Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants and Their Hosts
Abstract
:1. Introduction to Parasitic Flowering Plants
2. Possible Effects of Abiotic Stress on Parasitic Plants
2.1. Effects through Alteration of Germination Stimulants, Released by the Host
2.2. Host Biomass and Health Status
2.3. Effects of the Host Defense System
2.4. Transmission of Harmful Compounds from Host to Parasite
3. Response to and Tolerance of Abiotic Stress Factors in Parasitic Plants
3.1. Drought Stress
3.2. Salt Stress
3.3. Heavy Metal Stress
3.4. Herbicide Resistance
4. Agricultural Aspects of Host-Parasite Interactions under Abiotic Stress
5. Challenges and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Westwood, J.H.; Yoder, J.I.; Timko, M.P. The evolution of parasitism in plants. Trends Plant Sci. 2010, 15, 227–235. [Google Scholar] [CrossRef]
- Bungard, R.A. Photosynthetic evolution in parasitic plants: Insight from the chloroplast genome. Bioessays 2004, 26, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Hegenauer, V.; Körner, M.; Albert, M. Plants under stress by parasitic plants. Curr. Opin. Plant Biol. 2017, 38, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Nickrent, D.L.; Musselman, L.J. Introduction to parasitic flowering plants. Plant Health Instr. 2004, 13, 300–315. [Google Scholar] [CrossRef]
- Heide-Jørgensen, H.S. Introduction: The parasitic syndrome in higher plants. In Parasitic Orobanchaceae; Springer: Berlin, Germany, 2013; pp. 1–18. [Google Scholar]
- Yoshida, S.; Cui, S.; Ichihashi, Y.; Shirasu, K. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 2016, 67, 643–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aly, R.; Hamamouch, N.; Abu-Nassar, J.; Wolf, S.; Joel, D.M.; Eizenberg, H.; Kaisler, E.; Cramer, C.; Gal-On, A.; Westwood, J.H. Movement of protein and macromolecules between host plants and the parasitic weed Phelipanche aegyptiaca Pers. Plant Cell Rep. 2011, 30, 2233–2241. [Google Scholar] [CrossRef]
- Kim, G.; Westwood, J.H. Macromolecule exchange in Cuscuta-host plant interactions. Curr. Opin. Plant Biol. 2015, 26, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.C.; Xi, Z. Horizontal gene transfer in parasitic plants. Curr. Opin. Plant Biol. 2015, 26, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mower, J.P.; Stefanović, S.; Young, G.J.; Palmer, J.D. Plant genetics: Gene transfer from parasitic to host plants. Nature 2004, 432, 165. [Google Scholar] [CrossRef]
- Zhang, D.; Qi, J.; Yue, J.; Huang, J.; Sun, T.; Li, S.; Wen, J.-F.; Hettenhausen, C.; Wu, J.; Wang, L. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer. BMC Plant Biol. 2014, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Skippington, E.; Barkman, T.J.; Rice, D.W.; Palmer, J.D. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc. Natl. Acad. Sci. USA 2015, 112, E3515–E3524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellot, S.; Renner, S.S. The plastomes of two species in the endoparasite genus Pilostyles (Apodanthaceae) each retain just five or six possibly functional genes. Genome Biol. Evol. 2015, 8, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.; Hazzouri, K.M.; Nickrent, D.; Geisler, M.; Meyer, R.S.; Pentony, M.M.; Flowers, J.M.; Pelser, P.; Barcelona, J.; Inovejas, S.A. Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol. Biol. Evol. 2014, 31, 793–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, C. Parasitic weeds: A world challenge. Weed Sci. 2012, 60, 269–276. [Google Scholar] [CrossRef]
