Impaired Differentiation of Highly Proliferative ICOS+-Tregs Is Involved in the Transition from Low to High Disease Activity in Systemic Lupus Erythematosus (SLE) Patients
Abstract
:1. Introduction
2. Results
2.1. CD4+-Lymphocytes of SLE Patients with Active Disease Show Signs of Premature Immune Senescence
2.2. ICOS+-RTE-Tregs of SLE Patients Show an Increased Differentiation via Converting Resting MN-Tregs which Exhausts in Active Disease
2.3. ICOS+-RTE-Tresps of SLE Patients Show an Increased Differentiation via Proliferating Resting MN-Tresps which Exhausts in Active Disease
2.4. ICOS−-RTE-Tregs of SLE Patients Show an Increased Differentiation via Converting Resting MN-Tregs which Changes to Proliferation and Exhausts in Active Disease
2.5. ICOS−-RTE-Tresps of SLE Patients Show an Increased Differentiation via Converting Resting MN-Tresps which Exhausts in Active Disease
2.6. The Ratio of ICOS+-Tregs/ICOS+-Tresps of CD4+-Cells Is Significantly Reduced in Active SLE Patients
3. Discussion
4. Materials and Methods
4.1. Patient Collectives and Healthy Controls
4.2. Positive Selection of CD4+-T-Cells
4.3. Fluorescence-Activated Cell Sorting (FACS) Staining
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsokos, G.C. Systemic lupus erythematosus. N. Engl. J. Med. 2011, 365, 2110–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morel, L. Immunometabolism in systemic lupus erythematosus. Nat. Rev. Rheumatol. 2017, 13, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Haas, M.; Glassock, R.; Zhao, M.-H. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Nat. Rev. Nephrol. 2017, 13, 483–495. [Google Scholar] [CrossRef]
- Moulton, V.R.; Tsokos, G.C. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J. Clin. Investig. 2015, 125, 2220–2227. [Google Scholar] [CrossRef] [Green Version]
- Moulton, V.R.; Suárez-Fueyo, A.; Meidan, E.; Li, H.; Mizui, M.; Tsokos, G.C. Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective. Trends Mol. Med. 2017, 23, 615–635. [Google Scholar] [CrossRef]
- Akahoshi, M.; Nakashima, H.; Tanaka, Y.; Kohsaka, T.; Nagano, S.; Ohgami, E.; Arinobu, Y.; Yamaoka, K.; Niiro, H.; Shinozaki, M.; et al. Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis Rheum. 1999, 42, 1644–1648. [Google Scholar] [CrossRef]
- Li, D.; Guo, B.; Wu, H.; Tan, L.; Chang, C.; Lu, Q. Interleukin-17 in systemic lupus erythematosus: A comprehensive review. Autoimmunity 2015, 48, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Ichinose, K.; Kawakami, A.; Tsokos, G.C. The role of IL-17 in systemic lupus erythematosus and its potential as a therapeutic target. Expert Rev. Clin. Immunol. 2019, 15, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, F.M.; Wong, K.K.; Redzwan, N.M. Th1, Th2, and Th17 cytokines in systemic lupus erythematosus. Autoimmunity 2019, 53, 8–20. [Google Scholar] [CrossRef]
- Blanco, P.; Ueno, H.; Schmitt, N. T follicular helper (Tfh) cells in lupus: Activation and involvement in SLE pathogenesis. Eur. J. Immunol. 2016, 46, 281–290. [Google Scholar] [CrossRef]
- Gensous, N.; Schmitt, N.; Richez, C.; Ueno, H.; Blanco, P. T follicular helper cells, interleukin-21 and systemic lupus erythematosus. Rheumatology 2016, 56, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Lee, K.; Diamond, B. Follicular Helper T Cells in Systemic Lupus Erythematosus. Front. Immunol. 2018, 9, 1793. [Google Scholar] [CrossRef] [Green Version]
