Effectiveness Assessment of a Modified Preservation Solution Containing Thyrotropin or Follitropin Based on Biochemical Analysis in Perfundates and Homogenates of Isolated Porcine Kidneys after Static Cold Storage
Abstract
:1. Introduction
Hormone | TSH Thyroid-Stimulating Hormone | FSH Follicle-Stimulating Hormone | References |
---|---|---|---|
Chemical class | Glycoprotein | Glycoprotein | [20,21] |
Source | Anterior pituitary | Anterior pituitary | [20,21] |
Cell type | Thyrotrope | Gonadotrope | [20,21] |
Mechanism of hormone action | Cyclic AMP | Cyclic AMP | [20,22] |
Mechanisms of release | released in a pulsatile fashion | released in a pulsatile fashion | [20,22] |
Plasma/serum Concentration | 0.4–4.0 mU/L | male: 0.2–4.1 mIU/mL, female: 0.2–14.2 mIU/mL | [23,24] |
Molecular weight | 28–30 kDa | 34 kDa | [25,26] |
Circulating half-life | ~55 min | 3–4 h | [27,28] |
Subunits | α/β | α/β | [25,29,30,31,32,33,34] |
TSHα chain consists of 92 amino acids (10.3 kDa) | FSHα chain consists of 92 amino acids (10.3 kDa) | ||
TSHβ chain consists of 118 amino acids (13.5 kDa) and forms six intrachain disulphide bonds | FSHβ chain consists of 111 amino acids (12.5 kDa) and forms six intrachain disulphide bridges | ||
TSHβ subunit has one an N-glycosylation site at asparagine 23 | FSHβ subunit has two an N- glycosylation sites at asparagine 7 and 24 | ||
Principal action | TSH stimulates both synthesis and secretion of thyroid hormones from the thyroid gland; regulates iodide transport into the thyroid; stimulating the Na+/I− symporter (NIS) transcription | FSH stimulates ovarian estradiol production and growth of ovarian follicles; is essential for Sertoli cell proliferation and maintenance of sperm quality in the male testis. | [35,36,37,38,39] |
Receptor | Membrane–7TM TSHR | Membrane–7TM FSHR | [40,41] |
Distribution | Anterior pituitary gland, brain, pars tuberalis, bone, orbital preadipocytes and fibroblasts, kidney, ovary and testis, skin and hair follicles, heart, adipose tissue, hematopoietic and immune cells | Sertoli cells in the testis, granulosa cells in the ovary, uterus, prostate, bone, ovarian surface epithelia, umbilical vein, vessel smooth muscle cells, placenta and placental endothelial cells, fallopian tube, myometrium, endometrial stromal cells, endometrial glandular epithelium, bone, osteoclasts, monocytes, kidney tubules, Purkinje cells, cerebellar medulla, alveolar cells, and hepatocytes | [42,43,44,45,46] |
Physiological effects on the organs | Immunotherapeutic, regulates metabolic and inflammatory processes | Regulator for lipogenesis, inflammation, and metabolic disorders | [34,47] |
2. Results
3. Discussion
4. Materials and Methods
4.1. Preservation Solution
4.2. Animals
4.3. Study Groups of Animals
- Group A (control). Biolasol; static cold storage (n = 10 kidneys) for 2 h and 48 h;
- Group B1. Biolasol + p-TSH (1 µg/L); static cold storage (n = 10 kidneys) for 2 h and 48 h;
- Group B2. Biolasol + p-FSH (1 µg/L); static cold storage (n = 10 kidneys) for 2 h and 48 h;
4.4. Experimental Protocol
4.5. Measurements of Clinical Parameters
4.5.1. Determination of Alanine Aminotransferase
4.5.2. Determination of Aspartate Aminotransferase
4.5.3. Determination of Lactate Dehydrogenase Activity
4.5.4. Determination of Creatinine Concentration
4.5.5. Determination of Total Protein Concentration
4.5.6. Determination of Urea Concentration
4.5.7. Biochemical Analysis in Kidney Homogenates
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ostróżka-Cieślik, A.; Dolińska, B. The Role of Hormones and Trophic Factors as Components of Preservation Solutions in Protection of Renal Function before Transplantation: A Review of the Literature. Molecules 2020, 25, 2185. [Google Scholar] [CrossRef]