- Parker, C. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 2009, 65, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Rispail, N.; Dita, M.A.; González-Verdejo, C.; Pérez-de-Luque, A.; Castillejo, M.A.; Prats, E.; Román, B.; Jorrín, J.; Rubiales, D. Plant resistance to parasitic plants: Molecular approaches to an old foe. New Phytol. 2007, 173, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.; Johnsen, H.R.; Pielach, A.; Lund, L.; Fischer, K.; Rose, J.K. Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder (Cuscuta reflexa). Physiol. Plant. 2018, 162, 205–218. [Google Scholar] [CrossRef]
- Mohemed, N.; Charnikhova, T.; Fradin, E.F.; Rienstra, J.; Babiker, A.G.; Bouwmeester, H.J. Genetic variation in Sorghum bicolor strigolactones and their role in resistance against Striga hermonthica. J. Exp. Bot. 2018, 69, 2415–2430. [Google Scholar] [CrossRef] [Green Version]
- Joel, D.M. The long-term approach to parasitic weeds control: Manipulation of specific developmental mechanisms of the parasite. Crop. Prot. 2000, 19, 753–758. [Google Scholar] [CrossRef]
- Press, M.C.; Phoenix, G.K. Impacts of parasitic plants on natural communities. New Phytol. 2005, 166, 737–751. [Google Scholar] [CrossRef]
- Koch, A.M.; Binder, C.; Sanders, I.R. Does the generalist parasitic plant Cuscuta campestris selectively forage in heterogeneous plant communities? New Phytol. 2004, 162, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Grewell, B.J. Parasite facilitates plant species coexistence in a coastal wetland. Ecology 2008, 89, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Kranner, I.; Minibayeva, F.V.; Beckett, R.P.; Seal, C.E. What is stress? Concepts, definitions and applications in seed science. New Phytol. 2010, 188, 655–673. [Google Scholar] [CrossRef]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruyter-Spira, C.; Al-Babili, S.; van der Krol, S.; Bouwmeester, H. The biology of strigolactones. Trends Plant Sci. 2013, 18, 72–83. [Google Scholar] [CrossRef]
- Matusova, R.; Rani, K.; Verstappen, F.W.; Franssen, M.C.; Beale, M.H.; Bouwmeester, H.J. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 2005, 139, 920–934. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, K.; Awad, A.A.; Xie, X.; Yoneyama, K.; Takeuchi, Y. Strigolactones as germination stimulants for root parasitic plants. Plant and Cell Physiology 2010, 51, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Teofanova, D.; Odjakova, M.; Abumhadi, N.; Zagorchev, L. Strigolactones: Mediators of Abiotic Stress Response and Weakness in Parasite Attraction. In Plant Tolerance to Environmental Stress; CRC Press: Boca Raton, FL, USA, 2019; pp. 115–128. [Google Scholar]
- Joel, D.M.; Chaudhuri, S.K.; Plakhine, D.; Ziadna, H.; Steffens, J.C. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 2011, 72, 624–634. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M.; Zamarreño, Á.M.; Paz, J.A.; García-Mina, J.M.; Pozo, M.J.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 2013, 170, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lozano, J.M.; Aroca, R.; Zamarreño, Á.M.; Molina, S.; Andreo-Jiménez, B.; Porcel, R.; García-Mina, J.M.; Ruyter-Spira, C.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ. 2016, 39, 441–452. [Google Scholar] [CrossRef]
- López-Ráez, J.A.; Charnikhova, T.; Fernández, I.; Bouwmeester, H.; Pozo, M.J. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J. Plant Physiol. 2011, 168, 294–297. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; García-Garrido, J.; Ocampo, J.; Rubiales, D. Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Res. 2010, 50, 262–268. [Google Scholar] [CrossRef]
- López-Granados, F.; García-Torres, L. Longevity of crenate broomrape (Orobanche crenata) seed under soil and laboratory conditions. Weed Sci. 1999, 47, 161–166. [Google Scholar] [CrossRef]
