Mechanistic Insights into Axenfeld–Rieger Syndrome from Zebrafish foxc1 and pitx2 Mutants
Abstract
:1. Axenfeld–Rieger Syndrome
2. Expression of ARS Genes in Zebrafish
3. Ocular Related Phenotypes in foxc1a and foxc1b Mutants
4. Craniofacial Defects in Zebrafish foxc1a and foxc1b Mutants
5. Cardiovascular Anomalies in Zebrafish foxc1 Mutants
6. ARS-Related Defects in Zebrafish pitx2 Mutants
7. Craniofacial Defects Due to Loss of pitx2
8. Cardiovascular Defects Due to Depletion of pitx2 in Zebrafish
9. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seifi, M.; Walter, M.A. Axenfeld-Rieger syndrome. Clin. Genet. 2018, 93, 1123–1130. [Google Scholar] [CrossRef]
- Waldron, J.M.; Mcnamara, C.; Hewson, A.R.; Mcnamara, C.M. Axenfeld-Rieger syndrome (ARS): A review and case report. Spec. Care Dent. 2010, 30, 218–222. [Google Scholar] [CrossRef]
- Dressler, S.; Meyer-Marcotty, P.; Weisschuh, N.; Jablonski-Momeni, A.; Pieper, K.; Gramer, G.; Gramer, E. Dental and Craniofacial Anomalies Associated with Axenfeld-Rieger Syndrome with PITX2 Mutation. Case Rep. Med. 2010, 2010, 621984. [Google Scholar] [CrossRef]
- French, C.R.; Seshadri, S.; Destefano, A.L.; Fornage, M.; Arnold, C.R.; Gage, P.J.; Skarie, J.M.; Dobyns, W.B.; Millen, K.J.; Liu, T.; et al. Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. J. Clin. Investig. 2014, 124, 4877–4881. [Google Scholar] [CrossRef] [Green Version]
- Aldinger, K.A.; Lehmann, O.J.; Hudgins, L.; Chizhikov, V.V.; Bassuk, A.G.; Ades, L.C.; Krantz, I.D.; Dobyns, W.B.; Millen, K.J. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat. Genet. 2009, 41, 1037–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclean, K.; Smith, J.; St Heaps, L.; Chia, N.; Williams, R.; Peters, G.B.; Onikul, E.; McCrossin, T.; Lehmann, O.J.; Adès, L.C. Axenfeld-Rieger malformation and distinctive facial features: Clues to a recognizable 6p25 microdeletion syndrome. Am. J. Med. Genet. A 2005, 132, 381–385. [Google Scholar] [CrossRef]
- Gripp, K.W.; Hopkins, E.; Jenny, K.; Thacker, D.; Salvin, J. Cardiac anomalies in Axenfeld-Rieger syndrome due to a novel FOXC1 mutation. Am. J. Med. Genet. A 2013, 161, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Mammi, I.; De Giorgio, P.; Clementi, M.; Tenconi, R. Cardiovascular anomaly in Rieger Syndrome: Heterogeneity or contiguity? Acta Ophthalmol. Scand. 1998, 76, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Idrees, F.; Bloch-Zupan, A.; Free, S.L.; Vaideanu, D.; Thompson, P.J.; Ashley, P.; Brice, G.; Rutland, P.; Bitner-Glindzicz, M.; Khaw, P.T.; et al. A novel homeobox mutation in the PITX2 gene in a family with Axenfeld-Rieger syndrome associated with brain, ocular, and dental phenotypes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Nakamura, T.; Hosono, K.; Yamaguchi, T.; Hiratsuka, Y.; Hotta, Y.; Takahashi, M. Sensorineural hearing loss and hypoplastic cochlea in Axenfeld-Rieger syndrome with FOXC1 mutation. Auris Nasus Larynx 2021, 48, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, A.C.; Wiggs, J.L. Childhood glaucoma genes and phenotypes: Focus on FOXC1 mutations causing anterior segment dysgenesis and hearing loss. Exp. Eye Res. 2020, 190, 107893. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, E.T., Jr.; Eliott, D.; Miller, N.R.; Maumenee, I.H.; Green, W.R. Familial Axenfeld-Rieger anomaly, atrial septal defect, and sensorineural hearing loss: A possible new genetic syndrome. Arch. Ophthalmol. 1998, 116, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Law, S.K.; Sami, M.; Piri, N.; Coleman, A.L.; Caprioli, J. Asymmetric phenotype of Axenfeld-Rieger anomaly and aniridia associated with a novel PITX2 mutation. Mol. Vis. 2011, 17, 1231–1238. [Google Scholar]