- Aslaner, A.; Gunal, O.; Turgut, H.T.; Celik, E.; Yildirim, U.; Demirci, R.K.; Gunduz, U.R.; Calis, H.; Dogan, S. Effect of melatonin on kidney cold ischemic preservation injury. Int. J. Clin. Exp. Med. 2013, 25, 794–798. [Google Scholar]
- Szkudliński, M.W.; Fremont, V.; Ronin, C.; Weintraub, B.D. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiolol. Rev. 2002, 82, 473–502. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Whetsell, M.; Klein, J.R. Local hormone networks and intestinal T Cell homeostasis. Science 1997, 28, 1937–1939. [Google Scholar] [CrossRef] [PubMed]
- De Lloyd, A.; Bursell, J.; Gregory, J.W.; Rees, D.A.; Ludgate, M. TSH receptor activation and body composition. J. Endocrinol. 2010, 204, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Sellitti, D.F.; Akamizu, T.; Doi, S.Q.; Kim, G.H.; Kariyil, J.T.; Kopchik, J.J.; Koshiyama, H. Renal expression of two ‘thyroid-specific’ genes: Thyrotropin receptor and thyroglobulin. Nephron Exp. Nephrol. 2000, 8, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Tao, X.J.; Li, Q.; Li, F.F.; Lee, K.O.; Li, D.M.; Ma, J.H. Relationship between Thyroid Function and Kidney Function in Patients with Type 2 Diabetes. Int. J. Endocrinol. 2018, 2018, 1871530. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.H.; Lee, M.J.; Kim, S.J.; Oh, H.J.; Kim, H.R.; Han, J.H.; Koo, H.M.; Doh, F.M.; Park, J.T.; Han, S.H.; et al. Preservation of renal function by thyroid hormone replacement therapy in chronic kidney disease patients with subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 2012, 97, 2732–2740. [Google Scholar] [CrossRef] [Green Version]
- Asvold, B.O.; Bjoro, T.; Vatten, L.J. Association of thyroid function with estimated glomerular filtration rate in a population-based study: The HUNT study. Eur. J. Endocrinol. 2011, 164, 101–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, A.; Inaba, M.; Ichii, M.; Ochi, A.; Ohno, Y.; Nakatani, S.; Yamada, S.; Mori, K.; Tahara, H.; Ishimura, E. Relationship between serum TSH levels and intrarenal hemodynamic parameters in euthyroid subjects. Eur. J. Endocrinol. 2013, 169, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.T.; Hsiao, F.C.; Su, S.C.; Pei, D.; Hung, Y.J. Thyrotropin as an independent factor of renal function and chronic kidney disease in normoglycemic euthyroid adults. Endocr. Res. 2012, 37, 110–116. [Google Scholar] [CrossRef]
- Macklon, N.S.; Fauser, B.C. Follicle-stimulating hormone and advanced follicle development in the human. Arch. Med. Res. 2001, 32, 595–600. [Google Scholar] [CrossRef]
- Ulloa-Aguirre, A.; Timossi, C. Biochemical and functional aspects of gonadotrophin-releasing hormone and gonadotrophins. Reprod. Biomed. Online 2000, 1, 48–62. [Google Scholar] [CrossRef]
- Kleinau, G.; Worth, C.L.; Kreuchwig, A.; Biebermann, H.; Marcinkowski, P.; Scheerer, P.; Krause, G. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Front. Endocrinol. Lausanne 2017, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobilka, B.K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta 2007, 1768, 794–807. [Google Scholar] [CrossRef] [Green Version]
- Gloaguen, P.; Crépieux, P.; Heitzler, D.; Poupon, A.; Reiter, E. Mapping the follicle-stimulating hormone-induced signaling networks. Front. Endocrinol. Lausanne 2011, 2, 45. [Google Scholar] [CrossRef] [Green Version]