- Ohl, K.; Tenbrock, K. Regulatory T cells in systemic lupus erythematosus. Eur. J. Immunol. 2015, 45, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Deng, C.; Yang, H.; Wang, G. The Regulatory T Cell in Active Systemic Lupus Erythematosus Patients: A Systemic Review and Meta-Analysis. Front. Immunol. 2019, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Schaier, M.; Gottschalk, C.; Uhlmann, L.; Speer, C.; Kälble, F.; Eckstein, V.; Müller-Tidow, C.; Meuer, S.; Mahnke, K.; Lorenz, H.-M.; et al. Immunosuppressive therapy influences the accelerated age-dependent T-helper cell differentiation in systemic lupus erythematosus remission patients. Arthritis Res. 2018, 20, 278. [Google Scholar] [CrossRef] [Green Version]
- De Paz, B.; Prado, C.; Alperi-López, M.; Ballina-García, F.J.; Rodriguez-Carrio, J.; López, P.; Suárez, A. Effects of glucocorticoid treatment on CD25(-)FOXP3(+) population and cytokine-producing cells in rheumatoid arthritis. Rheumatology 2012, 51, 1198–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fransson, M.; Burman, J.; Lindqvist, C.; Atterby, C.; Fagius, J.; Loskog, A. T regulatory cells lacking CD25 are increased in MS during relapse. Autoimmunity 2010, 43, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-F.; Zhang, S.-X.; Ma, X.-W.; Xue, Y.-L.; Gao, C.; Li, X.-Y.; Xu, A.-D. The proportion of peripheral regulatory T cells in patients with Multiple Sclerosis: A meta-analysis. Mult. Scler. Relat. Disord. 2019, 28, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Venigalla, R.K.C.; Tretter, T.; Krienke, S.; Max, R.; Eckstein, V.; Blank, N.; Fiehn, C.; Ho, A.D.; Lorenz, H. Reduced CD4+,CD25− T cell sensitivity to the suppressive function of CD4+,CD25high,CD127−/lowregulatory T cells in patients with active systemic lupus erythematosus. Arthritis Rheum. 2008, 58, 2120–2130. [Google Scholar] [CrossRef]
- Schaier, M.; Leick, A.; Uhlmann, L.; Kälble, F.; Eckstein, V.; Ho, A.; Meuer, S.; Mahnke, K.; Sommerer, C.; Zeier, M.; et al. The role of age-related T-cell differentiation in patients with renal replacement therapy. Immunol. Cell Biol. 2017, 95, 895–905. [Google Scholar] [CrossRef]
- Schaier, M.; Gottschalk, C.; Kälble, F.; Uhlmann, L.; Eckstein, V.; Müller-Tidow, C.; Meuer, S.; Mahnke, K.; Lorenz, H.-M.; Zeier, M.; et al. The onset of active disease in systemic lupus erythematosus patients is characterised by excessive regulatory CD4+-T-cell differentiation. Clin. Exp. Rheumatol. 2020, 39, 279–288. [Google Scholar] [PubMed]
- Li, D.-Y.; Xiong, X.-Z. ICOS+ Tregs: A Functional Subset of Tregs in Immune Diseases. Front. Immunol. 2020, 11, 2104. [Google Scholar] [CrossRef]
- Ito, T.; Hanabuchi, S.; Wang, Y.-H.; Park, W.R.; Arima, K.; Bover, L.; Qin, F.X.-F.; Gilliet, M.; Liu, Y.-J. Two Functional Subsets of FOXP3+ Regulatory T Cells in Human Thymus and Periphery. Immunity 2008, 28, 870–880. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.; Nurieva, R.; Esashi, E.; Wang, Y.-H.; Zhou, D.; Gapin, L.; Dong, C. A critical role of costimulation during intrathymic development of invariant NK T cells. J. Immunol. 2008, 180, 2276–2283. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, W.E.; McCarthy, N.I.; Dutton, E.E.; Cowan, J.E.; Parnell, S.M.; White, A.J.; Anderson, G. Natural Th17 cells are critically regulated by functional medullary thymic microenvironments. J. Autoimmun. 2015, 63, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buus, T.B.; Schmidt, J.D.; Bonefeld, C.M.; Geisler, C.; Lauritsen, J.P.H. Development of interleukin-17-producing Vgamma2+ gammadelta T cells is reduced by ICOS signaling in the thymus. Oncotarget 2016, 7, 19341–19354. [Google Scholar] [CrossRef] [Green Version]