- Zhang, L.; Peng, Y.; Ouyang, P.; Liang, Y.; Zeng, H.; Wang, N.; Duan, X.; Shi, J. A novel frameshift mutation in the PITX2 gene in a family with Axenfeld-Rieger syndrome using targeted exome sequencing. BMC Med. Genet. 2019, 20, 105. [Google Scholar] [CrossRef]
- Phillips, J.C.; del Bono, E.A.; Haines, J.L.; Pralea, A.M.; Cohen, J.S.; Greff, L.J.; Wiggs, J.L. A second locus for Rieger syndrome maps to chromosome 13q14. Am. J. Hum. Genet. 1996, 59, 613–619. [Google Scholar] [PubMed]
- Berry, F.B.; Lines, M.A.; Oas, J.M.; Footz, T.; Underhill, D.A.; Gage, P.J.; Walter, M.A. Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld-Rieger syndrome and anterior segment dysgenesis. Hum. Mol. Genet. 2006, 15, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Tanwar, M.; Dada, T.; Dada, R. Axenfeld-Rieger Syndrome Associated with Congenital Glaucoma and Cytochrome P4501B1 Gene Mutations. Case Rep. Med. 2010, 2010, 212656. [Google Scholar] [CrossRef] [Green Version]
- Jubair, S.; N Al-Rubae’i, S.H.; M Al-Sharifi, A.N.; Jabbar Suleiman, A.A. Investigation of CYP1B1 Gene Involvement in Primary Congenital Glaucoma in Iraqi Children. Middle East Afr. J. Ophthalmol. 2019, 26, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Tran-Viet, K.N.; Yanovitch, T.L.; Freedman, S.F.; Klemm, T.; Call, W.; Powell, C.; Ravichandran, A.; Metlapally, R.; Nading, E.B. CYP1B1, MYOC, and LTBP2 mutations in primary congenital glaucoma patients in the United States. Am. J. Ophthalmol. 2013, 155, 508–517.e5. [Google Scholar] [CrossRef] [Green Version]
- Topczewska, J.M.; Topczewski, J.; Solnica-Krezel, L.; Hogan, B.L. Sequence and expression of zebrafish foxc1a and foxc1b, encoding conserved forkhead/winged helix transcription factors. Mech. Dev. 2001, 100, 343–347. [Google Scholar] [CrossRef]
- Yue, Y.; Jiang, M.; He, L.; Zhang, Z.; Zhang, Q.; Gu, C.; Liu, M.; Li, N.; Zhao, Q. The transcription factor Foxc1a in zebrafish directly regulates expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells. J. Biol. Chem. 2018, 293, 638–650. [Google Scholar] [CrossRef] [Green Version]
- Van Der Meulen, K.L.; Vöcking, O.; Weaver, M.L.; Meshram, N.N.; Famulski, J.K. Spatiotemporal Characterization of Anterior Segment Mesenchyme Heterogeneity during Zebrafish Ocular Anterior Segment Development. Front. Cell Dev. Biol. 2020, 8, 379. [Google Scholar] [CrossRef]
- Girolamo, F.; de Trizio, I.; Errede, M.; Longo, G.; d’Amati, A.; Virgintino, D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- George, R.M.; Maldonado-Velez, G.; Firulli, A.B. The heart of the neural crest: Cardiac neural crest cells in development and regeneration. Development 2020, 147, dev188706. [Google Scholar] [CrossRef]
- Rocha, M.; Singh, N.; Ahsan, K.; Beiriger, A.; Prince, V.E. Neural crest development: Insights from the zebrafish. Dev. Dyn. 2020, 249, 88–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Liang, D.; Yue, Y.; He, L.; Li, N.; Jiang, D.; Hu, P.; Zhao, Q. Axenfeld-Rieger syndrome-associated mutants of the transcription factor FOXC1 abnormally regulate NKX2-5 in model zebrafish embryos. J. Biol. Chem. 2020, 295, 11902–11913. [Google Scholar] [CrossRef]