- van Schanke, A.; van de Wetering-Krebbers, S.F.; Bos, E.; Sloot, W.N. Absorption, distribution, metabolism and excretion of corifollitropin alfa, a recombinant hormone with a sustained follicle-stimulating activity. Pharmacology 2010, 85, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xia, F.; Chen, Y.; Zhang, W.; Wang, C.; Wang, N.; Lu, Y. MON-226 FSH Promotes Renal Tubulointerstitial Fibrosis Via AKT/GSK-3beta/beta-catenin Pathway. J. Endocr. Soc. 2019, 3, MON-226. [Google Scholar] [CrossRef]
- Zhang, K.; Kuang, L.; Xia, F.; Chen, Y.; Zhang, W.; Zhai, H.; Wang, C.; Wang, N.; Lu, Y. Follicle-stimulating hormone promotes renal tubulointerstitial fibrosis in aging women via the AKT/GSK-3β/β-catenin pathway. Aging Cell 2019, 18, e12997. [Google Scholar] [CrossRef] [PubMed]
- Cahoreau, C.; Klett, D.; Combarnous, Y. Structure-function relationships of glycoprotein hormones and their subunits’ ancestors. Front. Endocrinol. Lausanne 2015, 6, 26. [Google Scholar]
- Brüser, A.; Schulz, A.; Rothemund, S.; Ricken, A.; Calebiro, D.; Kleinau, G.; Schöneberg, T. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. J. Biol. Chem. 2016, 291, 508–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Tannoudji, J.; Avet, C.; Garrel, G.; Counis, R.; Simon, V. Decoding high Gonadotropin-releasing hormone pulsatility: A role for GnRH receptor coupling to the cAMP pathway? Front. Endocrinol. Lausanne 2012, 3, 107. [Google Scholar] [CrossRef] [Green Version]
- Bakker, B.; Kempers, M.J.; De Vijlder, J.J.; Van Tijn, D.A.; Wiedijk, B.M.; Van Bruggen, M.; Vulsma, T. Dynamics of the plasma concentrations of TSH, FT4 and T3 following thyroxine supplementation in congenital hypothyroidism. Clin. Endocrinol. 2002, 57, 529–537. [Google Scholar] [CrossRef]
- Kaya, A.; Orbak, Z.; Polat, H.; Çayır, A.; Erdil, A.; Döneray, H. Plasma Kisspeptin Levels in Newborn Infants with Breast Enlargement. J. Clin. Res. Pediatric Endocrinol. 2015, 7, 192–196. [Google Scholar] [CrossRef]
- Orlova, N.A.; Kovnir, S.V.; Khodak, Y.A.; Polzikov, M.A.; Nikitina, V.A.; Skryabin, K.G.; Vorobiev, I.I. High-level expression of biologically active human follicle stimulating hormone in the Chinese hamster ovary cell line by a pair of tricistronic and monocistronic vectors. PLoS ONE 2019, 14, e0219434. [Google Scholar] [CrossRef]
- Kim, D.J.; Park, C.W.; Kim, D.W.; Park, H.K.; Byambaragchaa, M.; Lee, N.S.; Hong, S.M.; Seo, M.Y.; Kang, M.H.; Min, K.S. Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica. Gen. Comp. Endocrinol. 2016, 233, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenberg, M.C.; Santini, F.; Marsili, A.; Pinchera, A.; DiStefano, J.J., 3rd. TSH regulation dynamics in central and extreme primary hypothy-roidism. Thyroid 2010, 20, 1215–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves, S.C. Efficacy, efficiency and effectiveness of gonadotropin therapy for infertility treatment. Med. Express 2015, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Meher, B.R.; Dixit, A.; Bousfield, G.R.; Lushington, G.H. Glycosylation Effects on FSH-FSHR Interaction Dynamics: A Case Study of Different FSH Glycoforms by Molecular Dynamics Simulations. PLoS ONE 2015, 10, e0137897. [Google Scholar] [CrossRef] [Green Version]
- Ulloa-Aguirre, A.; Timossi, C. Structure-function relationship of follicle-stimulating hormone and its receptor. Hum. Reprod. Update 1998, 4, 260–283. [Google Scholar] [CrossRef] [Green Version]
- Kleinau, G.; Kalveram, L.; Köhrle, J.; Szkudlinski, M.; Schomburg, L.; Biebermann, H.; Grüters-Kieslich, A. Minireview: Insights Into the Structural and Molecular Consequences of the TSH-β Mutation C105Vfs114X. Mol. Endocrinol. 2016, 30, 954–964. [Google Scholar] [CrossRef] [Green Version]
- Rayalam, S.; Eizenstat, L.D.; Hoenig, M.; Ferguson, D.C. Cloning and sequencing of feline thyrotropin (fTSH): Heterodimeric and yoked constructs. Domest. Anim. Endocrinol. 2006, 30, 203–217. [Google Scholar] [CrossRef]
