Culturomics Approach to Identify Diabetic Foot Infection Bacteria
Abstract
:1. Introduction
2. Results
2.1. Microbiological Background of Diabetic Foot Infection Samples
2.2. DFI Species Coverage by Culture Media
2.3. Evaluation of the Culture Media Usefulness for the Investigation of DFI Microbial Compositions
2.4. Selection of the Most Effective Sets of Culture Media
3. Discussion
4. Materials and Methods
4.1. Clinical Samples
4.2. Bacteria Isolation and Culturing Technique
4.3. Identification of Bacterial Isolates Using MALDI-TOF MS Technique
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.; Armstrong, D.G.; Lipsky, B.A. Preventing foot ulcers in patients with diabetes. J. Am. Med. Assoc. 2005, 293, 217–228. [Google Scholar] [CrossRef]
- Global Report on Diabetes. Available online: https://www.who.int/publications/i/item/9789241565257 (accessed on 2 November 2020).
- Lipsky, B.A.; Senneville, É.; Abbas, Z.G.; Aragón-Sánchez, J.; Diggle, M.; Embil, J.M.; Kono, S.; Lavery, L.A.; Malone, M.; van Asten, S.A.; et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes. Metab. Res. Rev. 2020, 36, e3280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatipoglu, M.; Mutluoglu, M.; Turhan, V.; Uzun, G.; Lipsky, B.A.; Sevim, E.; Demiraslan, H.; Eryilmaz, E.; Ozuguz, C.; Memis, A.; et al. Causative pathogens and antibiotic resistance in diabetic foot infections: A prospective multi-center study. J. Diabetes Its Complicat. 2016, 30, 910–916. [Google Scholar] [CrossRef]
- Jneid, J.; Lavigne, J.P.; La Scola, B.; Cassir, N. The diabetic foot microbiota: A review. Hum. Microbiome J. 2017, 5, 1–6. [Google Scholar] [CrossRef]
- Fournier, P.E.; Raoult, D.; Drancourt, M. Republication of «New Species Announcement», a new format to prompt the description of new human microbial species. Hum. Microbiome J. 2016, 1, A1–A2. [Google Scholar] [CrossRef]
- Lagier, J.C.; Hugon, P.; Khelaifia, S.; Fournier, P.E.; La Scola, B.; Raoult, D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 2015, 28, 237–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drancourt, M.; Berger, P.; Raoult, D. Systematic 16S rRNA Gene Sequencing of Atypical Clinical Isolates Identified 27 New Bacterial Species Associated with Humans. J. Clin. Microbiol. 2004, 42, 2197–2202. [Google Scholar] [CrossRef] [Green Version]
- Drancourt, M.; Bollet, C.; Carlioz, A.; Martelin, R.; Gayral, J.-P.; Raoult, D.; Timone, L. 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates. J. Clin. Microbiol. 2000, 38, 3623–3630. [Google Scholar] [CrossRef] [Green Version]
- Lagier, J.C.; Million, M.; Hugon, P.; Armougom, F.; Raoult, D. Human gut microbiota: Repertoire and variations. Front. Cell. Infect. Microbiol. 2012, 2, 136. [Google Scholar] [CrossRef] [Green Version]
- Jneid, J.; Cassir, N.; Schuldiner, S.; Jourdan, N.; Sotto, A.; Lavigne, J.P.; Scola, B. La Exploring the microbiota of diabetic foot infections with culturomics. Front. Cell. Infect. Microbiol. 2018, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Greub, G. Culturomics: A new approach to study the human microbiome. Clin. Microbiol. Infect. 2012, 18, 1157–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilen, M.; Dufour, J.C.; Lagier, J.C.; Cadoret, F.; Daoud, Z.; Dubourg, G.; Raoult, D. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome 2018, 6, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagier, J.C.; Armougom, F.; Million, M.; Hugon, P.; Pagnier, I.; Robert, C.; Bittar, F.; Fournous, G.; Gimenez, G.; Maraninchi, M.; et al. Microbial culturomics: Paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 2012, 18, 1185–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martellacci, L.; Quaranta, G.; Patini, R.; Isola, G.; Gallenzi, P.; Masucci, L. A literature review of metagenomics and culturomics of the peri-implant microbiome: Current evidence and future perspectives. Materials 2019, 12, 3010. [Google Scholar] [CrossRef] [Green Version]
