Regulation of microRNA Expression in Sleep Disorders in Patients with Epilepsy
Abstract
:1. Introduction
2. Methods
3. The Effect of Epilepsy on Sleep
4. Impact of microRNAs on Sleep-Related Epilepsy
4.1. Sleep-Related Seizures―Selected Epilepsy Syndromes
4.2. Sudden Unexpected Death in Epilepsy
5. The Classifications of Sleep Disorders
6. Effect of microRNAs on Primary Sleep Disorders Associated with Epilepsy
6.1. Insomnia
6.2. Sleep-Disordered Breathing
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Khalyfa, A.; Sanz-Rubio, D. Genetics and Extracellular Vesicles of Pediatrics Sleep Disordered Breathing and Epilepsy. Int. J. Mol. Sci. 2019, 20, 5483. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.; Solaiman, A.; Mahakkanukrauh, P.; Mohamed, R.; Das, S. Sleep Related Epilepsy and Pharmacotherapy: An Insight. Front. Pharmacol. 2018, 9, 1088. [Google Scholar] [CrossRef]
- Ryan, B.; Joilin, G.; Williams, J.M. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front. Mol. Neurosci. 2015, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Gross, C.; Tiwari, D. Regulation of Ion Channels by MicroRNAs and the Implication for Epilepsy. Curr. Neurol. Neurosci. Rep. 2018, 18, 60. [Google Scholar] [CrossRef]
- Raoof, R.; Jiménez-Mateos, E.; Bauer, S.; Tackenberg, B.; Rosenow, F.; Lang, J.; Onugoren, M.D.; Hamer, H.; Huchtemann, T.; Körtvélyessy, P.; et al. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci. Rep. 2017, 7, 3328. [Google Scholar] [CrossRef]
- Kinoshita, C.; Okamoto, Y.; Aoyama, K.; Nakaki, T. MicroRNA: A Key Player for the Interplay of Circadian Rhythm Abnormalities, Sleep Disorders and Neurodegenerative Diseases. Clocks Sleep 2020, 2, 282–307. [Google Scholar] [CrossRef] [PubMed]
- Barik, S. Molecular Interactions between Pathogens and the Circadian Clock. Int. J. Mol. Sci. 2019, 20, 5824. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Xu, H.; Su, X.; He, X. Role of MicroRNA in Governing Synaptic Plasticity. Neural Plast. 2016, 2016, 4959523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiel, G.; Al Sarraj, J.; Stefano, L. cAMP response element binding protein (CREB) activates transcription via two distinct genetic elements of the human glucose-6-phosphatase gene. BMC Mol. Biol. 2005, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Bazil, C.W. Epilepsy and sleep disturbance. Epilepsy Behav. 2003, 4, S39–S45. [Google Scholar] [CrossRef]
- Peever, J.; Fuller, P.M. Neuroscience: A Distributed Neural Network Controls REM Sleep. Curr. Biol. 2016, 26, R34–R35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaki, M.; Wang, Z.; Barnes-Diana, T.; Guo, D.; Berard, A.V.; Walsh, E.; Watanabe, T.; Sasaki, Y. Complementary contributions of non-REM and REM sleep to visual learning. Nat. Neurosci. 2020, 23, 1150–1156. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Kilduff, T.S. The Neurobiology of Sleep and Wakefulness. Psychiatr. Clin. N. Am. 2015, 38, 615–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Héricé, C.; Patel, A.A.; Sakata, S. Circuit mechanisms and computational models of REM sleep. Neurosci. Res. 2019, 140, 77–92. [Google Scholar] [CrossRef]
- Gotter, A.L.; Garson, S.L.; Stevens, J.; Munden, R.L.; Fox, S.V.; Tannenbaum, P.L.; Yao, L.; Kuduk, S.D.; McDonald, T.; Uslaner, J.M.; et al. Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators. BMC Neurosci. 2014, 15, 109. [Google Scholar] [CrossRef] [Green Version]
- Fulcher, B.D.; Phillips, A.; Postnova, S.; Robinson, P.A. A Physiologically Based Model of Orexinergic Stabilization of Sleep and Wake. PLoS ONE 2014, 9, e91982. [Google Scholar] [CrossRef] [Green Version]
