Design and Validation of a Custom NGS Panel Targeting a Set of Lysosomal Storage Diseases Candidate for NBS Applications
Abstract
:1. Introduction
2. Results
2.1. Performance and Coverage Analysis of the NBS_LSDs Ion AmpliSeq Panel
2.2. Case-Reports for Standard Samples: Pitfalls and Findings
2.2.1. Pitfalls
2.2.2. New Findings
2.3. Turnaround Time, Cost for NBS_LSDs tNGS Processing, and Ease of Management
3. Discussion
4. Materials and Methods
4.1. Samples Collection and Dosage
4.2. Panel Design and Library Preparation
4.3. Chip Loading and Sequencing
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Primers 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Platt, F.M. Emptying the stores: Lysosomal diseases and therapeutic strategies. Nat. Rev. Drug Discov. 2018, 17, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Puentes-Tellez, M.A.; Lerma-Barbosa, P.A.; Garzon-Jaramillo, R.G.; Suarez, D.A.; Espejo-Mojica, A.J.; Guevara, J.M.; Echeverri, O.Y.; Solano-Galarza, D.; Uribe-Ardila, A.; Almeciga-Diaz, C.J. A perspective on research, diagnosis, and management of lysosomal storage disorders in Colombia. Heliyon 2020, 6, e03635. [Google Scholar] [CrossRef]
- Kingma, S.D.; Bodamer, O.A.; Wijburg, F.A. Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Burlina, A.B.; Polo, G.; Rubert, L.; Gueraldi, D.; Cazzorla, C.; Duro, G.; Salviati, L.; Burlina, A.P. Implementation of Second-Tier Tests in Newborn Screening for Lysosomal Disorders in North Eastern Italy. Int. J. Neonatal Screen. 2019, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- La Cognata, V.; Guarnaccia, M.; Polizzi, A.; Ruggieri, M.; Cavallaro, S. Highlights on Genomics Applications for Lysosomal Storage Diseases. Cells 2020, 9, 1902. [Google Scholar] [CrossRef]
- Schielen, P.; Kemper, E.A.; Gelb, M.H. Newborn Screening for Lysosomal Storage Diseases: A Concise Review of the Literature on Screening Methods, Therapeutic Possibilities and Regional Programs. Int. J. Neonatal Screen. 2017, 3, 6. [Google Scholar] [CrossRef]
- Anderson, S. Newborn Screening for Lysosomal Storage Disorders. J. Pediatr. Health Care Off. Publ. Natl. Assoc. Pediatr. Nurse Assoc. Pract. 2018, 32, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Gelb, M.H. Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. Int. J. Neonatal Screen. 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Burlina, A.B.; Polo, G.; Salviati, L.; Duro, G.; Zizzo, C.; Dardis, A.; Bembi, B.; Cazzorla, C.; Rubert, L.; Zordan, R.; et al. Newborn screening for lysosomal storage disorders by tandem mass spectrometry in North East Italy. J. Inherit. Metab. Dis. 2018, 41, 209–219. [Google Scholar] [CrossRef]
- Ki, C.S. Recent Advances in the Clinical Application of Next-Generation Sequencing. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 1. [Google Scholar] [CrossRef]
- Encarnacao, M.; Coutinho, M.F.; Silva, L.; Ribeiro, D.; Ouesleti, S.; Campos, T.; Santos, H.; Martins, E.; Cardoso, M.T.; Vilarinho, L.; et al. Assessing Lysosomal Disorders in the NGS Era: Identification of Novel Rare Variants. Int. J. Mol. Sci. 2020, 21, 6355. [Google Scholar] [CrossRef]