- Dubourg, G.; Baron, S.; Cadoret, F.; Couderc, C.; Fournier, P.E.; Lagier, J.C.; Raoult, D. From culturomics to clinical microbiology and forward. Emerg. Infect. Dis. 2018, 24, 1683–1690. [Google Scholar] [CrossRef] [Green Version]
- Masucci, L.; Quaranta, G.; Nagel, D.; Primus, S.; Romano, L.; Graffeo, R.; Ianiro, G.; Gasbarrini, A.; Cammarota, G.; Sanguinetti, M. Culturomics: Bacterial species isolated in 3 healthy donors for faecal microbiota transplantation in Clostridium difficile infection. Microbiol. Med. 2017, 32. [Google Scholar] [CrossRef] [Green Version]
- Lagier, J.C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.M.; Fournier, P.E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Zehavi, T.; Probst, M.; Mizrahi, I. Insights into culturomics of the rumen microbiome. Front. Microbiol. 2018, 9, 1999. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Gupta, K.; Tiwari, S.; Shahi, S.K.; Kumar, S.; Kumar, A.; Gupta, S.K. Detecting aerobic bacterial diversity in patients with diabetic foot wounds using ERIC-PCR: A preliminary communication. Int. J. Low. Extrem. Wounds 2009, 8, 203–208. [Google Scholar] [CrossRef]
- Bouharkat, B.; Tir Touil, A.; Mullié, C.; Chelli, N.; Meddah, B. Bacterial ecology and antibiotic resistance mechanisms of isolated resistant strains from diabetic foot infections in the north west of Algeria. J. Diabetes Metab. Disord. 2020, 19, 1261–1271. [Google Scholar] [CrossRef]
- Grigoropoulou, P.; Eleftheriadou, I.; Jude, E.B.; Tentolouris, N. Diabetic Foot Infections: An Update in Diagnosis and Management. Curr. Diab. Rep. 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.N.; Prasad, Y.D.M.; Boulton, A.J.M.; Jude, E.B. Methicillin-resistant Staphylococcus aureus in the diabetic foot clinic: A worsening problem. Diabet. Med. 2003, 20, 159–161. [Google Scholar] [CrossRef]
- Loan, C.A.; Legout, L.; Assal, M.; Rohner, P.; Hoffmeyer, P.; Bernard, L. Severe Streptococcus agalactiae infection of the diabetic foot: A deleterious role of Streptococcus agalactiae? Press. Med. 2005, 34, 491–494. [Google Scholar]
- Murali, T.S.; Kavitha, S.; Spoorthi, J.; Bhat, D.V.; Prasad, A.S.B.; Upton, Z.; Ramachandra, L.; Acharya, R.V.; Satyamoorthy, K. Characteristics of microbial drug resistance and its correlates in chronic diabetic foot ulcer infections. J. Med. Microbiol. 2014, 63, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Frykberg, R.G. An Evidence-Based Approach to Diabetic Foot Infections. In Proceedings of the American Journal of Surgery; Elsevier Inc.: Amsterdam, The Netherlands, 2003; Volume 186, pp. 44–54. [Google Scholar]
- Esposito, S.; Ascione, T.; Pagliano, P. Management of bacterial skin and skin structure infections with polymicrobial etiology. Expert Rev. Anti. Infect. Ther. 2019, 17, 17–25. [Google Scholar] [CrossRef]
- Lebowitz, D.; Gariani, K.; Kressmann, B.; Von Dach, E.; Huttner, B.; Bartolone, P.; Lê, N.; Mohamad, M.; Lipsky, B.A.; Uçkay, I. Are antibiotic-resistant pathogens more common in subsequent episodes of diabetic foot infection? Int. J. Infect. Dis. 2017, 59, 61–64. [Google Scholar] [CrossRef] [Green Version]
- (PDF) Diabetic Foot Infections: Current Diagnosis and Treatment. Available online: https://www.researchgate.net/publication/277057990_Diabetic_Foot_Infections_Current_Diagnosis_and_Treatment (accessed on 6 November 2020).