- Behn, C.G.D.; Klerman, E.B.; Mochizuki, T.; Shih-Chieh, L.; Scammell, T.E. Abnormal Sleep/Wake Dynamics in Orexin Knockout Mice. Sleep 2010, 33, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Halász, P.; Szűcs, A. Sleep and Epilepsy Link by Plasticity. Front. Neurol. 2020, 11, 911. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhang, M.-Q.; Li, R.; Qu, W.-M.; Huang, Z.-L. The Mutual Interaction between Sleep and Epilepsy on the Neurobiological Basis and Therapy. Curr. Neuropharmacol. 2017, 16, 5–16. [Google Scholar] [CrossRef]
- Lanigar, S.; Bandyopadhyay, S. Sleep and Epilepsy: A Complex Interplay. Mo. Med. 2017, 114, 453–457. [Google Scholar]
- Gibbon, F.M.; MacCormac, E.; Gringras, P. Sleep and epilepsy: Unfortunate bedfellows. Arch. Dis. Child. 2019, 104, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Auger, R.R.; Burgess, H.J.; Emens, J.S.; Deriy, L.V.; Thomas, S.M.; Sharkey, K.M. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015. J. Clin. Sleep Med. 2015, 11, 1199–1236. [Google Scholar] [CrossRef]
- Smith, M.T.; McCrae, C.S.; Cheung, J.; Martin, J.L.; Harrod, C.G.; Heald, J.L.; Carden, K.A. Use of Actigraphy for the Evaluation of Sleep Disorders and Circadian Rhythm Sleep-Wake Disorders: An American Academy of Sleep Medicine Systematic Review, Meta-Analysis, and GRADE Assessment. J. Clin. Sleep Med. 2018, 14, 1209–1230. [Google Scholar] [CrossRef] [Green Version]
- Dijk, D.-J.; Duffy, J.F. Novel Approaches for Assessing Circadian Rhythmicity in Humans: A Review. J. Biol. Rhythm. 2020, 35, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Scarlatelli-Lima, A.V.; Sukys-Claudino, L.; Watanabe, N.; Guarnieri, R.; Walz, R.; Lin, K. How do people with drug-resistant mesial temporal lobe epilepsy sleep? A clinical and video-EEG with EOG and submental EMG for sleep staging study. eNeurologicalSci 2016, 4, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Janz, D. Epilepsy with grand mal on awakening and sleep-waking cycle. Clin. Neurophysiol. 2000, 111, S103–S110. [Google Scholar] [CrossRef]
- Caraballo, R.H.; Cejas, N.; Chamorro, N.; Kaltenmeier, M.C.; Fortini, S.; Soprano, A.M. Landau–Kleffner syndrome: A study of 29 patients. Seizure 2014, 23, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Nickels, K.; Wirrell, E. Electrical Status Epilepticus in Sleep. Semin. Pediatr. Neurol. 2008, 15, 50–60. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J. MicroRNA Dysregulation in Epilepsy: From Pathogenetic Involvement to Diagnostic Biomarker and Therapeutic Agent Development. Front. Mol. Neurosci. 2021, 14, 650372. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, A.; Dong, J.; Yao, Y.; Zhu, M.; Xu, K.; Al Hamda, M.H. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy. Brain Res. Bull. 2019, 152, 175–183. [Google Scholar] [CrossRef]
- Moustafa, M.; Abokrysha, N.T.; Eldesoukey, N.A.; Amin, D.G.; Mounir, N.; Labib, D.M. Role of circulating miR 194-5p, miR 106b, and miR 146a as potential biomarkers for epilepsy: A case-control study. Egypt. J. Neurol. Psychiatry Neurosurg. 2020, 56, 82. [Google Scholar] [CrossRef]
- Zupcic, S.G.; Zupcic, M.; Duzel, V.; Simurina, T.; Sakic, L.; Grubjesic, I.; Tonković, D.; Udovic, I.S.; Ferreri, V.M. The potential role of micro-RNA-211 in the pathogenesis of sleep-related hypermotor epilepsy. Med. Hypotheses 2020, 143, 110115. [Google Scholar] [CrossRef]
- Panjwani, N.; Wilson, M.; Addis, L.; Crosbie, J.; Wirrell, E.; Auvin, S.; Caraballo, R.H.; Kinali, M.; McCormick, D.; Oren, C.; et al. A microRNA-328 binding site in PAX6 is associated with centrotemporal spikes of rolandic epilepsy. Ann. Clin. Transl. Neurol. 2016, 3, 512–522. [Google Scholar] [CrossRef]
