance of SARS-CoV-2 virus. EClinicalMedicine 2021, 7, 100793. [Google Scholar] [CrossRef]
- Dorward, D.A.; Russell, C.D.; Um, I.C.H. Tissue specific immunopathology in fatal COVID-19. Am. J. Resp. Crit. Care Med. 2021, 203, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Schurink, B.; Roos, E.; Radonic, T.; Barbe, E.; Bouman, C.S.C.; de Boer, H.H.; de Bree, G.J.; Bulle, E.B.; Aronica, E.M.; Florquin, S.; et al. Viral presence and immunopathology in patients with lethal COVID-19: A prospective autopsy cohort study. Lancet Microbe 2020. [Google Scholar] [CrossRef]
- Duarte-Neto, A.N.; Caldini, E.G.; Gomes-Gouvêa, M.S.; Kanamura, C.T.; Monteiro, R.A.D.A.; Ferranti, J.F.; Ventura, A.M.C.; Regalio, F.A.; Fiorenzano, D.M.; Gibelli, M.A.B.C.; et al. An autopsy study of the spectrum of severe COVID-19 in children: From SARS to different phenotypes of MIS-C. EClinicalMedicine 2021, 35, 100850. [Google Scholar] [CrossRef]
- Mostaza, J.M.; García-Iglesias, F.; González-Alegre, T.; Blanco, F.; Varas, M.; Hernández-Blanco, C.; Hontañón, V.; Jaras-Hernández, M.J.; Martínez-Prieto, M.; Menéndez-Saldaña, A.; et al. Clinical course and prognostic factors of COVID-19 infection in an elderly hospitalized population. Arch. Gerontol. Geriatr. 2020, 91, 104204. [Google Scholar] [CrossRef]
- Altschul, D.J.; Unda, S.R.; Benton, J.; Ramos, R.D.L.G.; Cezayirli, P.; Mehler, M.; Eskandar, E.N. A novel severity score to predict inpatient mortality in COVID-19 patients. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Nicholson, C.J.; Wooster, L.; Sigurslid, H.H.; Li, R.H.; Jiang, W.; Tian, W.; Cardenas, C.L.L.; Malhotra, R. Estimating risk of mechanical ventilation and in-hospital mortality among adult COVID-19 patients admitted to Mass General Brigham: The VICE and DICE scores. EClinicalMedicine 2021, 33, 100765. [Google Scholar] [CrossRef]
- Izcovich, A.; Ragusa, M.A.; Tortosa, F.; Marzio, M.A.L.; Agnoletti, C.; Bengolea, A.; Ceirano, A.; Espinosa, F.; Saavedra, E.; Sanguine, V.; et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS ONE 2020, 15, e0241955. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, B.T.; Fiksel, J.; Muschelli, J.; Robinson, M.L.; Rouhizadeh, M.; Perin, J.; Schumock, G.; Nagy, P.; Gray, J.H.; Malapati, H.; et al. Patient Trajectories Among Persons Hospitalized for COVID-19. Ann. Intern. Med. 2021, 174, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Kheir, M.; Saleem, F.; Wang, C.; Mann, A.; Chua, J. Higher albumin levels on admission predict better prognosis in patients with confirmed COVID-19. PLoS ONE 2021, 16, e0248358. [Google Scholar] [CrossRef]
- Pearson, H. How Covid broke the evidence pipeline. Nature 2021, 593, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Santoriello, D.; Khairallah, P.; Bomback, A.S. Postmotem Kidney Pathology Findings in Patients with COVID-19. JASN 2020, 31, 2158–2167. [Google Scholar] [CrossRef]
- Fu, A.; Nair, K.S. Age effect on fibrinogen and albumin synthesis in humans. Am. J. Physiol. Content 1998, 275, E1023–E1030. [Google Scholar] [CrossRef]
- Gupta, D.; Lis, C.G. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature. Nutr. J. 2010, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Janeway, C.A.; Gibson, S.T.; Woodruff, L.M.; Heyl, J.T.; Bailey, O.T.; Newhouser, L.R. Chemical, clinical and immunological studies on the products of human plasma fractionation:VII.Concentrated Human Serum Albumin. J. Clin. Investig. 1944, 23, 465–490. [Google Scholar] [CrossRef]