- Chrystal, P.W.; French, C.R.; Jean, F.; Havrylov, S.; van Baarle, S.; Peturson, A.M.; Xu, P.; Crump, J.G.; Pilgrim, D.B.; Lehmann, O.J.; et al. The Axenfeld-Rieger Syndrome Gene FOXC1 Contributes to Left-Right Patterning. Genes 2021, 12, 170. [Google Scholar] [CrossRef]
- Takamiya, M.; Weger, B.D.; Schindler, S.; Beil, T.; Yang, L.; Armant, O.; Ferg, M.; Schlunck, G.; Reinhard, T.; Dickmeis, T.; et al. Molecular description of eye defects in the zebrafish Pax6b mutant, sunrise, reveals a Pax6b-dependent genetic network in the developing anterior chamber. PLoS ONE 2015, 10, e0117645. [Google Scholar]
- Umali, J.; Hawkey-Noble, A.; French, C.R. Loss of foxc1 in zebrafish reduces optic nerve size and cell number in the retinal ganglion cell layer. Vis. Res. 2019, 156, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Semina, E.V. pitx2 Deficiency results in abnormal ocular and craniofacial development in zebrafish. PLoS ONE 2012, 7, e30896. [Google Scholar] [CrossRef] [Green Version]
- Aigler, S.R.; Jandzik, D.; Hatta, K.; Uesugi, K.; Stock, D.W. Selection and constraint underlie irreversibility of tooth loss in cypriniform fishes. Proc. Natl. Acad. Sci. USA 2014, 111, 7707–7712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackman, W.R.; Yoo, J.J.; Stock, D.W. Hedgehog signaling is required at multiple stages of zebrafish tooth development. BMC Dev. Biol. 2010, 10, 119. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Buel, S.M.; Amack, J.D. Mutations in zebrafish pitx2 model congenital malformations in Axenfeld-Rieger syndrome but do not disrupt left-right placement of visceral organs. Dev. Biol. 2016, 416, 69–81. [Google Scholar] [CrossRef]
- Ai, D.; Liu, W.; Ma, L.; Dong, F.; Lu, M.F.; Wang, D.; Verzi, M.P.; Cai, C.; Gage, P.J.; Evans, S.; et al. Pitx2 regulates cardiac left-right asymmetry by patterning second cardiac lineage-derived myocardium. Dev. Biol. 2006, 296, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.M.; Ahlberg, G.; Hansen, C.V.; Guenther, S.; Marín-Juez, R.; Sokol, A.M.; El-Sammak, H.; Piesker, J.; Hellsten, Y.; Olesen, M.S.; et al. Early sarcomere and metabolic defects in a zebrafish pitx2c cardiac arrhythmia model. Proc. Natl. Acad. Sci. USA 2019, 116, 24115–24121. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yue, Y.; Dong, X.; Jia, W.; Li, K.; Liang, D.; Dong, Z.; Wang, X.; Nan, X.; Zhang, Q.; et al. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly. J. Biol. Chem. 2015, 290, 10216–10228. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Balczerski, B.; Ciozda, A.; Louie, K.; Oralova, V.; Huysseune, A.; Crump, J.G. Fox proteins are modular competency factors for facial cartilage and tooth specification. Development 2018, 145, dev165498. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Yu, H.V.; Tseng, K.C.; Flath, M.; Fabian, P.; Segil, N.; Crump, J.G. Foxc1 establishes enhancer accessibility for craniofacial cartilage differentiation. eLife 2021, 10, e63595. [Google Scholar] [CrossRef] [PubMed]