- Żegało, M.; Wiland, E.; Kurpisz, M. Topologia chromosomów w jądrze komórkowym. Diploidalna komórka somatyczna. Część 1. Postepy Hig. Med. Dosw. 2006, 60, 331–342. [Google Scholar]
- Strehlow, V.; Heyne, H.O.; Lemke, J.R. The Spectrum of GRIN2A-Associated Disorders. Epileptologie 2015, 32, 147–151. [Google Scholar]
- Dryżałowski, P.; Jóźwiak, S.; Franckiewicz, M.; Strzelecka, J. Benign epilepsy with centrotemporal spikes—Current concepts of diagnosis and treatment. Neurol. Neurochir. Polska 2018, 52, 677–689. [Google Scholar] [CrossRef]
- Addis, L.; Virdee, J.K.; Vidler, L.R.; Collier, D.A.; Pal, D.K.; Ursu, D. Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency—Molecular profiling and functional rescue. Sci. Rep. 2017, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, I.; Jones, L.; Pozzebon, M.; Howell, R.A.; Saling, M.M.; Berkovic, S. Autosomal dominant rolandic epilepsy and speech dyspraxia: A new syndrome with anticipation. Ann. Neurol. 1995, 38, 633–642. [Google Scholar] [CrossRef]
- Halász, P. Are Absence Epilepsy and Nocturnal Frontal Lobe Epilepsy System Epilepsies of the Sleep/Wake System? Behav. Neurol. 2015, 2015, 231676. [Google Scholar] [CrossRef] [Green Version]
- Thakran, S.; Guin, D.; Singh, P.; Singh, P.; Kukal, S.; Rawat, C.; Yadav, S.; Kushwaha, S.S.; Srivastava, A.K.; Hasija, Y.; et al. Genetic Landscape of Common Epilepsies: Advancing towards Precision in Treatment. Int. J. Mol. Sci. 2020, 21, 7784. [Google Scholar] [CrossRef]
- Delgado-Escueta, A.V.; Koeleman, B.P.; Bailey, J.N.; Medina, M.T.; Durón, R.M. The quest for Juvenile Myoclonic Epilepsy genes. Epilepsy Behav. 2013, 28, S52–S57. [Google Scholar] [CrossRef]
- Coll, M.; Oliva, A.; Grassi, S.; Brugada, R.; Campuzano, O. Update on the Genetic Basis of Sudden Unexpected Death in Epilepsy. Int. J. Mol. Sci. 2019, 20, 1979. [Google Scholar] [CrossRef] [Green Version]
- Nashef, L.; So, E.L.; Ryvlin, P.; Tomson, T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia 2012, 53, 227–233. [Google Scholar] [CrossRef]
- Berg, A.; Nickels, K.; Wirrell, E.; Geerts, A.; Callenbach, P.; Arts, W.F.; Rios, C.; Camfield, P.; Camfield, C. Mortality Risks in New-Onset Childhood Epilepsy. Pediatrics 2013, 132, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Scorza, F.A.; Cendes, F.; Cavalheiro, E.A.; Lopes-Cendes, I. Sudden unexpected death in epilepsy: Small RNAs raise expectations. Epilepsy Behav. 2013, 29, 591–593. [Google Scholar] [CrossRef]
- Partemi, S.; Vidal, M.C.; Striano, P.; Campuzano, O.; Allegue, C.; Pezzella, M.; Elia, M.; Parisi, P.; Belcastro, V.; Casellato, S.; et al. Genetic and forensic implications in epilepsy and cardiac arrhythmias: A case series. Int. J. Leg. Med. 2014, 129, 495–504. [Google Scholar] [CrossRef]
- Mostacci, B.; Bisulli, F.; Vignatelli, L.; Licchetta, L.; Di Vito, L.; Rinaldi, C.; Trippi, I.; Ferri, L.; Plazzi, G.; Provini, F.; et al. Incidence of sudden unexpected death in nocturnal frontal lobe epilepsy: A cohort study. Sleep Med. 2015, 16, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Sirbu, C.A.; Corneci, D.; Plesa, F.C.; Sirbu, O.M.; Sandu, A.M.; Ioan, B. From Pathophysiology to Molecular Diagnosis in Sudden Un-expected Death in Epilepsy. Rom. J. Neurol. 2016, 15, 61–65. [Google Scholar] [CrossRef]
- Goldman, A.M.; Behr, E.R.; Semsarian, C.; Bagnall, R.D.; Sisodiya, S.M.; Cooper, P.N. Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention. Epilepsia 2016, 57, 17–25. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, M.; Cecchetto, G.; Munari, G.; Balsamo, L.; Gardiman, M.P.; Giordano, R.; Viel, G.; Fassan, M. Circulating miRNAs expression profiling in drug-resistant epilepsy: Up-regulation of miR-301a-3p in a case of sudden unexpected death. Leg. Med. 2018, 33, 5. [Google Scholar] [CrossRef]