- Post, J.; Rose, J.V.; Shore, S.M. Intravenous use of salt-poor human albumin. A.M.A. Arch. Intern. Med. 1951, 87, 775–788. [Google Scholar] [CrossRef]
- Losowsky, M.; Atkinson, M. Intravenous albumen in the treatment. Lancet 1961, 278, 386–389. [Google Scholar] [CrossRef]
- Atkinson, M.; Losowsky, M.S. Mechanism of ascites formation in chronic liver disease. Quaterly J. Med. 1961, 30, 153–166. [Google Scholar]
- Wilkinson, P.; Sherlock, S. The effect of repeated albumin infusions in patients with cirrhosis. Lancet 1962, 280, 1125–1129. [Google Scholar] [CrossRef]
- Steigman, F.; Oz, R.; de Will, P. Furosemide therapy in “intractable ascites”. Am. J. Med. Sci. 1966, 252, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ayuso, R.M.; Arroyo, V.; Planas, R. Randomized Comparative Study of efficacy of Furosemide versus Spironolactone in Nonazotemic Cirrhosis With Ascites. Relattionship between the diuretic response and the activity of the Renin-Aldosterone System. Gastroenterology 1983, 84, 961–968. [Google Scholar] [CrossRef]
- Conn, H.O.; Fessel, J.M. Spontaneous bacterial peritonitis in cirrhosis: Variations on a theme. Medicine 1971, 50, 161–197. [Google Scholar] [CrossRef] [PubMed]
- Sort, P.; Navasa, M.; Arroyo, V.; Aldeguer, X.; Planas, R.; Ruiz-Del-Arbol, L.; Castells, L.; Vargas, V.; Soriano, G.; Guevara, M.; et al. Effect of Intravenous Albumin on Renal Impairment and Mortality in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis. N. Engl. J. Med. 1999, 341, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Patch, D.; Burroughs, A. Intravenous Albumin in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis. N. Engl. J. Med. 1999, 341, 1773–1774. [Google Scholar] [CrossRef]
- Ortega, R.; Ginès, P.; Uriz, J.; Cárdenas, A.; Calahorra, B.; Heras, D.D.L.; Guevara, M.; Bataller, R.; Jiménez, W.; Arroyo, V.; et al. Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: Results of a prospective, nonrandomized study. Hepatology 2002, 36, 941–948. [Google Scholar] [CrossRef]
- Gentilini, P.; Casini-Raggi, V.; di Fiore, G.; Romanelli, R.G.; Buzzelli, G.; Pinzani, M.; La Villa, G.; Laffi, G. Albumin improves the response to diuretics in patients with cirrhosis and ascites: Results of a randomized, controlled trial. J. Hepatol. 1999, 30, 639–645. [Google Scholar] [CrossRef]
- Caraceni, P.; Riggio, O.; Angeli, P.; Alessandria, C.; Neri, S.; Foschi, F.G.; Levantesi, F.; Airoldi, A.; Boccia, S.; Svegliati-Baroni, G.; et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): An open-label randomised trial. Lancet 2018, 391, 2417–2429. [Google Scholar] [CrossRef]
- Schindler, C.; Ramadori, G. Albumin substitution improves urinary sodium excretion and diuresis in patients with liver cirrhosis and refractory ascites. J. Hepatol. 1999, 31, 1132. [Google Scholar] [CrossRef]
- Nolte, W.; Ramadori, G. Albumin for refractory ascites. Gastroenterology. 2003, 125, 1283–1284. [Google Scholar] [CrossRef]
- Attar, B.M.; Moore, C.M.; George, M. Procalcitonin, and cytokines document a dynamic inflammatory state in non-infected cirrhotic patients with ascites. World J. Gastroenterol. 2014, 20, 2374–2382. [Google Scholar] [CrossRef] [Green Version]