- Katsuyama, T.; Tsokos, G.C.; Moulton, V.R. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus. Front. Immunol. 2018, 9, 1088. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.; Matthews, N.; Schlesinger, B.C.; Akbar, A.N.; Bacon, P.A.; Emery, P.; Salmon, M. Active systemic lupus erythematosus is associated with the recruitment of naive/resting T cells. Rheumatology 1996, 35, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, R.D.; Shen, X.; Illei, G.G.; Yarboro, C.H.; Prussin, C.; Hathcock, K.S.; Hodes, R.J.; Lipsky, P.E. Abnormal differentiation of memory T cells in systemic lupus erythematosus. Arthritis Rheum. 2006, 54, 2184–2197. [Google Scholar] [CrossRef]
- Piantoni, S.; Regola, F.; Zanola, A.; Andreoli, L.; Dall’Ara, F.; Tincani, A.; Airo’, P. Effector T-cells are expanded in systemic lupus erythematosus patients with high disease activity and damage indexes. Lupus 2018, 27, 143–149. [Google Scholar] [CrossRef]
- Dolff, S.; Quandt, D.; Feldkamp, T.; Jun, C.; Mitchell, A.; Hua, F.; Specker, C.; Kribben, A.; Witzke, O.; Wilde, B. Increased percentages of PD-1 on CD4+ T cells is associated with higher INF-gamma production and altered IL-17 production in patients with systemic lupus erythematosus. Scand. J. Rheumatol. 2014, 43, 307–313. [Google Scholar] [CrossRef]
- Wouters, C.H.P.; Diegenant, C.; Ceuppens, J.; Degreef, H.; Stevens, E.A.M. The circulating lymphocyte profiles in patients with discoid lupus erythematosus and systemic lupus erythematosus suggest a pathogenetic relationship. Br. J. Dermatol. 2004, 150, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Mak, A.; Kow, N.Y. The Pathology of T Cells in Systemic Lupus Erythematosus. J. Immunol. Res. 2014, 2014, 419029. [Google Scholar] [CrossRef]
- Abdirama, D.; Tesch, S.; Grießbach, A.-S.; von Spee-Mayer, C.; Humrich, J.Y.; Stervbo, U.; Babel, N.; Meisel, C.; Alexander, T.; Biesen, R.; et al. Nuclear antigen–reactive CD4+ T cells expand in active systemic lupus erythematosus, produce effector cytokines, and invade the kidneys. Kidney Int. 2021, 99, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Jin, H.; Xu, Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Front. Immunol. 2020, 11, 1027. [Google Scholar] [CrossRef]
- Lee, G.R. The balance of Th17 versus treg cells in autoimmunity. Int. J. Mol. Sci. 2018, 19, 730. [Google Scholar] [CrossRef] [Green Version]
- Alunno, A.; Bartoloni, E.; Bistoni, O.; Nocentini, G.; Ronchetti, S.; Caterbi, S.; Valentini, V.; Riccardi, C.; Gerli, R. Balance between Regulatory T and Th17 Cells in Systemic Lupus Erythematosus: The Old and the New. Clin. Dev. Immunol. 2012, 2012, 823085. [Google Scholar] [CrossRef]
- Peixoto, T.V.; Carrasco, S.; Botte, D.; Catanozi, S.; Parra, E.R.; Lima, T.M.; Ugriumov, N.; Soriano, F.G.; De Mello, S.B.V.; Rodrigues, C.M.; et al. CD4+CD69+ T cells and CD4+CD25+FoxP3+ Treg cells imbalance in peripheral blood, spleen and peritoneal lavage from pristane-induced systemic lupus erythematosus (SLE) mice. Adv. Rheumatol. 2019, 59, 30. [Google Scholar] [CrossRef] [PubMed]