- Davis, J.S.; Kumar, T.R.; May, J.V.; Bousfield, G.R. Naturally Occurring Follicle-Stimulating Hormone Glycosylation Variants. J. Glycomics Lipidomics 2014, 4, e117. [Google Scholar] [PubMed] [Green Version]
- Sun, D.; Bai, M.; Jiang, Y.; Hu, M.; Wu, S.; Zheng, W.; Zhang, Z. Roles of follicle stimulating hormone and its receptor in human metabolic diseases and cancer. Am. J. Transl. Res. 2020, 12, 3116–3132. [Google Scholar] [PubMed]
- Severo, J.S.; Morais, J.B.S.; de Freitas, T.E.C.; Andrade, A.L.P.; Feitosa, M.M.; Fontenelle, L.C.; de Oliveira, A.R.S.; Cruz, K.J.C.; do Nascimento Marreiro, D. The Role of Zinc in Thyroid Hormones Metabolism. Int. J. Vitam. Nutr. Res. 2019, 89, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Kogai, T.; Taki, K.; Brent, G.A. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr. Relat. Cancer 2006, 13, 797–826. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Endo, T.; Kawaguchi, A.; Ikeda, M.; Nakazato, M.; Kogai, T.; Onaya, T. Increased expression of the Na+/I- symporter in cultured human thyroid cells exposed to thyrotropin and in Graves’ thyroid tissue. J. Clin. Endocrinol. Metab. 1997, 82, 3331–3336. [Google Scholar] [CrossRef]
- Santi, D.; Crépieux, P.; Reiter, E.; Spaggiari, G.; Brigante, G.; Casarini, L.; Rochira, V.; Simoni, M. Follicle-stimulating Hormone (FSH) Action on Spermatogenesis: A Focus on Physiological and Therapeutic Roles. J. Clin. Med. 2020, 9, 1014. [Google Scholar] [CrossRef] [Green Version]
- François, C.M.; Petit, F.; Giton, F.; Gougeon, A.; Ravel, C.; Magre, S.; Cohen-Tannoudji, J.; Guigon, C.J. A novel action of follicle-stimulating hormone in the ovary promotes estradiol production without inducing excessive follicular growth before puberty. Sci. Rep. 2017, 7, 46222. [Google Scholar] [CrossRef] [PubMed]
- Korta, P.; Pocheć, E. Glycosylation of thyroid-stimulating hormone receptor. Endokrynol. Pol. 2019, 70, 86–100. [Google Scholar] [CrossRef]
- Althumairy, D.; Zhang, X.; Baez, N.; Barisas, G.; Roess, D.A.; Bousfield, G.R.; Crans, D.C. Glycoprotein G-protein Coupled Receptors in Disease: Luteinizing Hormone Receptors and Follicle Stimulating Hormone Receptors. Diseases 2020, 8, 35. [Google Scholar] [CrossRef]
- Bassett, J.H.; Williams, G.R. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr. Rev. 2016, 37, 135–187. [Google Scholar]
- Williams, G.R. Extrathyroidal expression of TSH receptor. Ann. Endocrinol. Paris 2011, 72, 68–73. [Google Scholar] [CrossRef]
- George, J.W.; Dille, E.A.; Heckert, L.L. Current concepts of follicle-stimulating hormone receptor gene regulation. Biol. Reprod. 2011, 84, 7–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrusciel, M.; Ponikwicka-Tyszko, D.; Wolczynski, S.; Huhtaniemi, I.; Rahman, N.A. Extragonadal FSHR Expression and Function-Is It Real? Front. Endocrinol. Lausanne. 2019, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Cui, Y.; Yu, S. Expression and localization of FSHR, GHR and LHR in different tissues and reproductive organs of female yaks. Folia Morphol. 2018, 77, 301–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, K.W.; Weigent, D.A.; Kooijman, R. Protein hormones and immunity. Brain Behav. Immun. 2007, 21, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostróżka-Cieślik, A.; Dolińska, B.; Ryszka, F. Therapeutic Potential of Selenium as a Component of Preservation Solutions for Kidney Transplantation. Molecules 2020, 25, 3592. [Google Scholar] [CrossRef]