- Pansani, A.P.; Ghazale, P.P.; dos Santos, E.G.; dos Santos, B.K.; Gomes, K.P.; Lacerda, I.S.; Castro, C.H.; Mendes, E.P.; dos Santos, F.C.A.; Biancardi, M.F.; et al. The number and periodicity of seizures induce cardiac remodeling and changes in micro-RNA expression in rats submitted to electric amygdala kindling model of epilepsy. Epilepsy Behav. 2021, 116, 107784. [Google Scholar] [CrossRef]
- Sateia, M.J. International Classification of Sleep Disorders-Third Edition. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- De Weerd, A.; De Haas, S.; Otte, A.; Trenite, D.K.-N.; Van Erp, G.; Cohen, A.; De Kam, M.; Van Gerven, J. Subjective Sleep Disturbance in Patients with Partial Epilepsy: A Questionnaire-based Study on Prevalence and Impact on Quality of Life. Epilepsia 2004, 45, 1397–1404. [Google Scholar] [CrossRef]
- Malow, B.A.; Levy, K.; Maturen, K.; Bowes, R. Obstructive sleep apnea is common in medically refractory epilepsy patients. Neurology 2000, 55, 1002–1007. [Google Scholar] [CrossRef] [Green Version]
- Manni, R.; Terzaghi, M.; Arbasino, C.; Sartori, I.; Galimberti, C.A.; Tartara, A. Obstructive sleep apnea in a clinical series of adult epilepsy patients: Frequency and features of the comorbidity. Epilepsia 2003, 44, 836–840. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Brandenburg, N.A.; McDermott, A.M.; Bazil, C.W. Sleep Disturbances Reported by Refractory Partial-onset Epilepsy Patients Receiving Polytherapy. Epilepsia 2006, 47, 1176–1183. [Google Scholar] [CrossRef]
- Khatami, R.; Zutter, D.; Siegel, A.; Mathis, J.; Donati, F.; Bassetti, C.L. Sleep-wake habits and disorders in a series of 100 adult epilepsy patients—A prospective study. Seizure 2006, 15, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piperidou, C.; Karlovasitou, A.; Triantafyllou, N.; Terzoudi, A.; Constantinidis, T.; Vadikolias, K.; Heliopoulos, I.; Vassilopoulos, D.; Balogiannis, S. Influence of sleep disturbance on quality of life of patients with epilepsy. Seizure 2008, 17, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Jenssen, S.; Gracely, E.; Mahmood, T.; Tracy, J.I.; Sperling, M.R. Subjective somnolence relates mainly to depression among patients in a tertiary care epilepsy center. Epilepsy Behav. 2006, 9, 632–635. [Google Scholar] [CrossRef]
- Bassetti, C.L.; Gugger, M. Sleep disordered breathing in neurologic disorders. Swiss Med. Wkly. 2002, 132, 109–115. [Google Scholar]
- Vaughn, B.V.; D’Cruz, O.F. Obstructive sleep apnea in epilepsy. Clin. Chest Med. 2003, 24, 239–248. [Google Scholar] [CrossRef]
- Chihorek, A.M.; Abou-Khalil, B.; Malow, B.A. Obstructive sleep apnea is associated with seizure occurrence in older adults with epilepsy. Neurology 2007, 69, 1823–1827. [Google Scholar] [CrossRef]
- Vendrame, M.; Yang, B.; Jackson, S.; Auerbach, S. Insomnia and Epilepsy: A Questionnaire-Based Study. J. Clin. Sleep Med. 2013, 9, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Quigg, M.; Gharai, S.; Ruland, J.; Schroeder, C.; Hodges, M.; Ingersoll, K.; Thorndike, F.P.; Yan, G.; Ritterband, L. Insomnia in epilepsy is associated with continuing seizures and worse quality of life. Epilepsy Res. 2016, 122, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.I.; Grigg-Damberger, M.; Andrews, N.; O’Rourke, C.; Bena, J.; Foldvary-Schaefer, N. Severity of self-reported insomnia in adults with epilepsy is related to comorbid medical disorders and depressive symptoms. Epilepsy Behav. 2016, 60, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Wei, P.; Qin, Y.; Wei, Y. MicroRNA expression profiling and bioinformatics analysis of dysregulated microRNAs in ob-structive sleep apnea patients. Medicine 2017, 96, e7917. [Google Scholar] [CrossRef] [PubMed]