- Talaat, R.; Mohamed, S.F.; Bassyouni, I.H.; Raouf, A.A. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 2015, 72, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Kälble, F.; Mai, C.; Wagner, M.; Schober, L.; Schaier, M.; Zeier, M.; Spratte, J.; Fluhr, H.; Steinborn, A. Aberrant ICOS+ -T cell differentiation in women with spontaneous preterm labor. Am. J. Reprod. Immunol. 2016, 76, 415–425. [Google Scholar] [CrossRef]
- Schaier, M.; Leick, A.; Uhlmann, L.; Kälble, F.; Morath, C.; Eckstein, V.; Ho, A.; Mueller-Tidow, C.; Meuer, S.; Mahnke, K.; et al. End-stage renal disease, dialysis, kidney transplantation and their impact on CD4+T-cell differentiation. Immunology 2018, 155, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zou, L.; Liu, Y.-C. T follicular helper cells, T follicular regulatory cells and autoimmunity. Int. Immunol. 2016, 28, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Leavenworth, J.W.; Verbinnen, B.; Yin, J.; Huang, H.; Cantor, H. A p85α-osteopontin axis couples the receptor ICOS to sustained Bcl-6 expression by follicular helper and regulatory T cells. Nat. Immunol. 2015, 16, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Wang, S.; Zhou, M.; Huang, Y.; Fu, R.; Guo, C.; Chen, J.; Zhao, J.; Gaskin, F.; Fu, S.M.; et al. The ratio of circulating follicular T helper cell to follicular T regulatory cell is correlated with disease activity in systemic lupus erythematosus. Clin. Immunol. 2017, 183, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, D.; Song, Y.; Lu, S.; Zhao, J.; Wang, H. Increased circulating CD4+CXCR5+FoxP3+ follicular regulatory T cells correlated with severity of systemic lupus erythematosus patients. Int. Immunopharmacol. 2018, 56, 261–268. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Simons, H.Z.; Thompson, W.S.; Rainbow, D.B.; Yang, X.; Cutler, A.J.; Oliveira, J.; Dopico, X.C.; Smyth, D.; Savinykh, N.; et al. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. J. Autoimmun. 2017, 84, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.; Sattler, A.; Templin, L.; Kohler, S.; Groß, C.; Meisel, A.; Sawitzki, B.; Burmester, G.-R.; Arnold, R.; Radbruch, A.; et al. Foxp3+Helios+regulatory T cells are expanded in active systemic lupus erythematosus. Ann. Rheum. Dis. 2012, 72, 1549–1558. [Google Scholar] [CrossRef]
- Golding, A.; Hasni, S.; Illei, G.; Shevach, E.M. The Percentage of FoxP3+Helios+ Treg Cells Correlates Positively With Disease Activity in Systemic Lupus Erythematosus. Arthritis Rheum. 2013, 65, 2898–2906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.-M.; Tsokos, G.C. T Cell Abnormalities in the Pathogenesis of Systemic Lupus Erythematosus: An Update. Curr. Rheumatol. Rep. 2021, 23, 12. [Google Scholar] [CrossRef]
- Vilá, L.M.; Alarcón, G.S.; McGwin, G.; Bastian, H.M.; Fessler, B.J.; Reveille, J.D.; LUMINA Study Group. Systemic lupus erythematosus in a multiethnic US cohort, XXXVII: Association of lymphopenia with clinical manifestations, serologic abnormalities, disease activity, and damage accrual. Arthritis Rheum. 2006, 55, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Dhir, V.; Singh, A.; Aggarwal, A.; Naik, S.; Misra, R. Increased T-lymphocyte apoptosis in lupus correlates with disease activity and may be responsible for reduced T-cell frequency: A cross-sectional and longitudinal study. Lupus 2009, 18, 785–791. [Google Scholar] [CrossRef]