- Ferre-Fernandez, J.J.; Sorokina, E.A.; Thompson, S.; Collery, R.F.; Nordquist, E.; Lincoln, J.; Semina, E.V. Disruption of foxc1 genes in zebrafish results in dosage-dependent phenotypes overlapping Axenfeld-Rieger syndrome. Hum. Mol. Genet. 2020, 29, 2723–2735. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Hayer, K.; Hogenesch, J.B.; Granato, M. Zebrafish foxc1a drives appendage-specific neural circuit development. Development 2015, 142, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.; Nozaki, T.; Idrizi, F.; Isogai, S.; Ogasawara, K.; Ishida, K.; Yuge, S.; Roscoe, B.; Wolfe, S.A.; Fukuhara, S.; et al. Valves Are a Conserved Feature of the Zebrafish Lymphatic System. Dev. Cell 2019, 51, 374–386.e5. [Google Scholar] [CrossRef]
- Whitesell, T.R.; Chrystal, P.W.; Ryu, J.R.; Munsie, N.; Grosse, A.; French, C.R.; Workentine, M.L.; Li, R.; Zhu, L.J.; Waskiewicz, A.; et al. foxc1 is required for embryonic head vascular smooth muscle differentiation in zebrafish. Dev. Biol. 2019, 453, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Hendee, K.E.; Sorokina, E.A.; Muheisen, S.S.; Reis, L.M.; Tyler, R.C.; Markovic, V.; Cuturilo, G.; Link, B.A.; Semina, E.V. PITX2 deficiency and associated human disease: Insights from the zebrafish model. Hum. Mol. Genet. 2018, 27, 1675–1695. [Google Scholar] [CrossRef]
- Collins, M.M.; Maischein, H.M.; Dufourcq, P.; Charpentier, M.; Blader, P.; Stainier, D.Y. Pitx2c orchestrates embryonic axis extension via mesendodermal cell migration. eLife 2018, 7, e34880. [Google Scholar] [CrossRef] [PubMed]
- Soules, K.A.; Link, B.A. Morphogenesis of the anterior segment in the zebrafish eye. BMC Dev. Biol. 2005, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Akula, M.; Park, J.W.; West-Mays, J.A. Relationship between neural crest cell specification and rare ocular diseases. J. Neurosci. Res. 2019, 97, 7–15. [Google Scholar] [CrossRef]
- Skarie, J.M.; Link, B.A. FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5026–5034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, J.N.; Finger-Baier, K.C.; Roeser, T.; Staub, W.; Baier, H. Retinal ganglion cell genesis requires lakritz, a Zebrafish atonal Homolog. Neuron 2001, 30, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Kay, J.N.; Link, B.A.; Baier, H. Staggered cell-intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina. Development 2005, 132, 2573–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasov, L.; Masud, T.; Khaliq, S.; Mehdi, S.Q.; Abid, A.; Oliver, E.R.; Silva, E.D.; Lewanda, A.; Brodsky, M.C.; Borchert, M.; et al. ATOH7 mutations cause autosomal recessive persistent hyperplasia of the primary vitreous. Hum. Mol. Genet. 2012, 21, 3681–3694. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Wang, D.; Huang, C.; Zheng, Y.; Chen, H.; Pang, C.P.; Zhang, M. Interactive effects of ATOH7 and RFTN1 in association with adult-onset primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2012, 53, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Venturini, C.; Nag, A.; Hysi, P.G.; Wang, J.J.; Wong, T.Y.; Healey, P.R.; Mitchell, P.; Hammond, C.J.; Viswanathan, A.C.; Wellcome Trust Case Control Consortium 2; et al. Clarifying the role of ATOH7 in glaucoma endophenotypes. Br. J. Ophthalmol. 2014, 98, 562–566. [Google Scholar] [CrossRef]
- Macgregor, S.; Hewitt, A.W.; Hysi, P.G.; Ruddle, J.B.; Medland, S.E.; Henders, A.K.; Gordon, S.D.; Andrew, T.; McEvoy, B.; Sanfilippo, P.G.; et al. Genome-wide association identifies ATOH7 as a major gene determining human optic disc size. Hum. Mol. Genet. 2010, 19, 2716–2724. [Google Scholar] [CrossRef] [Green Version]