- Fleige, T.; Burggraf, S.; Czibere, L.; Haring, J.; Gluck, B.; Keitel, L.M.; Landt, O.; Harms, E.; Hohenfellner, K.; Durner, J.; et al. Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis. Eur. J. Hum. Genet. EJHG 2020, 28, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Schuchman, E.H. Two new mutations in the acid sphingomyelinase gene causing type a Niemann-pick disease: N389T and R441X. Hum. Mutat. 1995, 6, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Gelb, M.H.; Lukacs, Z.; Ranieri, E.; Schielen, P. Newborn Screening for Lysosomal Storage Disorders: Methodologies for Measurement of Enzymatic Activities in Dried Blood Spots. Int. J. Neonatal Screen. 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaga, D.R.; Brusius-Facchin, A.C.; Siebert, M.; Pasqualim, G.; Saraiva-Pereira, M.L.; Souza, C.F.M.; Schwartz, I.V.D.; Matte, U.; Giugliani, R. Sensitivity, advantages, limitations, and clinical utility of targeted next-generation sequencing panels for the diagnosis of selected lysosomal storage disorders. Genet. Mol. Biol. 2019, 42, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.Y.; Bodamer, O.A.; Watson, M.S.; Wilcox, W.R. Lysosomal storage diseases: Diagnostic confirmation and management of presymptomatic individuals. Genet. Med. Off. J. Am. Coll. Med. Genet. 2011, 13, 457–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boustany, R.M. Lysosomal storage diseases--the horizon expands. Nat. Rev. Neurol. 2013, 9, 583–598. [Google Scholar] [CrossRef]
- Zanetti, A.; D’Avanzo, F.; Bertoldi, L.; Zampieri, G.; Feltrin, E.; De Pascale, F.; Rampazzo, A.; Forzan, M.; Valle, G.; Tomanin, R. Setup and Validation of a Targeted Next-Generation Sequencing Approach for the Diagnosis of Lysosomal Storage Disorders. J. Mol. Diagn. 2020, 22, 488–502. [Google Scholar] [CrossRef]
- Hendrix, M.M.; Cuthbert, C.D.; Cordovado, S.K. Assessing the Performance of Dried-Blood-Spot DNA Extraction Methods in Next Generation Sequencing. Int. J. Neonatal Screen. 2020, 6, 36. [Google Scholar] [CrossRef]
- Boemer, F.; Fasquelle, C.; d’Otreppe, S.; Josse, C.; Dideberg, V.; Segers, K.; Guissard, V.; Capraro, V.; Debray, F.G.; Bours, V. A next-generation newborn screening pilot study: NGS on dried blood spots detects causal mutations in patients with inherited metabolic diseases. Sci. Rep. 2017, 7, 17641. [Google Scholar] [CrossRef] [PubMed]
- Smolders, S.; Van Broeckhoven, C. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson’s disease pathogenesis. Acta Neuropathol. Commun. 2020, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Pitcairn, C.; Wani, W.Y.; Mazzulli, J.R. Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson’s disease. Neurobiol. Dis. 2019, 122, 72–82. [Google Scholar] [CrossRef] [PubMed]
LSDs Disease | Sample | Ref | Observed Allele | Type | Genes | Hom/Het | Coding | Amino Acid Change | Variant Effect | ClinVar |
---|---|---|---|---|---|---|---|---|---|---|
Gaucher | NA00372 | T | C | SNV | GBA | Het | c.1226A>G | p.Asn409Ser | missense | CIP |
G | GC | INDEL | GBA | Het | c.84_85insG | p.Leu29 AlafsTer18 | frameshift insertion | P | ||
A | G | SNV | SMPD1 | Het | c.56A>G | p.Gln19Arg | missense | US | ||
G | A | SNV | GAA | Het | c.2561G>A | p.Arg854Gln | missense | CIP | ||
NA00877 | A | G | SNV | GBA | Hom | c.1448T>C | p.Leu483Pro | missense | CIP | |
NA10870 | T | C | SNV | GBA | Hom | c.1226A>G | p.Asn409Ser | missense | CIP | |
NA10874 | T | C | SNV | GBA | Het | c.1226A>G | p.Asn409Ser | missense | ||
not detected [heterozygous 476G>A, Arg120Gln (R120Q)] | ||||||||||
Fabry | NA00107 | not detected [hemizygous c.485G>A, Trp162Ter (W162X)] | ||||||||
NA00636 | ACTT | A | INDEL | GLA | Hom | c.177+6063_177+ 6065delCTT, c.1212_1214delAAG | p.Arg404del | non frameshift deletion | P | |