- Abdallah, N.H.; Baulies, A.; Bouhlel, A.; Bejaoui, M.; Zaouali, M.A.; Mimouna, S.B.; Messaoudi, I.; Fernandez-Checa, J.C.; García Ruiz, C.; Ben Abdennebi, H. The effect of zinc acexamate on oxidative stress, inflammation and mitochondria induced apoptosis in rat model of renal warm ischemia. Biomed. Pharmacother. 2018, 105, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Adams, T.D.; Patel, M.; Hosgood, S.A.; Nicholson, M.L. Lowering Perfusate Temperature From 37 °C to 32 °C Diminishes Function in a Porcine Model of Ex Vivo Kidney Perfusion. Transplant. Direct 2017, 3, e140. [Google Scholar] [CrossRef] [PubMed]
- Ostróżka-Cieślik, A.; Dolińska, B.; Ryszka, F. The Effect of Modified Biolasol Solution on the Efficacy of Storing Isolated Porcine Kidneys. Biomed. Res. Int. 2018, 2018, 7465435. [Google Scholar] [CrossRef]
- Jouret, F.; Leenders, J.; Poma, L.; Defraigne, J.O.; Krzesinski, J.M.; de Tullio, P. Nuclear Magnetic Resonance Metabolomic Profiling of Mouse Kidney, Urine and Serum Following Renal Ischemia/Reperfusion Injury. PLoS ONE 2016, 11, e0163021. [Google Scholar] [CrossRef] [Green Version]
- Barratt, J.; Topham, P. Urine proteomics: The present and future of measuring urinary protein components in disease. CMAJ 2007, 177, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cierpka, L.; Ryszka, F.; Dolińska, B.; Smorąg, Z.; Słomski, R.; Wiaderkiewicz, R.; Caban, A.; Budziński, G.; Oczkowicz, G.; Wieczorek, J. Biolasol: Novel perfusion and preservation solution for kidneys. Transplant. Proc. 2014, 46, 2539–2541. [Google Scholar] [CrossRef] [PubMed]
- Ryszka, F.; Dolińska, B.; Ostróżka-Cieślik, A.; Caban, A.; Cierpka, L. Comparing the effect of Biolasol® and HTK solutions on maintaining proper homeostasis, indicating the kidney storage efficiency prior to transplantation. Ann. Transplant. 2012, 17, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Jozwik, A.; Domagala, P.; Kieszek, R.; Wszola, M.; Bieniasz, M.; Serwanska-Swietek, M.; Durlik, M.; Ryszka, F.; Chmura, A.; Kwiatkowski, A. Storage Kidneys Prior to Transplantation Using First Polish Preservation Solution “Biolasol”—Preliminary Report. Am. J. Transplant. 2016, 16, 739. [Google Scholar]
- Ryszka, F.; Dolińska, B.; Czyż, K.; Jelińska, M.; Strabel, A.; Bocheńska, J. Effect of recombinant human prolactin addition to biolasol solution on biochemical indicators in perfundates of porcine kidneys. Transplant. Proc. 2016, 48, 1824–1828. [Google Scholar] [CrossRef]
- Ostróżka-Cieślik, A.; Dolińska, B.; Ryszka, F. Effect of lutropin concentration on the efficiency of isolated porcine kidney storage in modified biolasol solution. Transplant. Proc. 2020, 52, 1–4. [Google Scholar] [CrossRef]
- Ostróżka-Cieślik, A.; Dolińska, B.; Ryszka, F. Biochemical Studies in Perfundates and Homogenates of Isolated Porcine Kidneys after Flushing with Zinc or Zinc–Prolactin Modified Preservation Solution Using a Static Cold Storage Technique. Molecules 2021, 26, 3465. [Google Scholar] [CrossRef]
- Keskin, H.; Cadirci, K.; Gungor, K.; Karaaslan, T.; Usta, T.; Ozkeskin, A.; Musayeva, A.; Yesildal, F.; Isman, F.; Zengin, H.Y. Association between TSH Values and GFR Levels in Euthyroid Cases with Metabolic Syndrome. Int. J. Endocrinol. 2021, 2021, 8891972. [Google Scholar] [CrossRef]
- Junik, R.; Wlodarczyk, Z.; Masztalerz, M.; Odrowaz-Sypniewska, G.; Jendryczka, E.; Manitius, J. Function, structure, and volume of thyroid gland following allogenic kidney transplantation. Transplant. Proc. 2003, 35, 2224–2226. [Google Scholar] [CrossRef]
- Łebkowska, U.; Małyszko, J.; Łebkowski, W.J.; Walecki, J.; Myśliwiec, M. Is there any relation between thyroid gland function and kidney transplant function? Transplant. Proc. 2003, 35, 2222–2223. [Google Scholar] [CrossRef]