- Caironi, P.; Tognoni, G.; Masson, S.; Fumagalli, R.; Pesenti, A.; Romero, M.; Fanizza, C.; Caspani, L.; Faenza, S.; Grasselli, G.; et al. Albumin Replacement in Patients with Severe Sepsis or Septic Shock. N. Engl. J. Med. 2014, 370, 1412–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedermann, C.J.; Joannidis, M. Albumin Replacement in Severe Sepsis or Septic Shock. N. Engl. J. Med. 2014, 371, 83–84. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.T. Commentary. Am. College Phys. 2014, 161, JC6–JC7. [Google Scholar]
- Pottinger, B.; Read, R.; Paleolog, E.; Higgins, P.; Pearson, J. Von Willebrand factor is an acute phase reactant in man. Thromb. Res. 1989, 53, 387–394. [Google Scholar] [CrossRef]
- Prochaska, J.H.; Frank, B.; Nagler, M.; Lamparter, H.; Weißer, G.; Schulz, A.; Eggebrecht, L.; Göbel, S.; Arnold, N.; Panova-Noeva, M.; et al. Age-related diagnostic value of D-dimer testing and the role of inflammation in patients with suspected deep vein thrombosis. Sci. Rep. 2017, 7, 4591. [Google Scholar] [CrossRef]
- Palareti, G.; DULCIS (D-dimer and ULtrasonography in Combination Italian Study) Investigators; Legnani, C.; Antonucci, E.; Cosmi, B.; Poli, D.; Testa, S.; Tosetto, A.; Ageno, W.; Falanga, A.; et al. D-dimer testing, with gender-specific cutoff levels, is of value to assess the individual risk of venous thromboembolic recurrence in non-elderly patients of both genders: A post hoc analysis of the DULCIS study. Intern. Emerg. Med. 2020, 15, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearon, C.; de Wit, K.; Parpia, S.; Schulman, S.; Afilalo, M.; Hirsch, A.; Spencer, F.A.; Sharma, S.; D’Aragon, F.; Deshaies, J.-F.; et al. Diagnosis of Pulmonary Embolism with d-Dimer Adjusted to Clinical Probability. N. Engl. J. Med. 2019, 381, 2125–2134. [Google Scholar] [CrossRef]
- Lin, C.; Chen, Y.; Chen, B.; Zheng, K.; Luo, X.; Lin, F. D-Dimer Combined with Fibrinogen Predicts the Risk of Venous Thrombosis in Fracture Patients. Emerg. Med. Int. 2020. [Google Scholar] [CrossRef]
- Henke, P.K.; Kahn, S.R.; Pannucci, C.J.; Secemksy, E.A.; Evans, N.S.; Khorana, A.A.; Creager, M.A.; Pradhan, A.D. Call to action to prevent venous Thromboembolism in hospitalized patients.A policy statment from the american heart association. Circulation 2020, 141, e914–e931. [Google Scholar] [CrossRef]
- Huang, J.; Cheng, A.; Kumar, R.; Fang, Y.; Chen, G.; Zhu, Y.; Lin, S. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J. Med. Virol. 2020, 92, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Hariyanto, T.I.; Japar, K.V.; Kwenandar, F.; Damay, V.; Siregar, J.I.; Lugito, N.P.H.; Tjiang, M.M.; Kurniawan, A. Inflammatory and hematologic markers as predictors of severe outcomes in COVID-19 infection: A systematic review and meta-analysis. Am. J. Emerg. Med. 2021, 41, 110–119. [Google Scholar] [CrossRef]
- Criel, M.; Falter, M.; Jaeken, J.; van Kerrebroeck, M.; Lefere, I.; Meylaerts, L.; Mesotten, D.; Laenen, M.V.; Fivez, T.; Thomeer, M.; et al. Venous thromboembolism in SARS-CoV-2 patients: Only a problem in ventilated ICU patients, or is there more to it? Eur. Respir. J. 2020, 56, 2001201. [Google Scholar] [CrossRef]
- Rostami, M.; Mansouritorghabeh, H. D-dimer level in COVID-19 infection: A systematic review. Expert Rev. Hematol. 2020, 13, 1265–1275. [Google Scholar] [CrossRef]
- Popadic, V.; Klasnja, S.; Milic, N.; Rajovic, N.; Aleksic, A.; Milenkovic, M.; Crnokrak, B.; Balint, B.; Todorovic-Balint, M.; Mrda, D.; et al. Predictors of Mortality in Critically Ill COVID-19 Patients Demanding High Oxygen Flow: A Thin Line between Inflammation, Cytokine Storm, and Coagulopathy. Oxidative Med. Cell. Longev. 2021, 2021, 6648199. [Google Scholar] [CrossRef]