- Runyon, J.B.; Mescher, M.C.; De Moraes, C.M. Volatile chemical cues guide host location and host selection by parasitic plants. Science 2006, 313, 1964–1967. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S.; Dinelli, G.; Bonetti, A.; Catizone, P. Germination ecology, emergence and host detection in Cuscuta campestris. Weed Res. 2005, 45, 270–278. [Google Scholar] [CrossRef]
- Stepien, P.; Johnson, G.N. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol. 2009, 149, 1154–1165. [Google Scholar] [CrossRef] [Green Version]
- Kelly, C.K. Resource choice in Cuscuta europaea. Proc. Natl. Acad. Sci. USA 1992, 89, 12194–12197. [Google Scholar] [CrossRef] [Green Version]
- Frost, A.; Lopez-Gutierrez, J.C.; Purrington, C.B. Fitness of Cuscuta salina (Convolvulaceae) parasitizing Beta vulgaris (Chenopodiaceae) grown under different salinity regimes. Am. J. Bot. 2003, 90, 1032–1037. [Google Scholar] [CrossRef]
- Ghars, M.A.; Parre, E.; Debez, A.; Bordenave, M.; Richard, L.; Leport, L.; Bouchereau, A.; Savouré, A.; Abdelly, C. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J. Plant Physiol. 2008, 165, 588–599. [Google Scholar] [CrossRef]
- Smith, J.L.; de Moraes, C.M.; Mescher, M.C. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag. Sci. 2009, 65, 497–503. [Google Scholar] [CrossRef]
- Fujita, M.; Fujita, Y.; Noutoshi, Y.; Takahashi, F.; Narusaka, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 2006, 9, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, I.; Pastor, V.; Mauch-Mani, B. Plant responses to simultaneous biotic and abiotic stress: Molecular mechanisms. Plants 2014, 3, 458–475. [Google Scholar] [CrossRef]
- Ramegowda, V.; Senthil-Kumar, M. The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 2015, 176, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelhamid, M.T.; Shokr, M.; Bekheta, M. Effects of induced salinity on four Vicia faba cultivars differing in their broomrape tolerance. In Sustainable Management of Saline Waters and Salt-Affected Soils for Agriculture, Proceedings of the Second Bridging Workshop, Aleppo, Syria, 15–18 November 2009.; ICARDA, Aleppo, Syria and IWMI: Colombo, Sri Lanka, 2009; p. 58. [Google Scholar]
- Pérez-de-Luque, A.; Moreno, M.; Rubiales, D. Host plant resistance against broomrapes (Orobanche spp.): Defence reactions and mechanisms of resistance. Ann. Appl. Biol. 2008, 152, 131–141. [Google Scholar] [CrossRef]
- Wiese, J.; Kranz, T.; Schubert, S. Induction of pathogen resistance in barley by abiotic stress. Plant Biol. 2004, 6, 529–536. [Google Scholar] [CrossRef]
- Foyer, C.H.; Rasool, B.; Davey, J.W.; Hancock, R.D. Cross-tolerance to biotic and abiotic stresses in plants: A focus on resistance to aphid infestation. J. Exp. Bot. 2016, 67, 2025–2037. [Google Scholar] [CrossRef]
- Förste, F.; Mantouvalou, I.; Kanngießer, B.; Stosnach, H.; Lachner, L.A.M.; Fischer, K.; Krause, K. Selective mineral transport barriers at Cuscuta-host infection sites. Physiol. Plant. 2020, 168, 934–947. [Google Scholar] [CrossRef] [Green Version]
- Nadler-Hassar, T.; Rubin, B. Natural tolerance of Cuscuta campestris to herbicides inhibiting amino acid biosynthesis. Weed Res. 2003, 43, 341–347. [Google Scholar] [CrossRef]
- Llugany, M.; Lombini, A.; Dinelli, E.; Poschenrieder, C.; Barceló, J. Transfer of selected mineral nutrients and trace elements in the host–hemiparasite association, Cistus–Odontites lutea, growing on and off metal-polluted sites. Plant Biol. 2009, 11, 170–178. [Google Scholar] [CrossRef]
- Vurro, E.; Ruotolo, R.; Ottonello, S.; Elviri, L.; Maffini, M.; Falasca, G.; Zanella, L.; Altamura, M.M.; di Toppi, L.S. Phytochelatins govern zinc/copper homeostasis and cadmium detoxification in Cuscuta campestris parasitizing Daucus carota. Environ. Exp. Bot. 2011, 72, 26–33. [Google Scholar] [CrossRef]