- Tauchmanovà, L.; Carrano, R.; Musella, T.; Orio, F.; Sabbatini, M.; Lombardi, G.; Fenzi, G.; Federico, S.; Colao, A. Thyroid function and morphology after a successful kidney transplantation. J. Endocrinol. Investig. 2006, 29, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Sirolli, V.; Pieroni, L.; Di Liberato, L.; Urbani, A.; Bonomini, M. Urinary Peptidomic Biomarkers in Kidney Diseases. Int. J. Mol. Sci. 2019, 21, 96. [Google Scholar] [CrossRef] [Green Version]
- Seki, M.; Nakayama, M.; Sakoh, T.; Yoshitomi, R.; Fukui, A.; Katafuchi, E.; Tsuda, S.; Nakano, T.; Tsuruya, K.; Kitazono, T. Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3–5 chronic kidney disease: A prospective observational study. BMC Nephrol. 2019, 20, 115. [Google Scholar] [CrossRef] [PubMed]
- Caban, A.; Dolińska, B.; Budziński, G.; Oczkowicz, G.; Ostróżka-Cieślik, A.; Cierpka, L.; Ryszka, F. The effect of HTK solution modification by addition of thyrotropin and corticotropin on biochemical indices reflecting ischemic damage to porcine kidney. Transplant. Proc. 2013, 45, 1720–1722. [Google Scholar] [CrossRef]
- Harper, M.E.; Seifert, E.L. Thyroid hormone effects on mitochondrial energetics. Thyroid 2008, 18, 145–156. [Google Scholar] [CrossRef]
- Klein, J.R. The immune system as a regulator of thyroid hormone activity. Exp. Biol. Med. Maywood 2006, 231, 229–236. [Google Scholar] [CrossRef]
- Wang, H.C.; Dragoo, J.; Zhou, Q.; Klein, J.R. An intrinsic thyrotropin-mediated pathway of TNF-alpha production by bone marrow cells. Blood 2003, 101, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Bağriaçik, E.U.; Klein, J.R. The thyrotropin (thyroid-stimulating hormone) receptor is expressed on murine dendritic cells and on a subset of CD45RBhigh lymph node T cells: Functional role for thyroid-stimulating hormone during immune activation. J. Immunol. 2000, 164, 6158–6165. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.C.; Klein, J.R. Immune function of thyroid stimulating hormone and receptor. Crit. Rev. Immunol. 2001, 21, 323–337. [Google Scholar] [CrossRef]
- Napoli, R.; Apuzzi, V.; Bosso, G.; D’Anna, C.; De Sena, A.; Pirozzi, C.; Marano, A.; Lupoli, G.A.; Cudemo, G.; Oliviero, U.; et al. Recombinant human thyrotropin enhances endothelial-mediated vasodilation of conduit arteries. J. Clin. Endocrinol. Metab. 2009, 94, 1012–1016. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, S.; Ippolito, R.; Peirce, C.; Esposito, R.; Arpaia, D.; Santoro, C.; Pontieri, G.; Cocozza, S.; Galderisi, M.; Biondi, B. Recombinant Human Thyrotropin Improves Endothelial Coronary Flow Reserve in Thyroidectomized Patients with Differentiated Thyroid Cancer. Thyroid 2016, 26, 1528–1534. [Google Scholar] [CrossRef] [Green Version]
- Donnini, D.; Ambesi-Impiombato, F.S.; Curcio, F. Thyrotropin stimulates production of procoagulant and vasodilative factors in human aortic endothelial cells. Thyroid 2003, 13, 517–521. [Google Scholar] [CrossRef]
- Napoli, R.; Biondi, B.; Guardasole, V.; D’Anna, C.; De Sena, A.; Pirozzi, C.; Terracciano, D.; Mazzarella, C.; Matarazzo, M.; Saccà, L. Enhancement of vascular endothelial function by recombinant human thyrotropin. J. Clin. Endocrinol. Metab. 2008, 93, 1959–1963. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Song, X.; Zhifen, Z. Molecular mechanism and functional role of macrophage colony-stimulating factor in follicular granulosa cells. Mol. Med. Rep. 2017, 16, 2875–2880. [Google Scholar] [CrossRef] [PubMed]