- Katsuyama, E.; Suarez-Fueyo, A.; Bradley, S.J.; Mizui, M.; Marin, A.V.; Mulki, L.; Krishfield, S.; Malavasi, F.; Yoon, J.; Sui, S.J.H.; et al. The CD38/NAD/SIRTUIN1/EZH2 Axis Mitigates Cytotoxic CD8 T Cell Function and Identifies Patients with SLE Prone to Infections. Cell Rep. 2020, 30, 112–123.e4. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-Y.; Shen, C.-Y.; Liao, H.-T.; Li, K.-J.; Lee, H.-T.; Lu, C.-S.; Wu, C.-H.; Kuo, Y.-M.; Hsieh, S.-C.; Yu, C.-L. Molecular and Cellular Bases of Immunosenescence, Inflammation, and Cardiovascular Complications Mimicking “Inflammaging” in Patients with Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2019, 20, 3878. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.M.; Cohen, A.S.; Fries, J.F.; Masi, A.T.; McShane, D.J.; Rothfield, N.F.; Schaller, J.G.; Talal, N.; Winchester, R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982, 25, 1271–1277. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
Healthy Controls | SLE Remission Patients | Active SLE Patients | |
---|---|---|---|
n = 115 | n = 96 | n = 20 | |
Female Sex, n (%) | 92 (80%) | 77 (80%) | 16 (80%) |
Age (years) | 46 (21–82) | 51 (20–78) | 31 (18–76) |
Time since initial diagnosis (months) | 192 (2–563) | 19 (0–328) | |
Renal involvement, n (%) | 73 (79 %) | 16 (80%) | |
SLEDAI | 0 (0–10) | 13 (6–24) | |
ANA titer ≥ 1:1280, n (%) | 37 (40%) | 10 (50%) | |
DsDNA antibodies ELISA (IU/mL) | 20 (3–1051) | 134 (26–708) | |
C3 complement (g/L) | 1.2 (1.0–1.6) | 0.7 (0.2–1.0) | |
Erythrocyturia (× μL−1) | 2 (0–1038) | 34 (1–1027) | |
Leukocyturia (× μL−1) | 3 (0–634) | 38 (0–224) | |
Serum leucocytes (× nL−1) | 6 (3–13) | 4 (3–16) | |
Serum creatinine (mg dL−1) | 0.8 (0.5–5.3) | 0.8 (0.5–5.3) | |
CKD-EPI GFR (mL min−1 (1.73 m2)−1) | 96 (11–140) | 101 (10–138) | |
Urine-Protein/Urine-creatinine Ratio (g (mol creatinine)−1) | 11 (4–468) | 165 (6–727) | |
Medication | |||
No Medication, n (%) | 8 (8%) | 2 (10%) | |
Antimalarials, n (%) | 72 (75%) | 15 (75%) | |
Mycophenolic acid (MPA), n (%) | 41 (43%) | 8 (40%) | |
Azathioprine (AZA), n (%) | 18 (19%) | 2 (10%) | |
Glucocorticoids, n (%) | 41 (43%) | 14 (70%) | |
Glucocorticoid dose (mg d−1) | 2.5 (0–4) | 4 (0–40) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kälble, F.; Wu, L.; Lorenz, H.-M.; Zeier, M.; Schaier, M.; Steinborn, A. Impaired Differentiation of Highly Proliferative ICOS+-Tregs Is Involved in the Transition from Low to High Disease Activity in Systemic Lupus Erythematosus (SLE) Patients. Int. J. Mol. Sci. 2021, 22, 9501. https://doi.org/10.3390/ijms22179501
Kälble F, Wu L, Lorenz H-M, Zeier M, Schaier M, Steinborn A. Impaired Differentiation of Highly Proliferative ICOS+-Tregs Is Involved in the Transition from Low to High Disease Activity in Systemic Lupus Erythematosus (SLE) Patients. International Journal of Molecular Sciences. 2021; 22(17):9501. https://doi.org/10.3390/ijms22179501
Chicago/Turabian StyleKälble, Florian, Lisa Wu, Hanns-Martin Lorenz, Martin Zeier, Matthias Schaier, and Andrea Steinborn. 2021. "Impaired Differentiation of Highly Proliferative ICOS+-Tregs Is Involved in the Transition from Low to High Disease Activity in Systemic Lupus Erythematosus (SLE) Patients" International Journal of Molecular Sciences 22, no. 17: 9501. https://doi.org/10.3390/ijms22179501
APA StyleKälble, F., Wu, L., Lorenz, H. -M., Zeier, M., Schaier, M., & Steinborn, A. (2021). Impaired Differentiation of Highly Proliferative ICOS+-Tregs Is Involved in the Transition from Low to High Disease Activity in Systemic Lupus Erythematosus (SLE) Patients. International Journal of Molecular Sciences, 22(17), 9501. https://doi.org/10.3390/ijms22179501