- Veste, M.; Todt, H.; Breckle, S.-W. Influence of halophytic hosts on their parasites—The case of Plicosepalus acaciae. AoB Plants 2015, 7, plu084. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.M. Parasitic plants as facilitators: More Dryad than Dracula? J. Ecol. 2009, 97, 1151–1159. [Google Scholar] [CrossRef]
- Huangy, Y.; Liu, X.; Luo, X.; Zhai, Z.; Guo, Y. Effects of Cistanche deserticola on biomass and carbohydrates content of Haloxylon ammodendron. J. China Agric. Univ. 2009, 14, 76–79. [Google Scholar]
- Fahmy, G.; El-Tantawy, H.; El-Ghani, M.A. Distribution, host range and biomass of two species of Cistanche and Orobanche cernua parasitizing the roots of some Egyptian xerophytes. J. Arid. Environ. 1996, 34, 263–276. [Google Scholar] [CrossRef]
- Bolin, J.F.; Maass, E.; Tennakoon, K.U.; Musselman, L.J. Host-specific germination of the root holoparasite Hydnora triceps (Hydnoraceae). Botany 2009, 87, 1250–1254. [Google Scholar] [CrossRef]
- Silva, A.; del Rio, C.M. Effects of the mistletoe Tristerix aphyllus (Loranthaceae) on the reproduction of its cactus host Echinopsis chilensis. Oikos 1996, 75, 437–442. [Google Scholar] [CrossRef]
- Costea, M.; Wright, M.A.; Stefanović, S. Untangling the systematics of salt marsh dodders: Cuscuta pacifica, a new segregate species from Cuscuta salina (Convolvulaceae). Syst. Bot. 2009, 34, 787–795. [Google Scholar] [CrossRef]
- Prahalad, V. A Guide to the Plants of Tasmanian Saltmarsh Wetlands; University of Tasmania: Hobart, Australia; NRM North: Hobart, Australia, 2014. [Google Scholar]
- Qasem, J.R. Parasitic flowering plants on cultivated plants in Jordan-the present status and management. Pak. J. Weed Sci. Res. 2010, 16, 227–239. [Google Scholar]
- Yang, Y.; Yi, X.; Peng, M.; Zhou, Y. Stable carbon and nitrogen isotope signatures of root-holoparasitic Cynomorium songaricum and its hosts at the Tibetan plateau and the surrounding Gobi desert in China. Isot. Environ. health Stud. 2012, 48, 483–493. [Google Scholar] [CrossRef]
- Watson, D.M. Determinants of parasitic plant distribution: The role of host quality. Botany 2008, 87, 16–21. [Google Scholar] [CrossRef]
- Heide-Jørgensen, H. Parasitic Flowering Plants; Brill: Leiden, The Netherlands, 2008. [Google Scholar]
- Gonzáles, W.L.; Suárez, L.H.; Medel, R. Outcrossing increases infection success in the holoparasitic mistletoe Tristerix aphyllus (Loranthaceae). Evol. Ecol. 2007, 21, 173–183. [Google Scholar] [CrossRef]
- Moral, J.; Lozano-Baena, M.D.; Rubiales, D. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth. Front. Plant Sci. 2015, 6, 408. [Google Scholar] [CrossRef] [Green Version]
- Dawoud, D.A.; Sauerborn, J. Impact of drought stress and temperature on the parasitic weeds Striga hermonthica and Alectra vogelii in their early growth stages. Exp. Agric. 1994, 30, 249–257. [Google Scholar] [CrossRef]
- Gibot-Leclerc, S.; Corbineau, F.; Sallé, G.; Côme, D. Responsiveness of Orobanche ramosa L. seeds to GR 24 as related to temperature, oxygen availability and water potential during preconditioning and subsequent germination. Plant Growth Regul. 2004, 43, 63–71. [Google Scholar] [CrossRef]
- Kebreab, E.; Murdoch, A. Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. J. Exp. Bot. 1999, 50, 655–664. [Google Scholar] [CrossRef]
- Li, W.; Nguyen, K.H.; Watanabe, Y.; Yamaguchi, S.; Tran, L.-S.P. OaMAX2 of Orobanche aegyptiaca and Arabidopsis AtMAX2 share conserved functions in both development and drought responses. Biochem. Biophys. Res. Commun. 2016, 478, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hettenhausen, C.; Sun, G.; Zhuang, H.; Li, J.-H.; Wu, J. The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination. PLoS ONE 2015, 10, e0135197. [Google Scholar] [CrossRef]
- Qin, X.; Yang, S.H.; Kepsel, A.C.; Schwartz, S.H.; Zeevaart, J.A. Evidence for abscisic acid biosynthesis in Cuscuta reflexa, a parasitic plant lacking neoxanthin. Plant Physiol. 2008, 147, 816–822. [Google Scholar] [CrossRef] [Green Version]