- Dalmases, M.; Solé-Padullés, C.; Torres, M.; Embid, C.; Nuñez, M.D.; Martínez-Garcia, M.A.; Farré, R.; Bargallo, N.; Bartrés-Faz, D.; Montserrat, J.M. Effect of CPAP on Cognition, Brain Function, and Structure Among Elderly Patients With OSA. Chest 2015, 148, 1214–1223. [Google Scholar] [CrossRef]
- Kushida, C.A.; Nichols, D.A.; Holmes, T.H.; Quan, S.F.; Walsh, J.K.; Gottlieb, D.J.; Simon, R.D.; Guilleminault, C.; White, D.P.; Goodwin, J.L.; et al. Effects of Continuous Positive Airway Pressure on Neurocognitive Function in Obstructive Sleep Apnea Patients: The Apnea Positive Pressure Long-term Efficacy Study (APPLES). Sleep 2012, 35, 1593–1602. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, I.; Glasser, M.; Crum, W.R.; Kempton, M.J.; Milosevic, M.; McMillan, A.; Leschziner, G.D.; Kumari, V.; Goadsby, P.; Simonds, A.K.; et al. Changes in Neurocognitive Architecture in Patients with Obstructive Sleep Apnea Treated with Continuous Positive Airway Pressure. EBioMedicine 2016, 7, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Maurousset, A.; de Toffol, B.; Praline, J.; Biberon, J.; Limousin, N. High incidence of obstructive sleep apnea syndrome in patients with late-onset epilepsy. Neurophysiol. Clin. Neurophysiol. 2017, 47, 55–61. [Google Scholar] [CrossRef]
- Santamaria-Martos, F.; Benítez, I.; Pinilla, L.; Ortega, F.; Zapater, A.; Girón, C.; Mínguez, O.; Gómez, S.; Vaca, R.; Fernandez-Real, J.-M.; et al. MicroRNA Profile of Cardiovascular Risk in Patients with Obstructive Sleep Apnea. Respiration 2020, 99, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
miRNA | Gene Type | |
---|---|---|
sleep-related hypermotor epilepsy (SHE) | miRNA-211 | CHRNA4, CHRNA2 CHRNB2 |
Panayiotopoulos syndrome | miRNA-155 | SCN1A |
benign partial epilepsy with centrotemporal spikes (BECTS) | miRNA-328 | PAXNEB GRIN2A (atypical form) |
idiopathic generalized epilepsy, including juvenile myoclonic epilepsy (JME) | miR 194-5p and miR 106b | EFHC1, ClCN2, KCNQ3, KCNMB3, GABRA1,BRD2, KCNJ10, CACNA1A |
Primary Sleep Disorders | miRNA | Rhythmicity | Regulation | Target Clock Gene | Predicted Disease Mechanism |
---|---|---|---|---|---|
insomnia | miRNA-125a | ND | hippocampus | Per3; CKIε, | long-term regulation of sleep |
miRNA-126 | ND | dopaminergic neurons | Dpb | dysregulation of trophic support in DA neurons | |
miRNA-146a | rhythmic | frontal cortex, hippocampus | n.d. | increased tau hyperphosphorylation | |
obstructive sleep apnea | miRNA-107 | rhythmic | temporal cortex | CLOCK gene | increased BACE1 expression |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziadkowiak, E.; Chojdak-Łukasiewicz, J.; Olejniczak, P.; Paradowski, B. Regulation of microRNA Expression in Sleep Disorders in Patients with Epilepsy. Int. J. Mol. Sci. 2021, 22, 7370. https://doi.org/10.3390/ijms22147370
Dziadkowiak E, Chojdak-Łukasiewicz J, Olejniczak P, Paradowski B. Regulation of microRNA Expression in Sleep Disorders in Patients with Epilepsy. International Journal of Molecular Sciences. 2021; 22(14):7370. https://doi.org/10.3390/ijms22147370
Chicago/Turabian StyleDziadkowiak, Edyta, Justyna Chojdak-Łukasiewicz, Piotr Olejniczak, and Bogusław Paradowski. 2021. "Regulation of microRNA Expression in Sleep Disorders in Patients with Epilepsy" International Journal of Molecular Sciences 22, no. 14: 7370. https://doi.org/10.3390/ijms22147370
APA StyleDziadkowiak, E., Chojdak-Łukasiewicz, J., Olejniczak, P., & Paradowski, B. (2021). Regulation of microRNA Expression in Sleep Disorders in Patients with Epilepsy. International Journal of Molecular Sciences, 22(14), 7370. https://doi.org/10.3390/ijms22147370