- Ramdas, W.D.; van Koolwijk, L.M.; Ikram, M.K.; Jansonius, N.M.; de Jong, P.T.; Bergen, A.A.; Isaacs, A.; Amin, N.; Aulchenko, Y.S.; Wolfs, R.C.; et al. A genome-wide association study of optic disc parameters. PLoS Genet. 2010, 6, e1000978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, F.B.; Skarie, J.M.; Mirzayans, F.; Fortin, Y.; Hudson, T.J.; Raymond, V.; Link, B.A.; Walter, M.A. FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A. Hum. Mol. Genet. 2008, 17, 490–505. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, Y.; Skarie, J.M.; Footz, T.; Berry, F.B.; Link, B.A.; Walter, M.A. FGF19 is a target for FOXC1 regulation in ciliary body-derived cells. Hum. Mol. Genet. 2006, 15, 3229–3240. [Google Scholar] [CrossRef]
- Nakayama, Y.; Miyake, A.; Nakagawa, Y.; Mido, T.; Yoshikawa, M.; Konishi, M.; Itoh, N. Fgf19 is required for zebrafish lens and retina development. Dev. Biol. 2008, 313, 752–766. [Google Scholar] [CrossRef] [PubMed]
- Vinothkumar, S.; Rastegar, S.; Takamiya, M.; Ertzer, R.; Strähle, U. Sequential and cooperative action of Fgfs and Shh in the zebrafish retina. Dev. Biol. 2008, 314, 200–214. [Google Scholar] [CrossRef] [Green Version]
- Du, R.F.; Huang, H.; Fan, L.L.; Li, X.P.; Xia, K.; Xiang, R. A Novel Mutation of FOXC1 (R127L) in an Axenfeld-Rieger Syndrome Family with Glaucoma and Multiple Congenital Heart Diseases. Ophthalmic Genet. 2016, 37, 111–115. [Google Scholar] [PubMed]
- Cannistraro, R.J.; Badi, M.; Eidelman, B.H.; Dickson, D.W.; Middlebrooks, E.H.; Meschia, J.F. CNS small vessel disease: A clinical review. Neurology 2019, 92, 1146–1156. [Google Scholar] [CrossRef]
- Volkmann, B.A.; Zinkevich, N.S.; Mustonen, A.; Schilter, K.F.; Bosenko, D.V.; Reis, L.M.; Broeckel, U.; Link, B.A.; Semina, E.V. Potential novel mechanism for Axenfeld-Rieger syndrome: Deletion of a distant region containing regulatory elements of PITX2. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1450–1459. [Google Scholar] [CrossRef]
- Lewis, J.L.; Bonner, J.; Modrell, M.; Ragland, J.W.; Moon, R.T.; Dorsky, R.I.; Raible, D.W. Reiterated Wnt signaling during zebrafish neural crest development. Development 2004, 131, 1299–1308. [Google Scholar] [CrossRef] [Green Version]
- Hanson, I.M.; Fletcher, J.M.; Jordan, T.; Brown, A.; Taylor, D.; Adams, R.J.; Punnett, H.H.; van Heyningen, V. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat. Genet. 1994, 6, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Hjalt, T.A.; Semina, E.V.; Amendt, B.A.; Murray, J.C. The Pitx2 protein in mouse development. Dev. Dyn. 2000, 218, 195–200. [Google Scholar] [CrossRef]
- Espinoza, H.M.; Cox, C.J.; Semina, E.V.; Amendt, B.A. A molecular basis for differential developmental anomalies in Axenfeld-Rieger syndrome. Hum. Mol. Genet. 2002, 11, 743–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, P.D.; Hjalt, T.A.; Kirk, D.E.; Sutherland, L.B.; Thomas, B.L.; Sharpe, P.T.; Snead, M.L.; Murray, J.C.; Russo, A.F.; Amendt, B.A. Antagonistic regulation of Dlx2 expression by PITX2 and Msx2: Implications for tooth development. Gene Expr. 2001, 9, 265–281. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.M.; Peng, L.Y.; Li, L.; Liu, X.Y.; Wang, J.; Zhang, X.L.; Yuan, F.; Li, R.G.; Qiu, X.B.; Yang, Y.Q. PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome. PLoS ONE 2015, 10, e0124409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strungaru, M.H.; Dinu, I.; Walter, M.A. Genotype-phenotype correlations in Axenfeld-Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Investig. Ophthalmol. Vis. Sci. 2007, 48, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.M.; Zheng, P.X.; Yang, Y.Q.; Ge, Z.M.; Kang, W.Q. A novel PITX2c lossoffunction mutation underlies lone atrial fibrillation. Int. J. Mol. Med. 2013, 32, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Q.; Xu, Y.J.; Li, R.G.; Qu, X.K.; Fang, W.Y.; Liu, X. Prevalence and spectrum of PITX2c mutations associated with familial atrial fibrillation. Int. J. Cardiol. 2013, 168, 2873–2876. [Google Scholar] [CrossRef]
- Shiratori, H.; Sakuma, R.; Watanabe, M.; Hashiguchi, H.; Mochida, K.; Sakai, Y.; Nishino, J.; Saijoh, Y.; Whitman, M.; Hamada, H. Two-step regulation of left-right asymmetric expression of Pitx2: Initiation by nodal signaling and maintenance by Nkx2. Mol. Cell 2001, 7, 137–149. [Google Scholar] [CrossRef]
Gene | Allele | Mutation | Published Phenotypes | Reference |
---|---|---|---|---|
foxc1a | nju18 | 9 bp del + 2 bp ins | Somite patterning defects | [36] |
foxc1a | el542 | 5 bp del | Jaw hypoplasia | [37,38] |
foxc1a | mw711 | 7 bp del | Anterior segment dysgenesis | [39] |
Cardiac defects | ||||
foxc1a | p162 | Nonsense | Fin axon pathfinding defects | [40] |
Vascular defects | [41] | |||
foxc1a | ua1017 | 7 bp del | Ocular, vascular, and | [27,29,42] |
L/R patterning defects | ||||
foxc1b | el620 | 101 bp deleted | Increases severity of foxc1a | [37,38] |
Mutant phenotypes | ||||
foxc1b | mw712 | 1 bp inserted | Increases severity of foxc1a | [39] |
Mutant phenotypes | ||||
foxc1b | mw713 | 1 bp deleted | Increases severity of foxc1a | [39] |
Mutant phenotypes | ||||
foxc1b | ua1018 | 40 bp deleted | Hydrocephalus, Increases | [27,29] |
Severity of foxc1a mutant | ||||
Phenotypes | ||||
pitx2 | mw709 | 8 bp deletion | Anterior segment dysgenesis | [43] |
pitx2(c) | syn3 | 11 bp deleted | None reported | [33] |
pitx2 | syn6 | 1 bp insertion+ | Anterior segment dysgenesis | [33] |
5 bp deleted | Tooth, pituitary defects | |||
pitx2 | syn7 | 8 bp deletion | Anterior segment dysgenesis | [33] |
Tooth, pituitary defects | ||||
pitx2 | syn15 | 18 bp insertion+ | Anterior segment dysgenesis | [33] |
7 bp deletion | Tooth, pituitary defects | |||
pitx2 | ups6 | 2 bp insertion+ | Embryonic axis defects | [35,44] |
6 bp deletion | Cardiac arrhythmia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
French, C.R. Mechanistic Insights into Axenfeld–Rieger Syndrome from Zebrafish foxc1 and pitx2 Mutants. Int. J. Mol. Sci. 2021, 22, 10001. https://doi.org/10.3390/ijms221810001
French CR. Mechanistic Insights into Axenfeld–Rieger Syndrome from Zebrafish foxc1 and pitx2 Mutants. International Journal of Molecular Sciences. 2021; 22(18):10001. https://doi.org/10.3390/ijms221810001
Chicago/Turabian StyleFrench, Curtis R. 2021. "Mechanistic Insights into Axenfeld–Rieger Syndrome from Zebrafish foxc1 and pitx2 Mutants" International Journal of Molecular Sciences 22, no. 18: 10001. https://doi.org/10.3390/ijms221810001
APA StyleFrench, C. R. (2021). Mechanistic Insights into Axenfeld–Rieger Syndrome from Zebrafish foxc1 and pitx2 Mutants. International Journal of Molecular Sciences, 22(18), 10001. https://doi.org/10.3390/ijms221810001