- Evans, B.A.; Borowicz, V.A. The plant vigor hypothesis applies to a holoparasitic plant on a drought-stressed host. Botany 2015, 93, 685–689. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.C.; Watling, J.R.; Overton, I.C.; Sinclair, R. Does water status of Eucalyptus largiflorens (Myrtaceae) affect infection by the mistletoe Amyema miquelii (Loranthaceae)? Funct. Plant Biol. 2003, 30, 1239–1247. [Google Scholar] [CrossRef]
- Barton, A.; Watson, P. Storm tide to mean high water: Tasmanian salt marshes. Wildl. Aust. 2011, 48, 24–29. [Google Scholar]
- Pennings, S.C.; Callaway, R.M. Impact of a parasitic plant on the structure and dynamics of salt marsh vegetation. Ecology 1996, 77, 1410–1419. [Google Scholar] [CrossRef] [Green Version]
- Fahmy, G. Transpiration and dry matter allocation in the angiosperm root parasite Cynomorium coccineum L. and two of its halophytic hosts. Biol. Plant. 1993, 35, 603–608. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Jagendorf, A.; Zhu, J.-K. Understanding and improving salt tolerance in plants. Crop. Sci. 2005, 45, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Al-Khateeb, W.; Hameed, K.; Shibli, R. Effect of salinity on Orobanche cernua seed germination. Plant Pathol. J. 2003, 19, 148–151. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Sugmuto, Y.; Babiker, A.; Yamauchi, Y.; Osman, M.; Yagoub, S. Effect of NaCl on Orobanche spp and Striga hermonthica seeds germination during and after conditioning. Biosci. Res. 2010, 7, 26–31. [Google Scholar]
- Demirbas, S.; Vlachonasios, K.; Acar, O.; Kaldis, A. The effect of salt stress on Arabidopsis thaliana and Phelipanche ramosa interaction. Weed Res. 2013, 53, 452–460. [Google Scholar] [CrossRef]
- Al-Khateeb, W.; Hameed, K.; Shibli, R. Influence of soil salinity on the interaction between tomato and broomrape plant (Orobanche cernua). Plant Pathol. J. 2005, 21, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Zagorchev, L.; Albanova, I.; Tosheva, A.; Li, J.; Teofanova, D. Salinity effect on Cuscuta campestris Yunck. Parasitism on Arabidopsis thaliana L. Plant Physiol. Biochem. 2018, 132, 408–414. [Google Scholar] [CrossRef]
- Delavault, P.; Simier, P.; Thoiron, S.; Véronési, C.; Fer, A.; Thalouarn, P. Isolation of mannose 6-phosphate reductase cDNA, changes in enzyme activity and mannitol content in broomrape (Orobanche ramosa) parasitic on tomato roots. Physiol. Plant. 2002, 115, 48–55. [Google Scholar] [CrossRef]
- Noiraud, N.; Maurousset, L.; Lemoine, R. Transport of polyols in higher plants. Plant Physiol. Biochem. 2001, 39, 717–728. [Google Scholar] [CrossRef]
- Shabala, S.; Munns, R. Salinity stress: Physiological constraints and adaptive mechanisms. Plant Stress Physiol. 2012, 59–93. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhao, H.; Wu, L.; Liu, A.; Zhao, F.J.; Xu, W. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol. 2017, 215, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Dinh, N.; van der Ent, A.; Mulligan, D.R.; Nguyen, A.V. Zinc and lead accumulation characteristics and in vivo distribution of Zn 2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. Environ. Exp. Bot. 2018, 147, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Meindl, G.A.; Bain, D.J.; Ashman, T.-L. Variation in nickel accumulation in leaves, reproductive organs and floral rewards in two hyperaccumulating Brassicaceae species. Plant Soil 2014, 383, 349–356. [Google Scholar] [CrossRef]
- EI-Salam, N.M.A.; Ahmad, S.; Murad, W.; Iqbal, T.; Zuman, L.; Bibi, A.; Rehman, A.; Ullah, R.; Mohammad, Z.; Shad, A.A. Profile of heavy metals in medicinal plants collected from different areas of Karak, Khyber Pakhtunkhwa, Pakistan. Life Sci. J. 2013, 10, 914–921. [Google Scholar]