- Le Meur, Y.; Fixe, P.; Aldigier, J.C.; Leroux-Robert, C.; Praloran, V. Macrophage colony stimulating factor involvement in uremic patients. Kidney Int. 1996, 50, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Wang, Y.; Zheng, D.; Sun, Y.; Wang, C.; Wang, X.M.; Lee, V.W.; Wang, Y.; Zheng, G.; Tan, T.K.; et al. Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney Int. 2014, 85, 794–806. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Yao, B.; Yang, S.; Jiang, L.; Wang, S.; Fan, X.; Yin, H.; Wong, K.; Miyazawa, T.; Chen, J.; et al. CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Investig. 2012, 122, 4519–4532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M. Clinical Biochemistry of Domestic Animals, 6th ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Burlington, MA, USA, 2008; p. 413. [Google Scholar]
- McHugh, M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med. Zagreb 2011, 21, 203–209. [Google Scholar] [CrossRef]
Component | Function | |
---|---|---|
Potassium chloride | 10 mmol/L | Regulates the water–electrolyte balance; source of K+ |
Calcium chloride | 0.5 mmol/L | Source of Ca2+ and Cl- ions; influences electrolyte balance at the level of extracellular fluid; extracellular Ca2+ stabilizes membranes |
Fumarate magnesium | 5 mmol/L | Protects physicochemical properties of the solution and ensures the stability of other components; as a source of Mg2+, magnesium fumarate affects the lipid bilayer integrity and function |
Dextran 70 | 0.7 g/L | It affects maintenance of the correct fluid volume in aqueous areas; it prevents cell oedema; improves capillary circulation, decreases blood cell aggregation |
Sodium bicarbonate | 5 mmol/L | pH buffer; helps to maintain proper pH through the action of compensation acidic metabolites formed as a result of increased anaerobic metabolism; source of Na+ and HCO3– for maintaining electrolyte balance |
Tri-sodium citrate | 30 mmol/L | Anticoagulation factor; impact on acid–base homeostasis, source of Na+ |
Glucose anhydrous | 167 mmol/L | Source of energy; regulates fluid distribution in fluid compartments; maintains the osmotic gradient between extra- and intracellular fluids; prevents cell oedema |
di-sodium edetate | 5 mmol/L | By chelation of calcium ions, it blocks activation of zymogens; removes catalytic effect on catabolic reactions by decreasing free ions level |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostróżka-Cieślik, A.; Dolińska, B.; Ryszka, F. Effectiveness Assessment of a Modified Preservation Solution Containing Thyrotropin or Follitropin Based on Biochemical Analysis in Perfundates and Homogenates of Isolated Porcine Kidneys after Static Cold Storage. Int. J. Mol. Sci. 2021, 22, 8360. https://doi.org/10.3390/ijms22168360
Ostróżka-Cieślik A, Dolińska B, Ryszka F. Effectiveness Assessment of a Modified Preservation Solution Containing Thyrotropin or Follitropin Based on Biochemical Analysis in Perfundates and Homogenates of Isolated Porcine Kidneys after Static Cold Storage. International Journal of Molecular Sciences. 2021; 22(16):8360. https://doi.org/10.3390/ijms22168360
Chicago/Turabian StyleOstróżka-Cieślik, Aneta, Barbara Dolińska, and Florian Ryszka. 2021. "Effectiveness Assessment of a Modified Preservation Solution Containing Thyrotropin or Follitropin Based on Biochemical Analysis in Perfundates and Homogenates of Isolated Porcine Kidneys after Static Cold Storage" International Journal of Molecular Sciences 22, no. 16: 8360. https://doi.org/10.3390/ijms22168360
APA StyleOstróżka-Cieślik, A., Dolińska, B., & Ryszka, F. (2021). Effectiveness Assessment of a Modified Preservation Solution Containing Thyrotropin or Follitropin Based on Biochemical Analysis in Perfundates and Homogenates of Isolated Porcine Kidneys after Static Cold Storage. International Journal of Molecular Sciences, 22(16), 8360. https://doi.org/10.3390/ijms22168360