- Uçkay, I.; Aragón-Sánchez, J.; Lew, D.; Lipsky, B.A. Diabetic foot infections: What have we learned in the last 30 years? Int. J. Infect. Dis. 2015, 40, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Zubair, M.; Malik, A.; Ahmad, J. Clinico-microbiological study and antimicrobial drug resistance profile of diabetic foot infections in North India. Foot 2011, 21, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Shettigar, K.; Bhat, D.V.; Satyamoorthy, K.; Murali, T.S. Severity of drug resistance and co-existence of Enterococcus faecalis in diabetic foot ulcer infections. Folia Microbiol. 2018, 63, 115–122. [Google Scholar] [CrossRef]
- Weigel, L.M.; Clewell, D.B.; Gill, S.R.; Clark, N.C.; McDougal, L.K.; Flannagan, S.E.; Kolonay, J.F.; Shetty, J.; Killgore, G.E.; Tenover, F.C. Genetic Analysis of a High-Level Vancomycin-Resistant Isolate of Staphylococcus aureus. Science 2003, 302, 1569–1571. [Google Scholar] [CrossRef] [PubMed]
- Gadepalli, R.; Dhawan, B.; Sreenivas, V.; Kapil, A.; Ammini, A.C.; Chaudhry, R. A clinico-microbiological study of diabetic foot ulcers in an Indian tertiary care hospital. Diabetes Care 2006, 29, 1727–1732. [Google Scholar] [CrossRef] [Green Version]
- Michalek, I.M.; Mitura, K.; Krechowska, A.; Caetano dos Santos, F.L. Microbiota and Its Antibiotic Susceptibility in Diabetic Foot Infections: Observations from Polish Nonmetropolitan Hospital, 2015–2016. Int. J. Low. Extrem. Wounds 2020. [Google Scholar] [CrossRef] [PubMed]
- Mendes, J.J.; Marques-Costa, A.; Vilela, C.; Neves, J.; Candeias, N.; Cavaco-Silva, P.; Melo-Cristino, J. Clinical and bacteriological survey of diabetic foot infections in Lisbon. Diabetes Res. Clin. Pract. 2012, 95, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Saseedharan, S.; Sahu, M.; Chaddha, R.; Pathrose, E.; Bal, A.; Bhalekar, P.; Sekar, P.; Krishnan, P. Epidemiology of diabetic foot infections in a reference tertiary hospital in India. Brazilian J. Microbiol. 2018, 49, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Gardner, S.E.; Hillis, S.L.; Heilmann, K.; Segre, J.A.; Grice, E.A. The neuropathic diabetic foot ulcer microbiome is associated with clinical factors. Diabetes 2013, 62, 923–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anvarinejad, M.; Pouladfar, G.; Japoni, A.; Bolandparvaz, S.; Satiary, Z.; Mardaneh, J. Diabetic foot infections: Antibiotic susceptibility patterns and determination of antibiotic cross-resistance in clinical isolates of enterococcus species during 2012–2014 in Shiraz, Iran. Arch. Pediatr. Infect. Dis. 2017, 5, e37680. [Google Scholar] [CrossRef]
- Fisher, T.K.; Wolcott, R.; Wolk, D.M.; Bharara, M.; Kimbriel, H.R.; Armstrong, D.G. Diabetic foot infections: A need for innovative assessments. Int. J. Low. Extrem. Wounds 2010, 9, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Odoki, M.; Bazira, J.; Ml, M.; Agwu, E. Health-Point Survey of Bacteria Urinary Tract Infections among Suspected Diabetic Patients Attending Clinics in Bushenyi District of Uganda; SBPJ, Special Pathogens Research Network Ltd.: Bushenyi, Uganda, 2015; Volume 1, pp. 5–9. [Google Scholar]