- Ernst, W. Mine vegetation in Europe. In Heavy metal tolerance in plants: Evolutionary aspects; CRC Press: Boca Raton, FL, USA, 1990; Volume 18, pp. 21–38. [Google Scholar]
- Boyd, R.S.; Martens, S.N.; Davis, M.A. The nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae) is attacked by the parasitic plant Cuscuta californica (Cuscutaceae). Madrono 1999, 46, 92–99. [Google Scholar]
- Jana, S.; Dalal, T.; Barua, B. Effects and relative toxicity of heavy metals on Cuscuta reflexa. Water Air Soil Pollut. 1987, 33, 23–27. [Google Scholar] [CrossRef]
- Srivastava, S.; Tripathi, R.D.; Dwivedi, U.N. Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa–an angiospermic parasite. J. Plant Physiol. 2004, 161, 665–674. [Google Scholar] [CrossRef]
- Yadav, S. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Birschwilks, M.; Haupt, S.; Hofius, D.; Neumann, S. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J. Exp. Bot. 2006, 57, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Poschenrieder, C.; Tolrà, R.; Barceló, J. Can metals defend plants against biotic stress? Trends Plant Sci. 2006, 11, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Bani, A.; Pavlova, D.; Benizri, E.; Shallari, S.; Miho, L.; Meco, M.; Shahu, E.; Reeves, R.; Echevarria, G. Relationship between the Ni hyperaccumulator Alyssum murale and the parasitic plant Orobanche nowackiana from serpentines in Albania. Ecol. Res. 2018, 33, 549–559. [Google Scholar] [CrossRef]
- Turnau, K.; Jedrzejczyk, R.; Domka, A.; Anielska, T.; Piwowarczyk, R. Expansion of a holoparasitic plant, Orobanche lutea (Orobanchaceae), in post-industrial areas—A possible Zn effect. Sci. Total Environ. 2018, 639, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Gressel, J. Global advances in weed management. J. Agric. Sci. 2011, 149, 47–53. [Google Scholar] [CrossRef]
- Sibhatu, B. Review on Striga weed management. Int. J. Life. Sci. Scienti. Res 2016, 2, 110–120. [Google Scholar]
- Gressel, J. Crops with target-site herbicide resistance for Orobanche and Striga control. Pest Manag. Sci. 2009, 65, 560–565. [Google Scholar] [CrossRef]
- Nadler-Hassar, T.; Shaner, D.L.; Nissen, S.; Westra, P.; Rubin, B. Are herbicide-resistant crops the answer to controlling Cuscuta? Pest Manag. Sci. 2009, 65, 811–816. [Google Scholar] [CrossRef]
- Jiang, L.; Qu, F.; Li, Z.; Doohan, D. Inter-species protein trafficking endows dodder (Cuscuta pentagona) with a host-specific herbicide-tolerant trait. New Phytol. 2013, 198, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Haupt, S.; Oparka, K.J.; Sauer, N.; Neumann, S. Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa. J. Exp. Bot. 2001, 52, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.O.; Palmer, J.D. Horizontal gene transfer in plants. J. Exp. Bot. 2006, 58, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Hong, L.; Ye, W.; Cao, H.; Wang, Z. The influence of the holoparasitic plant Cuscuta campestris on the growth and photosynthesis of its host Mikania micrantha. J. Exp. Bot. 2007, 58, 2929–2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, Q.V.; Tennakoon, K.U.; Metali, F.; Lim, L.B.; Bolin, J.F. Impact of Cuscuta australis infection on the photosynthesis of the invasive host, Mikania micrantha, under drought condition. Weed Biol. Manag. 2015, 15, 138–146. [Google Scholar] [CrossRef]
- Mauromicale, G.; Monaco, A.L.; Longo, A.M. Effect of branched broomrape (Orobanche ramosa) infection on the growth and photosynthesis of tomato. Weed Sci. 2008, 56, 574–581. [Google Scholar] [CrossRef]