- Goyal, A.; Prasad, R.; Goel, P.; Pal, A.; Prasad, S.; Rani, I. An Integrated Approach of the Potential Underlying Molecular Mechanistic Paradigms of SARS-CoV-2-Mediated Coagulopathy. J. Clin. Biochem. 2021. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Catalano, M.; Colgan, M.-P.; Pecsvarady, Z.; Wautrecht, J.C.; Fazeli, B.; Olinic, D.-M.; Farkas, K.; Elalamy, I.; Falanga, A.; et al. Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine. Thromb. Haemost. 2020, 120, 1597–1628. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yao, F.; Chen, J.; Wang, Y.; Fang, X.; Lin, X.; Long, H.; Wang, Q.; Wu, Q. The poor prognosis and influencing factors of high D-dimer levels for COVID-19 patients. Sci. Rep. 2021, 11, 1830. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.K.; Mainbourg, S.; Friggeri, A.; Bertoletti, L.; Douplat, M.; Dargaud, Y.; Grange, C.; Lobbes, H.; Provencher, S.; Lega, J.-C. Arterial and venous thromboembolism in COVID-19: A study-level meta-analysis. Thorax 2021. [Google Scholar] [CrossRef]
- Bombeli, T.; Spahn, D.R. Updates in perioperative coagulation: Physiology and management of thromboembolism and haemorrhage. Br. J. Anaesth. 2004, 93, 275–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iba, T.; Warkentin, T.E.; Thachil, J.; Levi, M.; Levy, J.H. Proposal of the Definition for COVID-19-Associated Coagulopathy. J. Clin. Med. 2021, 10, 191. [Google Scholar] [CrossRef]
- Osuchowski, M.F.; Winkler, M.S.; Skirecki, T.; Cajander, S.; Shankar-Hari, M.; Lachmann, G.; Monneret, G.; Venet, F.; Bauer, M.; Brunkhorst, F.M.; et al. The COVID-19 puzzle: Deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir. Med. 2021, 9, 622–642. [Google Scholar] [CrossRef]
- Basta, G. Direct or indirect endothelial damage? An unresolved question. EBioMedicine 2021, 64, 103215. [Google Scholar] [CrossRef]
- Kaptein, F.; Stals, M.; Huisman, M.; Klok, F. Prophylaxis and treatment of COVID-19 related venous thromboembolism. Postgrad. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Patell, R.; Chiasakul, T.; Bauer, E.; Zwicker, J.I. Pharmacologic Thromboprophylaxis and Thrombosis in Hospitalized Patients with COVID-19: A Pooled Analysis. Thromb. Haemost. 2021, 121, 76–85. [Google Scholar] [CrossRef]
- Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040. [Google Scholar] [CrossRef]
- INSPIRATION Investigators. Effect of Intermediate-Dose vs Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality Among Patients With COVID-19 Admitted to the Intensive Care UnitThe INSPIRATION Randomized Clinical Trial. JAMA 2021, 325, 1620–1630. [Google Scholar] [CrossRef]
- Paramo, J.A. Pulmonary embolism, pulmonary microvascular thrombosis, or both in COVID-19? Cin. Appl. Thromb/Haemost. 2020, 26, 1–2. [Google Scholar] [CrossRef]
- Aloisio, E.; Serafini, L.; Chibireva, M.; Dolci, A.; Panteghini, M. Hypoalbuminemia and elevated D-dimer in COVID-19 patients: A call for result harmonization. Clin. Chem. Lab. Med. 2020, 58, e255–e256. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Ceccarelli, G.; Cangemi, R.; Alessandri, F.; D’Ettorre, G.; Oliva, A.; Pastori, D.; Loffredo, L.; Pignatelli, P.; Ruberto, F.; et al. Hypoalbuminemia, Coagulopathy, and Vascular Disease in COVID-19. Circ. Res. 2020, 127, 400–401. [Google Scholar] [CrossRef]