- Perry, J.D. A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clin. Microbiol. Rev. 2017, 30, 449–479. [Google Scholar] [CrossRef] [Green Version]
- Złoch, M.; Pomastowski, P.; Maślak, E.; Monedeiro, F.; Buszewski, B. Study on Molecular Profiles of Staphylococcus aureus Strains: Spectrometric Approach. Molecules 2020, 25, 4894. [Google Scholar] [CrossRef]
- Pomastowski, P.; Szultka, M.; Kupczyk, W.; Jackowski, M.; Buszewski, B. Evaluation of Intact Cell Matrix-Assisted Laser Desorption/Ionization Timeof- Flight Mass Spectrometry for Capillary Electrophoresis Detection of Controlled Bacterial Clumping. J. Anal. Bioanal. Tech. 2015, 13, 1–7. [Google Scholar]
- Złoch, M.; Pomastowski, P.; Peer, M.; Sparbier, K.; Kostrzewa, M.; Buszewski, B. Study on carbapenemase-producing bacteria by matrix-assisted laser desorption/ionization approach. PLoS ONE 2021, 16, e0247369. [Google Scholar] [CrossRef] [PubMed]
- Dieckmann, R.; Helmuth, R.; Erhard, M.; Malorny, B. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 2008, 74, 7767–7778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacteria Species | Percentage of Identified Isolates Obtained Using Individual Culture Media | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
COL | MHA | TSA | BHI | BLA | CHRA | AZI | BCP | MAN | VRE | ||
Gram-positive | Corynebacterium striatum | 6% | 5% | 9% | 5% | 13% | 11% | - | 9% | - | 8% |
Enterococcus faecalis | 16% | 16% | 19% | 19% | 9% | 18% | 50% | 18% | 10% | 28% | |
Streptococcus agalactiae | 5% | 5% | 5% | 4% | - | 3% | 6% | 5% | - | 4% | |
Streptococcus dysgalactiae | 5% | 5% | 5% | 5% | 4% | - | - | 4% | - | 4% | |
Streptococcus pyogenes | 5% | 5% | 5% | 5% | 4% | 3% | 6% | 5% | - | - | |
Staphylococcus aureus | 16% | 21% | 19% | 24% | 13% | 7% | 32% | 18% | 50% | 20% | |
Staphylococcus epidermidis | - | - | - | - | - | - | - | - | 10% | - | |
Staphylococcus haemolyticus | 5% | 5% | 5% | 5% | 4% | 3% | 6% | 4% | 10% | 4% | |
Staphylococcus simulans | 5% | - | - | - | 4% | 3% | - | - | - | 4% | |
Helcococcus kunzii | - | - | - | - | 4% | - | - | - | - | 4% | |
Gram-negative | Escherichia coli | - | - | - | - | - | 11% | - | 4% | - | - |
Klebsiella oxytoca | 11% | 11% | - | 9% | 8% | 11% | - | 9% | - | - | |
Citrobacter freundii | - | 5% | 5% | 5% | 4% | 4% | - | 4% | - | 4% | |
Enterobacter cloacae | 5% | - | 5% | - | - | 4% | - | - | - | - | |
Morganella morganii | - | - | - | 5% | 4% | 7% | - | 4% | - | - | |
Proteus mirabilis | 11% | 11% | 9% | 14% | 13% | 4% | - | 9% | 20% | 8% | |
Proteus vulgaris | - | - | - | - | 4% | 4% | - | 4% | - | - | |
Pseudomonas aeruginosa | 5% | 11% | 14% | - | 8% | 7% | - | 4% | - | 8% |