- Cochavi, A.; Ephrath, J.; Eizenberg, H.; Rachmilevitch, S. Phelipanche aegyptiaca parasitism impairs salinity tolerance in young leaves of tomato. Physiol. Plant. 2018, 164, 191–2013. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, M.T.; Shokr, M.M.; Bekheta, M. Growth, root characteristics, and leaf nutrients accumulation of four faba bean (Vicia faba L.) cultivars differing in their broomrape tolerance and the soil properties in relation to salinity. Commun. Soil Sci. Plant Anal. 2010, 41, 2713–2728. [Google Scholar] [CrossRef]
- Mohamed, K.I.; Papes, M.; Williams, R.; Benz, B.W.; Peterson, A.T. Global invasive potential of 10 parasitic witchweeds and related Orobanchaceae. Ambio 2006, 35, 281–288. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Emeran, A.; Moral, A.; Rubiales, D. First report of crenate broomrape (Orobanche crenata) on white lupine (Lupinus albus) growing in alkaline soils in Spain and Egypt. Plant Dis. 2009, 93, 970. [Google Scholar] [CrossRef]
- Ewansiha, S.U.; Menkir, A.; Tofa, A.I. Agronomic response of drought-tolerant and Striga-resistant maize cultivars to nitrogen fertilization in the Nigerian Guinea savannahs. Maydica 2012, 57, 114–120. [Google Scholar]
- Westwood, J.H. Characterization of the Orobanche-Arabidopsis system for studying parasite-host interactions. Weed Sci. 2000, 48, 742–748. [Google Scholar] [CrossRef]
- Goldwasser, Y.; Yoder, J.I. Differential induction of Orobanche seed germination by Arabidopsis thaliana. Plant Sci. 2001, 160, 951–959. [Google Scholar] [CrossRef]
- Dos Santos, C.V.; Letousey, P.; Delavault, P.; Thalouarn, P. Defense gene expression analysis of Arabidopsis thaliana parasitized by Orobanche ramosa. Phytopathology 2003, 93, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Bar-Nun, N.; Sachs, T.; Mayer, A.M. A role for IAA in the infection of Arabidopsis thaliana by Orobanche aegyptiaca. Ann. Bot. 2008, 101, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Spallek, T.; Melnyk, C.W.; Wakatake, T.; Zhang, J.; Sakamoto, Y.; Kiba, T.; Yoshida, S.; Matsunaga, S.; Sakakibara, H.; Shirasu, K. Interspecies hormonal control of host root morphology by parasitic plants. Proc. Natl. Acad. Sci. USA 2017, 114, 5283–5288. [Google Scholar] [CrossRef] [Green Version]
- Shahid, S.; Kim, G.; Johnson, N.R.; Wafula, E.; Wang, F.; Coruh, C.; Bernal-Galeano, V.; Phifer, T.; Depamphilis, C.W.; Westwood, J.H. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 2018, 553, 82–85. [Google Scholar] [CrossRef]
- Song, J.; Bian, J.; Xue, N.; Xu, Y.; Wu, J. Inter-species mRNA transfer among green peach aphids, dodder parasites, and cucumber host plants. Plant Diversity 2021. [Google Scholar] [CrossRef]
- Johnson, N.R.; Axtell, M.J. Small RNA warfare: exploring origins and function of trans-species microRNAs from the parasitic plant Cuscuta. Curr. Opin. Plant Biol. 2019, 50, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, J.; Liu, H.; Liu, N.; Shen, G.; Zhuang, H.; Wu, J. Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. J. Exp. Bot. 2020, 71, 1171–1184. [Google Scholar] [CrossRef]
- Hettenhausen, C.; Li, J.; Zhuang, H.; Sun, H.; Xu, Y.; Qi, J.; Zhang, J.; Lei, Y.; Qin, Y.; Sun, G. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proc. Natl. Acad. Sci. USA 2017, 114, E6703–E6709. [Google Scholar] [CrossRef] [Green Version]
- Goldwasser, Y.; Yoneyama, K.; Xie, X.; Yoneyama, K. Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul. 2008, 55, 21–28. [Google Scholar] [CrossRef]
- Birschwilks, M.; Sauer, N.; Scheel, D.; Neumann, S. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec. Planta 2007, 226, 1231–1241. [Google Scholar] [CrossRef]
- LeBlanc, M.; Kim, G.; Patel, B.; Stromberg, V.; Westwood, J. Quantification of tomato and Arabidopsis mobile RNAs trafficking into the parasitic plant Cuscuta pentagona. New Phytol. 2013, 200, 1225–1233. [Google Scholar] [CrossRef]