- Fisher, J.; Linder, A.; Bentzer, P.; Boyd, J.; Kong, H.J.; Lee, T.; Walley, K.R.; Russell, J.A. Is Heparin-Binding Protein Inhibition a Mechanism of Albumin’s Efficacy in Human Septic Shock? Crit. Care Med. 2018, 46, e364–e374. [Google Scholar] [CrossRef]
- Wiedermann, C.J. Phases of fluid management and the roles of human albumin solution in perioperative and critically ill patients. Curr. Med. Res. Opin. 2020, 36, 1961–1973. [Google Scholar] [CrossRef] [PubMed]
- Bergmeier, W.; Hynes, R.O. Extracellular Matrix Proteins in Homostasis and Thrombosis. Cold Spring HarbPerspect Biol. 2012, 4, a005132. [Google Scholar]
- Dolhnikoff, M.; Ferranti, J.F.; Monteiro, R.A.D.A.; Duarte-Neto, A.N.; Gomes-Gouvêa, M.S.; Degaspare, N.V.; Delgado, A.F.; Fiorita, C.M.; Leal, G.N.; Rodrigues, R.M.; et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc. Health 2020, 4, 790–794. [Google Scholar] [CrossRef]
- Blasco, A.; Coronado, M.-J.; Hernandez-Terciado, F. Assessment of Neutrophil Extracellular Traps in Coronary Thrombus of a Case Series of Patients With COVID-19 and Myocardial Infarction. JAMA Cardiol. 2021, 6, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Knittel, T.; Neubauer, K.; Armbrust, T.; Ramadori, G. Expression of Von Willebrand Factor in Normal and Diseased Rat Livers and in cultivated Liver Cells. Hepatology 1995, 21, 470–476. [Google Scholar] [PubMed]
- Neubauer, K.; Knittel, T.; Armbrust, T.; Ramadori, G. Accumulation and cellular localisation of fibrinogen/fibrin during short-term and long-term rat liver injury. Gastroenterology 1995, 108, 1124–1135. [Google Scholar] [CrossRef]
- Baruch, Y.; Neubauer, K.; Shenkar, L. Von Willebrand factor in plasma and in liver tissue after partial hepatectomy. J. Hepatol. 2002, 37, 471–477. [Google Scholar] [CrossRef]
- Baruch, Y.; Neubauer, K.; Ritzel, A.; Wilfling, T. Von Willebrand gene expression in damaged human liver. Hepatogastroenterology 2004, 51, 684–688. [Google Scholar] [PubMed]
- Schwoegler, S.; Neubauer, K.; Knittel, T. Entactin gene-expression in normal and fibrotic rat liver and in rat liver cells. Lab. Investig. 1994, 70, 525–536. [Google Scholar] [PubMed]
- Dimitrieva, N.I.; Burg, M. Secretion of von Willebrand factor by endothelial cells links sodium to hypercoagulability and thrombosis. Proc. Natl. Acad. Sci. USA 2014, 111, 6485–6490. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, I. Von Willebrand Factor and Factor VIII as Risk factors for arterial and venous thrombosi. Sem. Hematol. 2005, 42, 49–55. [Google Scholar] [CrossRef]
- Pandey, E.; Nour, A.S.; Harris, E.N. Prominent receptors of liver Sinusoidal endothelial cells in liver homeostasis and disease. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadori, G. Albumin Infusion in Critically Ill COVID-19 Patients: Hemodilution and Anticoagulation. Int. J. Mol. Sci. 2021, 22, 7126. https://doi.org/10.3390/ijms22137126
Ramadori G. Albumin Infusion in Critically Ill COVID-19 Patients: Hemodilution and Anticoagulation. International Journal of Molecular Sciences. 2021; 22(13):7126. https://doi.org/10.3390/ijms22137126
Chicago/Turabian StyleRamadori, Giuliano. 2021. "Albumin Infusion in Critically Ill COVID-19 Patients: Hemodilution and Anticoagulation" International Journal of Molecular Sciences 22, no. 13: 7126. https://doi.org/10.3390/ijms22137126
APA StyleRamadori, G. (2021). Albumin Infusion in Critically Ill COVID-19 Patients: Hemodilution and Anticoagulation. International Journal of Molecular Sciences, 22(13), 7126. https://doi.org/10.3390/ijms22137126