Medium | Species | Isolates | ||||
---|---|---|---|---|---|---|
G(+) | G(−) | Σ | G(+) | G(−) | Σ | |
COL | 8 | 5 | 13 | 12 | 7 | 19 |
MHA | 7 | 4 | 11 | 12 | 7 | 19 |
TSA | 7 | 4 | 11 | 14 | 7 | 21 |
BHI | 7 | 4 | 11 | 14 | 7 | 21 |
BLA | 9 | 6 | 15 | 14 | 10 | 24 |
CHRA | 7 | 8 | 15 | 14 | 14 | 28 |
AZI | 5 | 0 | 5 | 16 | 0 | 16 |
BCP | 7 | 7 | 14 | 14 | 9 | 23 |
MAN | 4 | 1 | 5 | 8 | 2 | 10 |
VRE | 8 | 4 | 12 | 19 | 6 | 25 |
Patient | Reflected Microbiota Pattern [%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
COL | MHA | TSA | BHI | BLA | CHRA | BCP | AZI | MAN | VRE | |
P1 | 25 | 25 | 25 | 25 | 25 | 75 | 0 | 0 | 0 | 0 |
P2 | 50 | 50 | 50 | 100 | 50 | 50 | 50 | 0 | 0 | 50 |
P3 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 100 | 100 | 100 |
P4 | 20 | 20 | 0 | 20 | 20 | 60 | 40 | 20 | 20 | 60 |
P5 | 0 | 50 | 50 | 25 | 50 | 75 | 50 | 25 | 25 | 50 |
P6 | 0 | 25 | 25 | 25 | 75 | 75 | 50 | 25 | 0 | 0 |
P7 | 75 | 75 | 75 | 75 | 100 | 50 | 75 | 50 | 25 | 100 |
P8 | 75 | 50 | 75 | 50 | 75 | 75 | 50 | 25 | 25 | 50 |
P9 | 0 | 100 | 100 | 100 | 100 | 0 | 100 | 100 | 100 | 100 |
P10 | 100 | 67 | 67 | 67 | 33 | 67 | 67 | 67 | 33 | 67 |
P11 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
P12 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 67 |
P13 | 50 | 25 | 50 | 50 | 25 | 50 | 50 | 50 | 25 | 50 |
P14 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 0 | 50 |
P15 | 0 | 0 | 0 | 0 | 67 | 67 | 33 | 0 | 0 | 100 |
P16 | 50 | 50 | 100 | 50 | 50 | 50 | 50 | 50 | 0 | 0 |
Total | 46 | 45 | 50 | 54 | 53 | 55 | 56 | 43 | 30 | 59 |
In 2 media set | 63 ± 6 | 62 ± 5 | 66 ± 5 | 65 ± 6 | 67 ± 5 | 73 ± 4 | 66 ± 5 | 65 ± 8 | 60 ± 7 | 71 ± 5 |
In 3 media set | 73 ± 4 | 73 ± 4 | 75 ± 4 | 74 ± 4 | 75 ± 3 | 81 ± 2 | 74 ± 3 | 76 ± 3 | 72 ± 4 | 78 ± 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Złoch, M.; Maślak, E.; Kupczyk, W.; Jackowski, M.; Pomastowski, P.; Buszewski, B. Culturomics Approach to Identify Diabetic Foot Infection Bacteria. Int. J. Mol. Sci. 2021, 22, 9574. https://doi.org/10.3390/ijms22179574
Złoch M, Maślak E, Kupczyk W, Jackowski M, Pomastowski P, Buszewski B. Culturomics Approach to Identify Diabetic Foot Infection Bacteria. International Journal of Molecular Sciences. 2021; 22(17):9574. https://doi.org/10.3390/ijms22179574
Chicago/Turabian StyleZłoch, Michał, Ewelina Maślak, Wojciech Kupczyk, Marek Jackowski, Paweł Pomastowski, and Bogusław Buszewski. 2021. "Culturomics Approach to Identify Diabetic Foot Infection Bacteria" International Journal of Molecular Sciences 22, no. 17: 9574. https://doi.org/10.3390/ijms22179574
APA StyleZłoch, M., Maślak, E., Kupczyk, W., Jackowski, M., Pomastowski, P., & Buszewski, B. (2021). Culturomics Approach to Identify Diabetic Foot Infection Bacteria. International Journal of Molecular Sciences, 22(17), 9574. https://doi.org/10.3390/ijms22179574