- Goldwasser, Y.; Westwood, J.; Yoder, J. The use of Arabidopsis to study interactions between parasitic angiosperms and their plant hosts. Arab. Book 2002, 1, e0035. [Google Scholar] [CrossRef] [Green Version]
- Furuhashi, K. Establishment of a successive culture of an obligatory parasitic flowering plant, Cuscuta japonica, in vitro. Plant Sci. 1991, 79, 241–246. [Google Scholar] [CrossRef]
- Zhou, W.; Yoneyama, K.; Takeuchi, Y.; Iso, S.; Rungmekarat, S.; Chae, S.; Sato, D.; Joel, D. In vitro infection of host roots by differentiated calli of the parasitic plant Orobanche. J. Exp. Bot. 2004, 55, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Ahammed, G.J.; Yu, J.-Q. (Eds.) Plant Hormones under Challenging Environmental Factors; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar]
Parasitic Plant | Classification | Distribution | Host | References |
---|---|---|---|---|
Arctic environment | ||||
Bartsia spp. Euphrasia spp. Pedicularis spp. | Root hemiparasite | North of 70° N latitude | Various shrubs | [55] |
Environment characterized by frequent droughts | ||||
Cistanche deserticola Ma. Cistanche tubulosa (Schrenk) Hook.f. | Root holoparasite | Central Asia, Middle East | Haloxylon spp., | [56] |
Cistanche phelypaea (L.) Cout. | Root holoparasite | Mediterranean, Arabian Peninsula | Atriplex spp., Nitraria spp. | [57] |
Hydnora africana Thunb. | Root holoparasite | South Africa | Euphorbia spp. | [58] |
Tristerix aphyllus Miers | Stem holoparasite | South America | Various cacti | [59] |
Environment characterized by salinity | ||||
Cuscuta salina Engelm., Cuscuta pacifica Costea and M.A.R. Wright | Stem holoparasite | North America, mainly the Pacific coast | Frankenia spp., Suaeda spp., Salicornia spp., Jaumea spp. | [60] |
Cuscuta tasmanica Engelm. | Stem holoparasite | Southern Australia and Tasmania | Wilsonia spp., Sarcocornia spp. | [61] |
Cynomorium coccineum L., including var. songaricum | Root holoparasite | Mediterranean, Central Asia | Atriplex spp., Nitraria spp. | [62,63] |
Plicosepalus acacia (Zucc.) Wiens & Polhill | Stem hemiparasite | North-Eastern Africa, Arabian Peninsula, Middle East | Atriplex spp., Tamarix spp., Nitraria spp. | [54] |
Parasite-Host Pair | Ratios of Concentrations (Parasite/Host) | Note | Reference |
---|---|---|---|
Cuscuta californica-multiple | Ni: 0.3–0.6 Cu: 0.9–1.3 Zn: 0.9–1 | Depending on host species | [94] |
Cuscuta campestris-Daucus carota | Cd: 0.1–0.4 Zn: 0.4–5.3 Cu: 0.5–1 | Depending on duration of treatment and host organ | [53] |
Odontites lutea-Cistus sp. | Pb: 0.6–1.3 Cu: 1.2–1.8 Zn: 0.6–0.9 | Depending on soil pollution | [52] |
Plicosepalus acaciae-multiple | Na+: 0.3–9.4 Cl−: 0.3–5.1 | Depending on host species and host organ | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagorchev, L.; Stöggl, W.; Teofanova, D.; Li, J.; Kranner, I. Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants and Their Hosts. Int. J. Mol. Sci. 2021, 22, 7418. https://doi.org/10.3390/ijms22147418
Zagorchev L, Stöggl W, Teofanova D, Li J, Kranner I. Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants and Their Hosts. International Journal of Molecular Sciences. 2021; 22(14):7418. https://doi.org/10.3390/ijms22147418
Chicago/Turabian StyleZagorchev, Lyuben, Wolfgang Stöggl, Denitsa Teofanova, Junmin Li, and Ilse Kranner. 2021. "Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants and Their Hosts" International Journal of Molecular Sciences 22, no. 14: 7418. https://doi.org/10.3390/ijms22147418
APA StyleZagorchev, L., Stöggl, W., Teofanova, D., Li, J., & Kranner, I. (2021). Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants and Their Hosts. International Journal of Molecular Sciences, 22(14), 7418. https://doi.org/10.3390/ijms22147418