NA04391 | T | C | SNV | GLA | Hom | c.177+7120T>C, c.644A>G | p.Asn215Ser | missense | P | |
Pompe | NA00244 | T | C | SNV | GAA | Het | c.953T>C | p.Met318Thr | missense | CIP |
C | T | SNV | GAA | Het | c.2560C>T | p.Arg854Ter | nonsense | P | ||
NA01935 | C | A | SNV | GAA | Het | c.1935C>A | p.Asp645Glu | missense | P | |
C | T | SNV | GAA | Het | c.2560C>T | p.Arg854Ter | nonsense | P | ||
NA14108 | T | G | SNV | GAA | Het | c.-32-13T>G | p.? | unknown | P | |
CT | C | INDEL | GAA | Het | c.525delT | p.Glu176 ArgfsTer45 | frameshift deletion | P | ||
Niemann Pick A-B | NA00112 | T | C | SNV | SMPD1 | Hom | c.911T>C | p.Leu304Pro | missense | P |
NA13205 | TC | T | INDEL | SMPD1 | Het | c.996delC | p.Phe333 SerfsTer52 | frameshift deletion | P | |
A | C | SNV | SMPD1 | Het | c.1172A>C | p.Asn391Thr | missense | n.a. | ||
NA16193 | G | T | SNV | SMPD1 | Het | c.1493G>T, c.*1330C>A | p.Arg498Leu | missense | P | |
TGCC | T | INDEL | SMPD1 | Het | c.1829_1831delGCC, c.*998GGCA>A | p.Arg610del | non frameshift deletion | n.a. | ||
MPSI | NA00798 | A | G | SNV | GBA | Het | c.1448T>C | p.Leu483Pro | missense | CIP |
G | A | SNV | IDUA | Hom | c.1205G>A | p.Trp402Ter | nonsense | P | ||
NA01256 | G | A | SNV | IDUA | Het | c.590-7G>A | p.? | unknown | P | |
G | A | SNV | IDUA | Het | c.1205G>A | p.Trp402Ter | nonsense | P |
Number of Processed Samples | Price (Euro) | Cost/Sample (Euro) | |
---|---|---|---|
QIAmp DNA Micro Kit | 50 | 215 | 4.3 |
TaqMan™ RNase P Detection Reagents Kit (100 rxn) | 33 * | 367 | 11.1 |
TaqMan™ Universal PCR Master Mix (500 rxn) | 166 * | 584 | 3.5 |
Made-To-Order Ion AmpliSeq panel NBS_LSDs 2X (IAD199968_236) | 1000 | 1422,40 | 1.4 |
Ion AmpliSeq™ Kit for Chef DL8 | 32 | 4660 | 145.6 |
Ion Library TaqMan® Quantitation Kit (250 rxn) | 83 * | 1546 | 18.6 |
Ion 510™ & Ion 520™ & Ion 530™ Kit–Chef (2 sequencing runs per initialization, 8 loaded chips) | 256 (32/chip) | 3600,00 | 14.5 |
Ion 510™ Chip Kit (8-Pack) | 256 (32/chip) | 4665 | 18.2 |
Total cost per sample | 217.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Cognata, V.; Guarnaccia, M.; Morello, G.; Ruggieri, M.; Polizzi, A.; Cavallaro, S. Design and Validation of a Custom NGS Panel Targeting a Set of Lysosomal Storage Diseases Candidate for NBS Applications. Int. J. Mol. Sci. 2021, 22, 10064. https://doi.org/10.3390/ijms221810064
La Cognata V, Guarnaccia M, Morello G, Ruggieri M, Polizzi A, Cavallaro S. Design and Validation of a Custom NGS Panel Targeting a Set of Lysosomal Storage Diseases Candidate for NBS Applications. International Journal of Molecular Sciences. 2021; 22(18):10064. https://doi.org/10.3390/ijms221810064
Chicago/Turabian StyleLa Cognata, Valentina, Maria Guarnaccia, Giovanna Morello, Martino Ruggieri, Agata Polizzi, and Sebastiano Cavallaro. 2021. "Design and Validation of a Custom NGS Panel Targeting a Set of Lysosomal Storage Diseases Candidate for NBS Applications" International Journal of Molecular Sciences 22, no. 18: 10064. https://doi.org/10.3390/ijms221810064
APA StyleLa Cognata, V., Guarnaccia, M., Morello, G., Ruggieri, M., Polizzi, A., & Cavallaro, S. (2021). Design and Validation of a Custom NGS Panel Targeting a Set of Lysosomal Storage Diseases Candidate for NBS Applications. International Journal of Molecular Sciences, 22(18), 10064. https://doi.org/10.3390/ijms221810064